

Welcome to the OpenDaylight Handbook!

This handbook provides details on various aspects of OpenDaylight from the user
guides to the developer guides and tries to act as a single point of contact
for all documentation related articles in OpenDaylight. If you would like to
contribute to the Handbook please refer to the Documentation Guide.

Content for OpenDaylight Users

The following content is intended for people who would like to deploy, use, or
just learn more about OpenDaylight.

	Getting Started Guide

	OpenDaylight User Guide

	OpenDaylight with Openstack Guide

Content for OpenDaylight Developers

The Following content is intended for developers building applications or code
on top of OpenDaylight, but who do not plan to modify OpenDaylight code
itself.

	Developer Guide

Content for OpenDaylight Contributors

The following content is intended for developers who either currently
participate in the development of OpenDaylight or would like to start.

	Gerrit Guide

	Infrastructure Guide

	Integration Testing Guide

	Documentation Guide

	OpenDaylight Release Process Guide

	Spectrometer Documentation

	Java API Documentation

	NetVirt Contributor Guide

Getting Started Guide

	Introduction

	Overview

	Who should use this guide?

	OpenDaylight concepts and tools

	OpenDaylight Karaf Features

	OpenDaylight Experimental Features

	Other features

	API

	Installing OpenDaylight

	Release Notes

	Project-Specific Installation Guides

	Common OpenDaylight Features

	Security Considerations

Introduction

The OpenDaylight project is an open source platform for Software Defined
Networking (SDN) that uses open protocols to provide centralized, programmatic
control and network device monitoring. Like many other SDN controllers,
OpenDaylight supports OpenFlow, as well as offering ready-to-install network
solutions as part of its platform.

Much as your operating system provides an interface for the devices that
comprise your computer, OpenDaylight provides an interface that allows you to
connect network devices quickly and intelligently for optimal network
performance.

It’s extremely helpful to understand that setting up your networking environment
with OpenDaylight is not a single software installation. While your first
chronological step is to install OpenDaylight, you install additional
functionality packaged as Karaf features to suit your specific needs.

Before walking you through the initial OpenDaylight installation, this guide
presents a fuller picture of OpenDaylight’s framework and functionality so you
understand how to set up your networking environment. The guide then takes you
through the installation process.

What’s different about OpenDaylight

Major distinctions of OpenDaylight’s SDN compared to traditional SDN options are
the following:

	A microservices architecture, in which a “microservice” is a particular
protocol or service that a user wants to enable within their installation of
the OpenDaylight controller, for example:
	A plugin that provides connectivity to devices via the OpenFlow or BGP
protocols

	An L2-Switch or a service such as Authentication, Authorization, and
Accounting (AAA).

	Support for a wide and growing range of network protocols beyond OpenFlow,
including SNMP, NETCONF, OVSDB, BGP, PCEP, LISP, and more.

	Support for developing new functionality comprised of additional networking
protocols and services.

Note

A thorough understanding of the microservices architecture is
important for experienced network developers who want to create new solutions
in OpenDaylight. If you are new to networking and OpenDaylight, you most
likely won’t design solutions, but you should comprehend the microservices
concept to understand how OpenDaylight works and how it differs from other
SDN programs.

What you’ll find in this guide

To set up your environment, you first install OpenDaylight followed by the
Apache Karaf features that offer the functionality you require. The OpenDaylight
Getting Started Guide covers feature descriptions, OpenDaylight installation
procedures, and feature installation.

The Getting Started Guide also includes other helpful information, with the
following organization:

	An overview of OpenDaylight and common use models

	Who should use this guide?

	OpenDaylight concepts and tools

	Explanations of OpenDaylight Apache Karaf features and other features that
extend network functionality

	OpenDaylight system requirements and Release Notes

	OpenDaylight installation instructions

	Feature tables with installation names and compatibility notes

Overview

OpenDaylight performs the following functions:

	Logically centralizes programmatic control of the physical and virtual devices
in your network.

	Controls devices with standard, open protocols.

	Provides higher-level abstractions of its capabilities so experienced network
engineers and developers can create new applications to customize network
setup and administration.

Common use cases for SDN are as follows:

	Centralized network monitoring, management, and orchestration

	Proactive network management and traffic engineering

	Chaining packets through the different VMs, which is known as service
function chaining (SFC). SFC enables Network Functions Virtualization (NFV),
which is a network architecture concept that virtualizes entire classes of
network node functions into building blocks that may connect, or chain
together, to create communication services.

	Cloud - managing both the virtual overlay and the physical underlay beneath
it.

Who should use this guide?

OpenDaylight is for users considering open options in network programming. This
guide provides information for the following types of users:

	Those new to OpenDaylight who want to install it and select the features they
need to run their network environment using only the command line and GUI.
Such users include:
	Students

	Network administrators and engineers.

	Network engineers and network application developers who want to use
OpenDaylight’s REST APIs to manage their network programmatically.

	Network engineers and network application developers who want to write their
own OpenDaylight services and plugins for greater functionality. This group
of users needs a significant level of expertise in the following areas, which
is beyond the scope of this document:
	The YANG modeling language

	The Model-Driven Service Abstraction Layer (MD-SAL)

	Maven build tool

	Management of the shared data store

	How to handle notifications and/or Remote Procedure Calls (RPCs)

	Developers who would like to join the OpenDaylight community and contribute
code upstream. People in this group design offerings such as
applications/services, protocol implementations, and so on, to increase
OpenDaylight functionality for the benefit of all end-users.

Note

If you develop code to build new functionality for OpenDaylight and
push it upstream (not required), it can become part of the OpenDaylight
release. Users can then install the features to implement the solution you’ve
created.

OpenDaylight concepts and tools

In this section we discuss some of the concepts and tools you encounter with
basic use of OpenDaylight. The guide walks you through the installation process
in a subsequent section, but for now familiarize yourself with the information
below.

	To date, OpenDaylight developers have formed more than 50 projects to address
ways to extend network functionality. The projects are a formal structure for
developers from the community to meet, document release plans, code, and
release the functionality they create in an OpenDaylight release.

The typical OpenDaylight user will not join a project team, but you should
know what projects are as we refer to their activities and the functionality
they create. The Karaf features to install that functionality often share the
project team’s name.

	Apache Karaf provides a lightweight runtime to install the Karaf features
you want to implement and is included in the OpenDaylight platform software.
By default, OpenDaylight has no pre-installed features.

	After installing OpenDaylight, you install your selected features using the
Karaf console to expand networking capabilities. In the Karaf feature list
below are the ones you’re most likely to use when creating your network
environment.

As a short example of installing a Karaf feature, OpenDaylight
offers Application Layer Traffic Optimization (ALTO). The Karaf feature to
install ALTO is odl-alto-all. On the Karaf console, the command to install it
is:

feature:install odl-alto-all

	DLUX is a web-based interface that OpenDaylight provides for you to manage
your network. Its Karaf feature installation name is “odl-dlux-core”.

	DLUX draws information from OpenDaylight’s topology and host databases to
display the following information:

	The network

	Flow statistics

	Host locations

	To enable the DLUX UI after installing OpenDaylight, run:

feature:install odl-dlux-core

on the Karaf console.

	Network embedded Experience (NeXt) is a developer toolkit that provides
tools to draw network-centric topology UI elements that offer visualizations
of the following:

	Large complex network topologies

	Aggregated network nodes

	Traffic/path/tunnel/group visualizations

	Different layout algorithms

	Map overlays

	Preset user-friendly interactions

NeXt can work with DLUX to build OpenDaylight applications. Check out the
NeXt_demo [https://www.youtube.com/watch?v=gBsUDu8aucs] for more information on the interface.

	Model-Driven Service Abstraction Layer (MD-SAL) is the OpenDaylight framework
that allows developers to create new Karaf features in the form of services
and protocol drivers and connects them to one another. You can think of the
MD-SAL as having the following two components:

	A shared datastore that maintains the following tree-based structures:

	The Config Datastore, which maintains a representation of the desired
network state.

	The Operational Datastore, which is a representation of the actual
network state based on data from the managed network elements.

	A message bus that provides a way for the various services and protocol
drivers to notify and communicate with one another.

	If you’re interacting with OpenDaylight through DLUX or the REST APIs while
using the the OpenDaylight interfaces, the microservices architecture allows
you to select available services, protocols, and REST APIs.

OpenDaylight Karaf Features

This section provides brief descriptions of the most commonly used Karaf
features developed by OpenDaylight project teams. They are presented in
alphabetical order. OpenDaylight installation instructions and a feature table
that lists installation commands and compatibility follow.

	AAA

	ALTO

	Border Gateway Protocol (including Link-state Distribution (BGP)

	Border Gateway Monitoring Protocol (BMP)

	Control and Provisioning of Wireless Access Points (CAPWAP)

	Controller Shield

	Device Identification and Driver Management (DIDM)

	DLUX

	Fabric as a Service (FaaS)

	Group Based Policy (GBP)

	Internet of Things Data Management (IoTDM)

	Link Aggregation Control Protocol (LACP)

	Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

	NEMO

	NETCONF

	NetIDE

	OVSDB-based Network Virtualization Services

	OpenFlow Configuration Protocol (OF-CONFIG)

	OpenFlow plugin

	Path Computation Element Protocol (PCEP)

	Secure Network Bootstrapping Interface (SNBi)

	Service Function Chaining (SFC)

	SNMP Plugin

	SNMP4SDN

	Source-Group Tag Exchange Protocol (SXP)

	Topology Processing Framework

	Time Series Data Repository (TSDR)

	Unified Secure Channel (USC)

	Virtual Tenant Network (VTN)

AAA

Standards-compliant Authentication, Authorization and Accounting Services.
RESTCONF is the most common consumer of AAA, which installs the AAA features
automatically. AAA provides:

	Support for persistent data stores

	Federation and SSO with OpenStack Keystone

This release of AAA includes experimental support for having the database of users and credentials stored in the cluster-aware MD-SAL datastore.

ALTO

Implements the Application-Layer Traffic Optimization (ALTO) base IETF protocol
to provide network information to applications. It defines abstractions and
services to enable simplified network views and network services to guide
application usage of network resources and includes five services:

	Network Map Service - Provides batch information to ALTO clients in the forms
of ALTO network maps.

	Cost Map Service - Provides costs between defined groupings.

	Filtered Map Service - Allows ALTO clients to query an ALTO server on ALTO
network maps and/or cost maps based on additional parameters.

	Endpoint Property Service - Allows ALTO clients to look up properties for
individual endpoints.

	Endpoint Cost Service - Allows an ALTO server to return costs directly
amongst endpoints.

Border Gateway Protocol (including Link-state Distribution (BGP)

Is a southbound plugin that provides support for Border Gateway Protocol
(including Link-state Distribution) as a source of L3 topology information.

Border Gateway Monitoring Protocol (BMP)

Is a southbound plugin that provides support for BGP Monitoring Protocol as a
monitoring station.

Control and Provisioning of Wireless Access Points (CAPWAP)

Enables OpenDaylight to manage CAPWAP-compliant wireless termination point (WTP)
network devices. Intelligent applications, e.g., radio planning, can be
developed by tapping into the operational states made available via REST APIs of
WTP network devices.

Controller Shield

Creates a repository called the Unified-Security Plugin (USecPlugin) to provide
controller security information to northbound applications, such as the
following:

	Collating the source of different attacks reported in southbound plugins

	Gathering information on suspected controller intrusions and trusted
controllers in the network

Information collected at the plugin may also be used to configure firewalls and create IP blacklists for the network.

Device Identification and Driver Management (DIDM)

Provides device-specific functionality, which means that code enabling a feature
understands the capability and limitations of the device it runs on. For
example, configuring VLANs and adjusting FlowMods are features, and there may be
different implementations for different device types. Device-specific
functionality is implemented as Device Drivers.

DLUX

Web based OpenDaylight user interface that includes:

	An MD-SAL flow viewer

	Network topology visualizer

	A tool box and YANG model that execute queries and visualize the YANG tree

Fabric as a Service (FaaS)

Creates a common abstraction layer on top of a physical network so northbound
APIs or services can be more easily mapped onto the physical network as a
concrete device configuration.

Group Based Policy (GBP)

Defines an application-centric policy model for OpenDaylight that separates
information about application connectivity requirements from information about
the underlying details of the network infrastructure. Provides support for:

	Integration with OpenStack Neutron

	Service Function Chaining

	OFOverlay support for NAT, table offsets

Internet of Things Data Management (IoTDM)

Developing a data-centric middleware to act as a oneM2M [http://www.onem2m.org/]-compliant IoT Data
Broker (IoTDB) and enable authorized applications to retrieve IoT data uploaded
by any device.

Link Aggregation Control Protocol (LACP)

LACP can auto-discover and aggregate multiple links between an
OpenDaylight-controlled network and LACP-enabled endpoints or switches.

Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

LISP (RFC6830) enables separation of Endpoint Identity (EID) from Routing
Location (RLOC) by defining an overlay in the EID space, which is mapped to the
underlying network in the RLOC space.

LISP Mapping Service provides the EID-to-RLOC mapping information, including
forwarding policy (load balancing, traffic engineering, and so on) to LISP
routers for tunneling and forwarding purposes. The LISP Mapping Service can
serve the mapping data to data plane nodes as well as to OpenDaylight
applications.

To leverage this service, a northbound API allows OpenDaylight applications and
services to define the mappings and policies in the LISP Mapping Service. A
southbound LISP plugin enables LISP data plane devices to interact with
OpenDaylight via the LISP protocol.

NEMO

Is a Domain Specific Language (DSL) for the abstraction of network models and
identification of operation patterns. NEMO enables network users/applications to
describe their demands for network resources, services, and logical operations
in an intuitive way that can be explained and executed by a language engine.

NETCONF

Offers four features:

	odl-netconf-mdsal: NETCONF Northbound for MD-SAL and applications

	odl-netconf-connector: NETCONF Southbound plugin - configured through the
configuration subsystem

	odl-netconf-topology: NETCONF Southbound plugin - configured through the
MD-SAL configuration datastore

	odl-restconf: RESTCONF Northbound for MD-SAL and applications

NetIDE

Enables portability and cooperation inside a single network by using a
client/server multi-controller architecture. It provides an interoperability
layer allowing SDN Applications written for other SDN Controllers to run on
OpenDaylight. NetIDE details:

	Architecture follows a client/server model: other SDN controllers represent
clients with OpenDaylight acting as the server.

	OpenFlow v1.0/v1.3 is the only southbound protocol supported in this initial
release. We are planning for other southbound protocols in later releases.

	The developer documentation contains the protocol specifications required for
developing plugins for other client SDN controllers.

	The NetIDE Configuration file contains the configurable elements for the
engine.

OVSDB-based Network Virtualization Services

Several services and plugins in OpenDaylight work together to provide simplified
integration with the OpenStack Neutron framework. These services enable
OpenStack to offload network processing to OpenDaylight while enabling
OpenDaylight to provide enhanced network services to OpenStack.

OVSDB Services are at parity with the Neutron Reference Implementation in
OpenStack, including support for:

	L2/L3
	The OpenDaylight Layer-3 Distributed Virtual Router is fully on par with
what OpenStack offers and now provides completely decentralized Layer 3
routing for OpenStack. ICMP rules for responding on behalf of the L3 router
are fully distributed as well.

	Full support for distributed Layer-2 switching and distributed IPv4 routing
is now available.

	Clustering - Full support for clustering and High Availability (HA) is
available in the this OpenDaylight release. In particular, the OVSDB
southbound plugin supports clustering that any application can use, and the
Openstack network integration with OpenDaylight (through OVSDB Net-Virt) has
full clustering support. While there is no specific limit on cluster size, a
3-node cluster has been tested extensively as part of the release.

	Security Groups - Security Group support is available and implemented using
OpenFlow rules that provide superior functionality and performance over
OpenStack Security Groups, which use IPTables. Security Groups also provide
support for ConnTrack with stateful tracking of existing connections.
Contract-based Security Groups require OVS v2.5 with contract support.

	Hardware Virtual Tunnel End Point (HW-VTEP) - Full HW-VTEP schema support has
been implemented in the OVSDB protocol driver. Support for HW-VTEP via
OpenStack through the OVSDB-NetVirt implementation has not yet been provided
as we wait for full support of Layer-2 Gateway (L2GW) to be implemented within
OpenStack.

	Service Function Chaining

	Open vSwitch southbound support for quality of service and Queue configuration
Load Balancer as service (LBaaS) with Distributed Virtual Router

	Network Virtualization User interface for DLUX

OpenFlow Configuration Protocol (OF-CONFIG)

Provides a process for an Operation Context containing an OpenFlow Switch that uses OF-CONFIG to communicate with an OpenFlow Configuration Point, enabling remote configuration of OpenFlow datapaths.

OpenFlow plugin

Supports connecting to OpenFlow-enabled network devices via the OpenFlow
specification. It currently supports OpenFlow versions 1.0 and 1.3.2.

In addition to support for the core OpenFlow specification, OpenDaylight
also includes preliminary support for the Table Type Patterns and
OF-CONFIG specifications.

Path Computation Element Protocol (PCEP)

Is a southbound plugin that provides support for performing Create, Read,
Update, and Delete (CRUD) operations on Multiprotocol Label Switching (MPLS)
tunnels in the underlying network.

Secure Network Bootstrapping Interface (SNBi)

Leverages manufacturer-installed IEEE 802.1AR certificates to secure initial
communications for a zero-touch approach to bootstrapping using Docker. SNBi
devices and controllers automatically do the following:

	Discover each other, which includes:
	Revealing the physical topology of the network

	Exposing each type of a device

	Assigning the domain for each device

	Get assigned an IP-address

	Establish secure IP connectivity

SNBi creates a basic infrastructure to host, run, and lifecycle-manage multiple
network functions within a network device, including individual network element
services, such as:

	Performance measurement

	Traffic-sniffing functionality

	Traffic transformation functionality

SNBi also provides a Linux side abstraction layer to forward elements as well
as enhancements to feature the abstraction and bootstrapping infrastructure.
You can also use the device type and domain information to initiate controller
federation processes.

Service Function Chaining (SFC)

Provides the ability to define an ordered list of network services (e.g.
firewalls, load balancers) that are then “stitched” together in the network to
create a service chain. SFC provides the chaining logic and APIs necessary for
OpenDaylight to provision a service chain in the network and an end-user
application for defining such chains. It includes:

	YANG models to express service function chains

	SFC receiver for Intent expressions from REST & RPC

	UI for service chain construction

	LISP support

	Function grouping for load balancing

	OpenFlow renderer for Network Service Headers, MPLS, and VLAN

	Southbound REST interface

	IP Tables-based classifier for grouping packets into selected service chains

	Integration with OpenDaylight GBP project

	Integration with OpenDaylight OVSDB NetVirt project

SNMP Plugin

The SNMP southbound plugin allows applications acting as an SNMP Manager to
interact with devices that support an SNMP agent. The SNMP plugin implements a
general SNMP implementation, which differs from the SNMP4SDN as that project
leverages only select SNMP features to implement the specific use case of
making an SNMP-enabled device emulate some features of an OpenFlow-enabled
device.

SNMP4SDN

Provides a southbound SNMP plugin to optimize delivery of SDN controller
benefits to traditional/legacy ethernet switches through the SNMP interface. It
offers support for flow configuration on ACLs and enables flow configuration
via REST API and multi-vendor support.

Source-Group Tag Exchange Protocol (SXP)

Enables creation of a tag that allows you to filter traffic instead of using
protocol-specific information like addresses and ports. Via SXP an external
entity creates the tags, assigns them to traffic appropriately, and publishes
information about the tags to network devices so they can enforce the tags
appropriately.

More specifically, SXP Is an IETF-published control protocol designed to
propagate the binding between an IP address and a source group, which has a
unique source group tag (SGT). Within the SXP protocol, source groups with
common network policies are endpoints connecting to the network. SXP updates
the firewall with SGTs, enabling the firewalls to create topology-independent
Access Control Lists (ACLs) and provide ACL automation.

SXP source groups have the same meaning as endpoint groups in OpenDaylight’s
Group Based Policy (GBP), which is used to manipulate policy groups, so you can
use OpenDaylight GPB with SXP SGTs. The SXP topology-independent policy
definition and automation can be extended through OpenDaylight for other
services and networking devices.

Topology Processing Framework

Provides a framework for simplified aggregation and topology data query to
enable a unified topology view, including multi-protocol, Underlay, and
Overlay resources.

Time Series Data Repository (TSDR)

Creates a framework for collecting, storing, querying, and maintaining time
series data in OpenDaylight. You can leverage various data-driven applications
built on top of TSDR when you install a datastore and at least one collector.

Functionality of TDSR includes:

	Data Query Service - For external data-driven applications to query data from
TSDR through REST APIs

	NBI integration with Grafana - Allows visualization of data collected in TSDR
using Grafana

	Data Aggregation Service - Periodically aggregates raw data into larger time granularities

	Data Purging Service - Periodically purges data from TSDR

	Data Collection Framework - Data Collection framework to allow plugging in of
various types of collectors

	HSQL data store - Replacement of H2 data store to remove third party
component dependency from TSDR

	Cassandra data store - Cassandra implementation of TSDR SPIs

	NetFlow data collector - Collect NetFlow data from network elements

	NetFlowV9 - version 9 Netflow collector

	SNMP Data Collector - Integrates with SNMP plugin to bring SNMP data into TSDR

	sFlowCollector - Collects sFlow data from network elements

	Syslog data collector - Collects syslog data from network elements

TSDR has multiple features to enable the functionality above. To begin,
select one of these data stores:

	odl-tsdr-hsqldb-all

	odl-tsdr-hbase

	odl-tsdr-cassandra

Then select any “collectors” you want to use:

	odl-tsdr-openflow-statistics-collector

	odl-tsdr-netflow-statistics-collector

	odl-tsdr-controller-metrics-collector

	odl-tsdr-sflow-statistics-collector

	odl-tsdr-snmp-data-collector

	odl-tsdr-syslog-collector

See these TSDR_Directions [https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step] for more information.

Unified Secure Channel (USC)

Provides a central server to coordinate encrypted communications between
endpoints. Its client-side agent informs the controller about its encryption
capabilities and can be instructed to encrypt select flows based on business
policies.

A possible use case is encrypting controller-to-controller communications;
however, the framework is very flexible, and client side software is available
for multiple platforms and device types, enabling USC and OpenDaylight to
centralize the coordination of encryption across a wide array of endpoint and
device types.

Virtual Tenant Network (VTN)

Provides multi-tenant virtual network on an SDN controller, allowing you to
define the network with a look and feel of a conventional L2/L3 network. Once
the network is designed on VTN, it automatically maps into the underlying
physical network and is then configured on the individual switch, leveraging
the SDN control protocol.

By defining a logical plane with VTN, you can conceal the complexity of the
underlying network and better manage network resources to reduce network
configuration time and errors.

OpenDaylight Experimental Features

	Network Intent Composition (NIC)

	UNI Manager Plug-in (Unimgr)

	YANG-PUBSUB

Network Intent Composition (NIC)

Offers an interface with an abstraction layer for you to communicate
“intentions,” i.e., what you expect from the network. The Intent model, which
is part of NIC’s core architecture, describes your networking services
requirements and transforms the details of the desired state to OpenDaylight.
NIC has four features:

	odl-nic-core-hazelcast: Provides the following:
	A distributed intent mapping service implemented using hazelcast, which
stores metadata needed to process Intent correctly

	An intent REST API to external applications for Create, Read, Update, and
Delete (CRUD) operations on intents, conflict resolution, and event handling

	odl-nic-core-mdsal: Provides the following:
	A distributed Intent mapping service implemented using MD-SAL, which stores
metadata needed to process Intent correctly

	An Intent rest API to external applications for CRUD operations on Intents,
conflict resolution, and event handling

	odl-nic-console: Provides a Karaf CLI extension for Intent CRUD operations
and mapping service operations

	Four renderers to provide specific implementations to render the Intent:
	Virtual Tenant Network Renderer

	Group Based Policy Renderer

	OpenFlow Renderer

	Network MOdeling Renderer

UNI Manager Plug-in (Unimgr)

Formed to initiate the development of data models and APIs that facilitate
OpenDaylight software applications’ and/or service orchestrators’ ability to
configure and provision connectivity services.

YANG-PUBSUB

An experimental feature Plugin that allows subscriptions to be placed on
targeted subtrees of YANG datastores residing on remote devices. Changes in
YANG objects within the remote subtree can be pushed to OpenDaylight as
specified and don’t require OpenDaylight to make continuous fetch requests.
YANG-PUBSUB is developed as a Java project. Development requires Maven version
3.1.1 or later.

Other features

OpFlex

Provides the OpenDaylight OpFlex Agent , which is a policy agent that works
with Open vSwitch (OVS), to enforce network policy, e.g., from Group-Based
Policy, for locally-attached virtual machines or containers.

Network embedded Experience (NeXt)

Provides a network-centric topology UI that offers visualizations of the
following:

	Large complex network topologies

	Aggregated network nodes

	Traffic/path/tunnel/group visualizations

	Different layout algorithms

	Map overlays

	Preset user-friendly interactions

NeXt can work with DLUX to build OpenDaylight applications. NeXt does not
support Internet Explorer. Check out the NeXt_demo [https://www.youtube.com/watch?v=gBsUDu8aucs] for more information on the
interface.

API

We are in the process of creating automatically generated API documentation for
all of OpenDaylight. The following are links to the preliminary documentation
that you can reference. We will continue to add more API documentation as it
becomes available.

	mdsal [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.mdsal/boron/apidocs/]

	odlparent [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.odlparent/boron/apidocs/index.html]

	yangtools [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.yangtools/boron/apidocs/index.html]

Installing OpenDaylight

You complete the following steps to install your networking environment, with
specific instructions provided in the subsections below.

Before detailing the instructions for these, we address the following:
Java Runtime Environment (JRE) and operating system information
Target environment
Known issues and limitations

Install OpenDaylight

Downloading and installing OpenDaylight

The default distribution can be found on the OpenDaylight software
download page: http://www.opendaylight.org/software/downloads

The Karaf distribution has no features enabled by default. However, all
of the features are available to be installed.

Note

For compatibility reasons, you cannot enable all the features
simultaneously. We try to document known incompatibilities in
the Install the Karaf features section below.

Running the karaf distribution

To run the Karaf distribution:

	Unzip the zip file.

	Navigate to the directory.

	run ./bin/karaf.

For Example:

$ ls distribution-karaf-0.5.x-Boron.zip
distribution-karaf-0.5.x-Boron.zip
$ unzip distribution-karaf-0.5.x-Boron.zip
Archive: distribution-karaf-0.5.x-Boron.zip
 creating: distribution-karaf-0.5.x-Boron/
 creating: distribution-karaf-0.5.x-Boron/configuration/
 creating: distribution-karaf-0.5.x-Boron/data/
 creating: distribution-karaf-0.5.x-Boron/data/tmp/
 creating: distribution-karaf-0.5.x-Boron/deploy/
 creating: distribution-karaf-0.5.x-Boron/etc/
 creating: distribution-karaf-0.5.x-Boron/externalapps/
...
 inflating: distribution-karaf-0.5.x-Boron/bin/start.bat
 inflating: distribution-karaf-0.5.x-Boron/bin/status.bat
 inflating: distribution-karaf-0.5.x-Boron/bin/stop.bat
$ cd distribution-karaf-0.5.x-Boron
$./bin/karaf

 ________ ________ .__ .__ .__ __
 _____ \ ______ ____ ____ ______ \ _____ ___.__.\| \| \|__\| ____ \| \|___/ \|_
 / \| ____ _/ __ \ / \ \| \| __ \< \| \|\| \| \| \|/ ___\\| \| \ __\
 / \| \ \|_> > ___/\| \| \\| ` \/ __ ___ \|\| \|_\| / /_/ > Y \ \|
 _______ / __/ ___ >___\| /_______ (____ / ____\|\|____/_____ /\|___\| /__\|
 \/\|__\| \/ \/ \/ \/\/ /_____/ \/

	Press tab for a list of available commands

	Typing [cmd] --help will show help for a specific command.

	Press ctrl-d or type system:shutdown or logout to shutdown OpenDaylight.

Note

Please take a look at the Deployment Recommendations
and following sections under Security Considerations if you’re
planning on running OpenDaylight outside of an isolated test lab
environment.

Install the Karaf features

To install a feature, use the following command, where feature1 is the feature
name listed in the table below:

feature:install <feature1>

You can install multiple features using the following command:

feature:install <feature1> <feature2> ... <featureN-name>

Note

For compatibility reasons, you cannot enable all Karaf features
simultaneously. The table below documents feature installation names and
known incompatibilities.Compatibility values indicate the following:

	all - the feature can be run with other features.

	self+all - the feature can be installed with other features with a value of
all, but may interact badly with other features that have a value of
self+all. Not every combination has been tested.

Uninstalling features

To uninstall a feature, you must shut down OpenDaylight, delete the data
directory, and start OpenDaylight up again.

Important

Uninstalling a feature using the Karaf feature:uninstall command
is not supported and can cause unexpected and undesirable behavior.

Listing available features

To find the complete list of Karaf features, run the following command:

feature:list

To list the installed Karaf features, run the following command:

feature:list -i

Features to implement networking functionality provide release notes, which
you can find in the Project Specific Release Notes section.

Karaf running on Windows 10

Windows 10 cannot be identify by Karaf (equinox).
Issue occurs during installation of karaf features e.g.:

opendaylight-user@root>feature:install odl-restconf
Error executing command: Can't install feature odl-restconf/0.0.0:
Could not start bundle mvn:org.fusesource.leveldbjni/leveldbjni-all/1.8-odl in feature(s) odl-akka-leveldb-0.7: The bundle "org.fusesource.leveldbjni.leveldbjni-all_1.8.0 [300]" could not be resolved. Reason: No match found for native code: META-INF/native/windows32/leveldbjni.dll; processor=x86; osname=Win32, META-INF/native/windows64/leveldbjni.dll; processor=x86-64; osname=Win32, META-INF/native/osx/libleveldbjni.jnilib; processor=x86; osname=macosx, META-INF/native/osx/libleveldbjni.jnilib; processor=x86-64; osname=macosx, META-INF/native/linux32/libleveldbjni.so; processor=x86; osname=Linux, META-INF/native/linux64/libleveldbjni.so; processor=x86-64; osname=Linux, META-INF/native/sunos64/amd64/libleveldbjni.so; processor=x86-64; osname=SunOS, META-INF/native/sunos64/sparcv9/libleveldbjni.so; processor=sparcv9; osname=SunOS

Workaround is to add

org.osgi.framework.os.name = Win32

to the karaf file

etc/system.properties

The workaround and further info are in this thread:
http://stackoverflow.com/questions/35679852/karaf-exception-is-thrown-while-installing-org-fusesource-leveldbjni

Karaf OpenDaylight Features

Karaf OpenDaylight features

	Feature Name
	Feature Description
	Karaf feature name
	Compatibility

	Authentication
	Enables authentication with support for federation using Apache Shiro
	odl-aaa-shiro
	all

	BGP
	Provides support for Border Gateway Protocol (including Link-State
Distribution) as a source of L3 topology information
	odl-bgpcep-bgp
	all

	BMP
	Provides support for BGP Monitoring Protocol as a monitoring station
	odl-bgpcep-bmp
	all

	DIDM
	Device Identification and Driver Management
	odl-didm-all
	all

	Centinel
	Provides interfaces for streaming analytics
	odl-centinel-all
	all

	DLUX
	Provides an intuitive graphical user interface for OpenDaylight
	odl-dlux-all
	all

	Fabric as a Service (Faas)
	Creates a common abstraction layer on top of a physical network so
northbound APIs or services can be more easiliy mapped onto the
physical network as a concrete device configuration
	odl-faas-all
	all

	Group Based Policy
	Enables Endpoint Registry and Policy Repository REST APIs and associated
functionality for Group Based Policy with the default renderer for
OpenFlow renderers
	odl-groupbasedpolicy-ofoverlay
	all

	GBP User Interface
	Enables a web-based user interface for Group Based Policy
	odl-groupbasedpolicyi-ui
	all

	GBP FaaS renderer
	Enables the Fabric as a Service renderer for Group Based Policy
	odl-groupbasedpolicy-faas
	self+all

	GBP Neutron Support
	Provides OpenStack Neutron support using Group Based Policy
	odl-groupbasedpolicy-neutronmapper
	all

	L2 Switch
	Provides L2 (Ethernet) forwarding across connected OpenFlow switches and
support for host tracking
	odl-l2switch-switch-ui
	self+all

	LACP
	Enables support for the Link Aggregation Control Protocol
	odl-lacp-ui
	self+all

	LISP Flow Mapping
	Enables LISP control plane services including the mapping system
services REST API and LISP protocol SB plugin
	odl-lispflowmapping-msmr
	all

	NEMO CLI
	Provides intent mappings and implementation with CLI for legacy devices
	odl-nemo-cli-renderer
	all

	NEMO OpenFlow
	Provides intent mapping and implementation for OpenFlow devices
	odl-nemo-openflow-renderer
	self+all

	NetIDE
	Enables portabilty and cooperation inside a single network by using a
client/server multi-controller architecture
	odl-netide-rest
	all

	NETCONF over SSH
	Provides support to manage NETCONF-enabled devices over SSH
	odl-netconf-connector-ssh
	all

	OF-CONFIG
	Enables remote configuration of OpenFlow datapaths
	odl-of-config-rest
	all

	OVSDB OpenStack Neutron
	OpenStack Network Virtualization using OpenDaylight’s OVSDB support
	odl-ovsdb-openstack
	all

	OVSDB Southbound
	OVSDB MDSAL southbound plugin for Open_vSwitch schema
	odl-ovsdb-southbound-impl-ui
	all

	OVSDB HWVTEP Southbound
	OVSDB MDSAL hwvtep southbound plugin for the hw_vtep schema
	odl-ovsdb-hwvtepsouthbound-ui
	all

	OVSDB NetVirt SFC
	OVSDB NetVirt support for SFC
	odl-ovsdb-sfc-ui
	all

	OpenFlow Flow Programming
	Enables discovery and control of OpenFlow switches and the topoology
between them
	odl-openflowplugin-flow-services-ui
	all

	OpenFlow Table Type Patterns
	Allows OpenFlow Table Type Patterns to be manually associated with
network elements
	odl-ttp-all
	all

	Packetcable PCMM
	Enables flow-based dynamic QoS management of CMTS use in the DOCSIS
infrastructure and a policy server
	odl-packetcable-policy-server
	self+all

	PCEP
	Enables support for PCEP
	odl-bgpcep-pcep
	all

	RESTCONF API Support
	Enables REST API access to the MD-SAL including the data store
	odl-restconf
	all

	SDNinterface
	Provides support for interaction and sharing of state between
(non-clustered) OpenDaylight instances
	odl-sdninterfaceapp-all
	all

	SFC over L2
	Supports implementing Service Function Chaining using Layer 2
forwarding
	odl-sfcofl2
	self+all

	SFC over LISP
	Supports implementing Service Function Chaining using LISP
	odl-sfclisp
	all

	SFC over REST
	Supports implementing Service Function Chaining using REST CRUD
operations on network elements
	odl-sfc-sb-rest
	all

	SFC over VXLAN
	Supports implementing Service Function Chaining using VXLAN tunnels
	odl-sfc-ovs
	self+all

	SNMP Plugin
	Enables monitoring and control of network elements via SNMP
	odl-snmp-plugin
	all

	SNMP4SDN
	Enables OpenFlow-like control of network elements via SNMP
	odl-snmp4sdn-all
	all

	SSSD Federated Authentication
	Enables support for federated authentication using SSSD
	odl-aaa-sssd-plugin
	all

	Secure tag eXchange Protocol (SXP)
	Enables distribution of shared tags to network devices
	odl-sxp-controller
	all

	Time Series Data Repository (TSDR)
	Enables support for storing and querying time series data with the
default data collector for OpenFlow statistics the default data store
for HSQLDB
	odl-tsdr-hsqldb-all
	all

	TSDR Data Collectors
	Enables support for various TSDR data sources (collectors) including
OpenFlow statistics, NetFlow statistics, NetFlow statistics, SNMP data,
Syslog, and OpenDaylight (controller) metrics
	odl-tsdr-openflow-statistics-collector,
odl-tsdr-netflow-statistics-collector,
odl-tsdr-snmp-data-collector,
odl-tsdr-syslog-collector,
odl-tsdr-controller-metrics-collector
	all

	TSDR Data Stores
	Enables support for TSDR data stores including HSQLDB, HBase, and
Cassandra
	odl-tsdr-hsqldb, odl-tsdr-hbase, or odl-tsdr-cassandra
	all

	Topology Processing Framework
	Enables merged and filtered views of network topologies
	odl-topoprocessing-framework
	all

	Unified Secure Channel (USC)
	Enables support for secure, remote connections to network devices
	odl-usc-channel-ui
	all

	VTN Manager
	Enables Virtual Tenant Network support
	odl-vtn-manager-rest
	self+all

	VTN Manager Neutron
	Enables OpenStack Neutron support of VTN Manager
	odl-vtn-manager-neutron
	self+all

Other OpenDaylight features

Other OpenDaylight features

	Feature Name
	Feature Description
	Karaf feature name
	Compatibility

	OpFlex
	Provides OpFlex agent for Open vSwitch to enforce network policy, such
as GBP, for locally-attached virtual machines or containers
	n/a
	all

	NeXt
	Provides a developer toolkit for designing network-centric topology
user interfaces
	n/a
	all

Experimental OpenDaylight Features

The following functionality is labeled as experimental in this OpenDaylight
release and should be used accordingly. In general, it is not supposed to be
used in production unless its limitations are well understood by those
deploying it.

Other features

	Feature Name
	Feature Description
	Karaf feature name
	Compatibility

	Authorization
	Enables configurable role-based authorization
	odl-aaa-authz
	all

	ALTO
	Enables support for Application-Layer Traffic Optimization
	odl-alto-core
	self+all

	CAPWAP
	Enables control of supported wireless APs
	odl-capwap-ac-rest
	all

	Clustered Authentication
	Enables the use of the MD-SAL clustered data store for the
authentication database
	odl-aaa-authn-mdsal-cluster
	all

	Controller Shield
	Provides controller security information to northbound applications
	odl-usecplugin
	all

	GBP IO Visor Renderer
	Provides support for rendering Group Based Policy to IO Visor
	odl-groupbasedpolicy-iovisor
	all

	Internet of Things Data Management
	Enables support for the oneM2M specification
	odl-iotdm-onem2m
	all

	LISP Flow Mapping OpenStack Network Virtualization
	Experimental support for OpenStack Neutron virtualization
	odl-lispflowmapping-neutron
	self+all

	Network Intent Composition (NIC)
	Provides abstraction layer for communcating network intents (including
a distributed intent mapping service REST API) using either Hazelcast
or the MD-SAL as the backing data store for intents
	odl-nic-core-hazelcast or odl-nic-core-mdsal
	all

	NIC Console
	Provides a Karaf CLI extension for intent CRUD operations and mapping
service operations
	odl-nic-console
	all

	NIC VTN renderer
	Virtual Tenant Network renderer for Network Intent Composition
	odl-nic-renderer-vtn
	self+all

	NIC GBP renderer
	Group Based Policy renderer for Network Intent Composition
	odl-nic-renderer-gbp
	self+all

	NIC OpenFlow renderer
	OpenFlow renderer for Network Intent Composition
	odl-nic-renderer-of
	self+all

	NIC NEMO renderer
	NEtwork MOdeling renderer for Network Intent Composition
	odl-nic-renderer-nemo
	self+all

	OVSDB NetVirt UI
	OVSDB DLUX UI
	odl-ovsdb-ui
	all

	Secure Networking Bootstrap
	Defines a SNBi domain and associated white lists of devices to be
accommodated to the domain
	odl-snbi-all
	self+all

	UNI Manager
	Initiates the development of data models and APIs to facilitate
configuration and provisioning connectivity services for OpenDaylight
applications and services
	odl-unimgr
	all

	YANG PUBSUB
	Allows subscriptions to be placed on targeted subtrees of YANG
datastores residing on remote devices to obviate the need for
OpenDaylight to make continuous fetch requests
	odl-yangpush-rest
	all

Install support for REST APIs

Most components that offer REST APIs will automatically load the RESTCONF API
Support component, but if for whatever reason they seem to be missing, install
the “odl-restconf” feature to activate this support.

Release Notes

Target Environment

For Execution

The OpenDaylight Karaf container, OSGi bundles, and Java class files
are portable and should run on any Java 7- or Java 8-compliant JVM to
run. Certain projects and certain features of some projects may have
additional requirements. Those are noted in the project-specific
release notes.

Projects and features which have known additional requirements are:

	TCP-MD5 requires 64-bit Linux

	TSDR has extended requirements for external databases

	Persistence has extended requirements for external databases

	SFC requires addition features for certain configurations

	SXP depends on TCP-MD5 on thus requires 64-bit Linux

	SNBI has requirements for Linux and Docker

	OpFlex requires Linux

	DLUX requires a modern web browser to view the UI

	AAA when using federation has additional requirements for external tools

	VTN has components which require Linux

For Development

OpenDaylight is written primarily in Java project and primarily uses
Maven as a build tool Consequently the two main requirements to develop
projects within OpenDaylight are:

	A Java 8-compliant JDK

	Maven 3.1.1 or later

Applications and tools built on top of OpenDaylight using it’s REST
APIs should have no special requirements beyond whatever is needed to
run the application or tool and make the REST calls.

In some places, OpenDaylight makes use of the Xtend language. While
Maven will download the appropriate tools to build this, additional
plugins may be required for IDE support.

The projects with additional requirements for execution typically have
similar or more extensive additional requirements for development. See
the project-specific release notes for details.

Known Issues and Limitations

Other than as noted in project-specific release notes, we know of the
following limitations:

	Migration from Helium, Lithium and Beryllium to Boron has not been
extensively tested. The per-project release notes include migration and
compatibility information when it is known.

	There are scales beyond which the controller has been unreliable when
collecting flow statistics from OpenFlow switches. In tests, these
issues became apparent when managing thousands of OpenFlow
switches, however this may vary depending on deployment and use cases.

Security Advisories

All OpenDaylight Security Advisories can be found on the Security Advisories
wiki page [https://wiki.opendaylight.org/view/Security:Advisories]. Of
particular note to OpenDaylight Boron users are:

	CVE-2017-1000357

	CVE-2017-1000358

	CVE-2017-1000361

There are known and documented mitigations described on the Security Advisory
page linked above. Because of the efficacy of the mitigations, we do not intend
to release another version of Beryllium to address them. Instead, we encourage
all of those who are using Beryllium to carefully understand the mitigations in
the context of their deployments.

The following two CVEs were fixed in Boron-SR3, but affect Boron-SR2 and
before:

	CVE-2017-1000359

	CVE-2017-1000360

Major Changes

	Bug 2594 [https://bugs.opendaylight.org/show_bug.cgi?id=2594]
Restconf PUT now returns 201 status code instead of 200 when a resource has been created.
Before, when creating new resource with PUT method, status code 200 OK is returned.
But RESTCONF Protocol draft-bierman-netconf-restconf-04 says:
Consistent with [RFC2616], if the PUT method creates a new resource,
a “201 Created” Status-Line is returned. If an existing resource is
modified, either “200 OK” or “204 No Content” are returned.

Project Specific Release Notes

For the release notes of individual projects, please see the following pages on the OpenDaylight Wiki.

	ALTO [https://wiki.opendaylight.org/view/ALTO:Boron:Release_Notes]

	Atrium Router [https://wiki.opendaylight.org/view/Atrium:Boron_Release_Notes]

	Authentication, Authorization and Accounting (AAA) [https://wiki.opendaylight.org/view/AAA:Boron:Release_Notes]

	BGP PCEP [https://wiki.opendaylight.org/view/BGP_LS_PCEP:Boron_Release_Notes]

	Cardinal [https://wiki.opendaylight.org/view/Cardinal:Boron:Release_Notes]

	Centinel [https://wiki.opendaylight.org/view/Centinel:Boron:Release_Notes]

	Control And Provisioning of Wireless Access Points (CAPWAP) [https://wiki.opendaylight.org/view/CAPWAP:Boron:Release_Notes]

	Controller [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Boron:Release_Notes]

	Controller Shield [https://wiki.opendaylight.org/view/Controller_Shield:Boron_Release_Notes]

	DLUX [https://wiki.opendaylight.org/view/OpenDaylight_DLUX:Boron:Release_Notes]

	Device Identification and Driver Management (DIDM) [https://wiki.opendaylight.org/view/DIDM:_Boron_Release_Notes]

	Documentation [https://wiki.opendaylight.org/view/Documentation/Boron/Release_Notes]

	Energy Management Plugin [https://wiki.opendaylight.org/view/Eman:Boron_Release_Notes]

	Fabric As A Service (FaaS) [https://wiki.opendaylight.org/view/FaaS:Boron_Release_Notes]

	Genius [https://wiki.opendaylight.org/view/Genius:Boron:Release_Note]

	Group Based Policy (GBP) [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Releases/Boron/Release_review]

	Honeycomb Virtual Bridge Domain [https://wiki.opendaylight.org/view/Honeycomb/vbd:Boron:Release_Notes]

	Infrastructure Utilities [https://wiki.opendaylight.org/view/Infrastructure_Utilities:BoronReleaseNotes]

	Integration/Distribution [https://wiki.opendaylight.org/view/Integration/Distribution/Boron_Release_Notes]

	Internet of Things Data Management (IoTDM) [https://wiki.opendaylight.org/view/Iotdm:Boron_Release_Notes]

	L2 Switch [https://wiki.opendaylight.org/view/L2_Switch:Boron:Release_Notes]

	LISP Flow Mapping [https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Boron_Release_Notes]

	Link Aggregation Control Protocol (LACP) [https://wiki.opendaylight.org/view/LACP:Release_Notes]

	MD-SAL [https://wiki.opendaylight.org/view/MD-SAL:Boron:Release_Notes]

	NAT Application Plugin [https://wiki.opendaylight.org/view/NATApp_Plugin:Boron_Release_Notes]

	NETCONF [https://wiki.opendaylight.org/view/NETCONF:Boron:Release_Notes]

	NEtwork MOdeling (NEMO) [https://wiki.opendaylight.org/view/NEMO:Boron:Release_Notes]

	NeXt UI Toolkit [https://wiki.opendaylight.org/view/NeXt:Boron_Release_Notes]

	NetIDE [https://wiki.opendaylight.org/view/NetIDE:Boron_Release_Notes]

	Network Intent Composition (NIC) [https://wiki.opendaylight.org/view/Network_Intent_Composition:Boron:Release_Notes]

	Network Virtualization [https://wiki.opendaylight.org/view/NetVirt:Boron_Release_Notes]

	Neutron Northbound [https://wiki.opendaylight.org/view/NeutronNorthbound:Boron:Release_Notes]

	ODL Root Parent [https://wiki.opendaylight.org/view/ODL_Parent:Boron:Release_Notes]

	ORI C&M Protocol (OCP) [https://wiki.opendaylight.org/view/OCP_Plugin:Boron_Release_Notes]

	OVSDB Integration [https://wiki.opendaylight.org/view/OpenDaylight_OVSDB:Boron_Release_Notes]

	OpenFlow Configuration Protocol (OF-CONFIG) [https://wiki.opendaylight.org/view/OF-CONFIG:Boron:Release_Notes]

	OpenFlow Plugin [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Boron_Release_Notes]

	OpenFlow Protocol Library [https://wiki.opendaylight.org/view/Openflow_Protocol_Library:Release_Notes:Boron_Release_Notes]

	Packet Cable/PCMM [https://wiki.opendaylight.org/view/PacketCablePCMM:BoronReleaseNotes]

	SDN Interface Application (SDNi) [https://wiki.opendaylight.org/view/ODL-SDNi:Boron_Release_Notes]

	SNMP Plugin [https://wiki.opendaylight.org/view/SNMP_Plugin:Boron:Release_Notes]

	SNMP4SDN [https://wiki.opendaylight.org/view/SNMP4SDN:Boron_Release_Note]

	Secure Network Bootstrapping Infrastructure (SNBI) [https://wiki.opendaylight.org/view/SNBI_Boron_Release_Notes]

	Secure tag eXchange Protocol (SXP) [https://wiki.opendaylight.org/view/SXP:Boron:Release_Notes]

	Service Function Chaining [https://wiki.opendaylight.org/view/Service_Function_Chaining:Boron_Release_Notes]

	Table Type Patterns (TTP) [https://wiki.opendaylight.org/view/Table_Type_Patterns/Boron/Release_Notes]

	Time Series Data Repository (TSDR) [https://wiki.opendaylight.org/view/Boron_Release_Notes]

	Topology Processing Framework [https://wiki.opendaylight.org/view/Topology_Processing_Framework:BORON_Release_Notes]

	Unified Secure Channel (USC) [https://wiki.opendaylight.org/view/USC:Boron:Release_Notes]

	User Network Interface Manager (UNIMGR) [https://wiki.opendaylight.org/view/Unimgr:BoronReleaseNotes]

	Virtual Tenant Network (VTN) [https://wiki.opendaylight.org/view/VTN:Boron:Release_Notes]

	YANG PUBSUB [https://wiki.opendaylight.org/view/YANG_PUBSUB:Boron:Release_Notes]

	YANG Tools [https://wiki.opendaylight.org/view/YANG_Tools:Boron:Release_Notes]

Boron-SR1 Release Notes

This page details changes and bug fixes between the Boron Release and the Boron Stability Release 1 (Boron-SR1) of OpenDaylight.

Projects with No Noteworthy Changes

The following projects had no noteworthy changes in the Boron-SR1 Release:

	ALTO

	Atrium Router

	Cardinal

	Control And Provisioning of Wireless Access Points (CAPWAP)

	Controller Shield

	Device Identification and Driver Management (DIDM)

	Energy Management Plugin

	Fabric As A Service (FaaS)

	Integration/Distribution

	Internet of Things Data Management (IoTDM)

	Link Aggregation Control Protocol (LACP)

	NAT Application Plugin

	NEtwork MOdeling (NEMO)

	NeXt UI Toolkit

	Network Intent Composition (NIC)

	ORI C&M Protocol (OCP)

	OpenFlow Configuration Protocol (OF-CONFIG)

	Packet Cable/PCMM

	SNMP Plugin

	SNMP4SDN

	Secure Network Bootstrapping Infrastructure (SNBI)

	Table Type Patterns (TTP)

	Time Series Data Repository (TSDR)

	Topology Processing Framework

	Unified Secure Channel (USC)

	YANG PUBSUB

Authentication, Authorization and Accounting (AAA)

	304660 [https://git.opendaylight.org/gerrit/#/q/304660c0f1a12840e3d524e31630fbc173b7d7b5] BUG-6956 [https://bugs.opendaylight.org/show_bug.cgi?id=6956] - Do not wrap Guava as a bundle in the feature definition

	b4aacb [https://git.opendaylight.org/gerrit/#/q/b4aacb937264f3cb172f817bf5c95b4ccc1fa3f0] Auto-detect secure HTTP in the idmtool script

BGP PCEP

	40a2e9 [https://git.opendaylight.org/gerrit/#/q/40a2e9a540863b5bfefdd8d252dadf7e7a1ec741] BUG-6737 [https://bugs.opendaylight.org/show_bug.cgi?id=6737]: bgp:show-stats Karaf CLI causes NPE

	81050d [https://git.opendaylight.org/gerrit/#/q/81050d598744b6d5fab63302f747c70ff03c366f] BUG-6781 [https://bugs.opendaylight.org/show_bug.cgi?id=6781]: Inbound and outbound connection attempts from controller are not synchronized - created new peer session listener registry in BGPPeerRegistry for the outbound connection establishment logic to get notified when new peer session is created or destroyed - updated outbound connection establishment logic to attempt a connection only when no existing session is present - updated unit-tests

	7309aa [https://git.opendaylight.org/gerrit/#/q/7309aa7129e23dda57754ce786a2f330ec914331] BUG-7004 [https://bugs.opendaylight.org/show_bug.cgi?id=7004]: NPE when configuring BGP peer using OpenConfig API twice - handle scenario where peer not having AFI-SAFI info is reconfigured using OpenConfig API - updated unit-test

	e789e8 [https://git.opendaylight.org/gerrit/#/q/e789e8f5d8e4038f36c59047a6d7bd12c09ed74d] BUG-6622 [https://bugs.opendaylight.org/show_bug.cgi?id=6622] - ClusterSingletonService registration race condition

	e07ac3 [https://git.opendaylight.org/gerrit/#/q/e07ac3381e49f1b90423bc11008a701df6da64ed] Do not wrap Guava as a bundle in features’ definition

	617ca0 [https://git.opendaylight.org/gerrit/#/q/617ca03430bde5614118d514204a086a9300b1d1] BUG-6889 [https://bugs.opendaylight.org/show_bug.cgi?id=6889]: BGPCEP Boron Autorelease Breaking - if server is not ready when client connects, wait for client reconnection before checking for test pass/fail criteria

	53e8e4 [https://git.opendaylight.org/gerrit/#/q/53e8e4d827f2b053c9bdb62b2e20065b678e1551] BUG-6955 [https://bugs.opendaylight.org/show_bug.cgi?id=6955]: Fix BGP TestTool

	827a46 [https://git.opendaylight.org/gerrit/#/q/827a46a5bb181dea5e922daf4c80ce870c2d0fcb] BUG-6954 [https://bugs.opendaylight.org/show_bug.cgi?id=6954]: Create Application Peer with Route Counter

	67dcc4 [https://git.opendaylight.org/gerrit/#/q/67dcc42b8a142fbc92f8c57ace57825e673dbf6c] BUG-6809 [https://bugs.opendaylight.org/show_bug.cgi?id=6809]: PMSI attribute’s mandatory leaves are always enforced

	3093fa [https://git.opendaylight.org/gerrit/#/q/3093faf20d0b0a6c6ce1f71a81c47c286ba2e945] BUG-6257 [https://bugs.opendaylight.org/show_bug.cgi?id=6257]: Implement PMSI tunnel attribute handler

	7b0516 [https://git.opendaylight.org/gerrit/#/q/7b051638579c0a389db9298bd506a4be0dee3252] BUG6257 Add BGP attribute PMSI tunnel to the EVPN Yang

	bf9d2b [https://git.opendaylight.org/gerrit/#/q/bf9d2ba0f80146b8ded3cc61c2472d89ade35f3d] BUG-6889 [https://bugs.opendaylight.org/show_bug.cgi?id=6889]: BGPCEP Boron Autorelease Breaking

	873f97 [https://git.opendaylight.org/gerrit/#/q/873f97ea36179b6a33b523178b3b0a6d3e8f2b4b] BUG-6788 [https://bugs.opendaylight.org/show_bug.cgi?id=6788]: peer singleton service closed just after initialization

	4fbc6b [https://git.opendaylight.org/gerrit/#/q/4fbc6bb2b9781884964677b99051f34304a251da] BUG-6811 [https://bugs.opendaylight.org/show_bug.cgi?id=6811]: wrong namespace for binding-codec-tree-factory

	15baa0 [https://git.opendaylight.org/gerrit/#/q/15baa00f1cef45d2b6446d2aadab508429999349] BUG-6835 [https://bugs.opendaylight.org/show_bug.cgi?id=6835]: Missing “simple-routing-policy” knob in OpenConfig BGP Neighbor configuration

	363448 [https://git.opendaylight.org/gerrit/#/q/363448e4603852a49cd925f3635602b061d930fc] BUG-6675 [https://bugs.opendaylight.org/show_bug.cgi?id=6675]: add missing cluster-id configuration knob

	efe39b [https://git.opendaylight.org/gerrit/#/q/efe39b06d82622014aac14b769536113206b28a3] BUG-6616 [https://bugs.opendaylight.org/show_bug.cgi?id=6616]: BGP synchronization can happen after the session was closed

	9f31c0 [https://git.opendaylight.org/gerrit/#/q/9f31c097e5311e2a194872f8c93d5d63ed2f1a30] BUG-6747 [https://bugs.opendaylight.org/show_bug.cgi?id=6747]: Race condition on peer connection

	a55a84 [https://git.opendaylight.org/gerrit/#/q/a55a847b5353c4fab6d134e93e702ade7f65858d] BUG-6647 [https://bugs.opendaylight.org/show_bug.cgi?id=6647] Increase code coverage and clean up IV

	078654 [https://git.opendaylight.org/gerrit/#/q/078654f0e8a465021e1298216570e1c9828ccb77] BUG-6647 [https://bugs.opendaylight.org/show_bug.cgi?id=6647] Increase code coverage and clean up III

	adbc08 [https://git.opendaylight.org/gerrit/#/q/adbc08dcd74ca243edfb974738cf01b5edf70076] BUG-6734 [https://bugs.opendaylight.org/show_bug.cgi?id=6734]: Generate correct L3VPN route key

	5b10d8 [https://git.opendaylight.org/gerrit/#/q/5b10d8a668342fefdad8c65437cd6ec7cce314c3] BUG-6799 [https://bugs.opendaylight.org/show_bug.cgi?id=6799]: IllegalAccessException on install bgp

	9c40c9 [https://git.opendaylight.org/gerrit/#/q/9c40c9c560a5417c59fa67f6e7aafda7281af4db] BUG-6647 [https://bugs.opendaylight.org/show_bug.cgi?id=6647] Increase code coverage and clean up II

	c807b0 [https://git.opendaylight.org/gerrit/#/q/c807b0a218942fb394479bb09333257c740707d5] BUG-6647 [https://bugs.opendaylight.org/show_bug.cgi?id=6647] Increase code coverage and clean up I

	98fc76 [https://git.opendaylight.org/gerrit/#/q/98fc7676fa1adf68a13ca30351537a2676288788] BUG-6784 [https://bugs.opendaylight.org/show_bug.cgi?id=6784] - Failed to fully assemble schema context for ..

	a1b3b8 [https://git.opendaylight.org/gerrit/#/q/a1b3b896930c9b0c684d76ee983692fb2f37f930] BUG-6662 [https://bugs.opendaylight.org/show_bug.cgi?id=6662]: On connection reset by peer, sometimes re-connection attempt stops after HoldTimer expired error

	63cd93 [https://git.opendaylight.org/gerrit/#/q/63cd933b76740bd76ed9120dc2a1a61f481939f1] BUG-4827 [https://bugs.opendaylight.org/show_bug.cgi?id=4827] - BGP add-path unit tests

	ef40e4 [https://git.opendaylight.org/gerrit/#/q/ef40e433159d5ff41b4d5b670bcf5cc730834d8a] OpenConfig BGP more defensive

	1a0e80 [https://git.opendaylight.org/gerrit/#/q/1a0e802ab3309d33f66d656958190adb56474947] BUG-6651 [https://bugs.opendaylight.org/show_bug.cgi?id=6651]: Route Advertisement improvement

Centinel

	a1d4a7 [https://git.opendaylight.org/gerrit/#/q/a1d4a7a1a57bcec02a53812fb69771dcbe8c808e] BUG-7040 [https://bugs.opendaylight.org/show_bug.cgi?id=7040] - Deploy centinel UI to Nexus

Controller

	c8356b [https://git.opendaylight.org/gerrit/#/q/c8356bd932505654871a03ab2ca3f45481c20692] Do not wrap Guava as a bundle in features’ definition

	13c9db [https://git.opendaylight.org/gerrit/#/q/13c9db31d5985272a37d099b04cbfdde37b46948] Configurable update-strategy for clusteredAppConfig

	5ef954 [https://git.opendaylight.org/gerrit/#/q/5ef954d2526435636e6378accb477a595b4a7fd9] BUG-5700 [https://bugs.opendaylight.org/show_bug.cgi?id=5700] - Backwards compatibility of sharding api’s with old api’s

	e12c3c [https://git.opendaylight.org/gerrit/#/q/e12c3c9d369c6f04fbbf68dfdf11052c8e2bd9ab] BUG-6910 [https://bugs.opendaylight.org/show_bug.cgi?id=6910]: Fix anyxml node streaming

	c5b1b3 [https://git.opendaylight.org/gerrit/#/q/c5b1b3f0851d8e56710d8e60384f6799e1b0a68b] BUG-6540 [https://bugs.opendaylight.org/show_bug.cgi?id=6540]: EOS - handle edge case with pruning pending owner change commits

	7c89dc [https://git.opendaylight.org/gerrit/#/q/7c89dcd01fdbdcc6d784b55230123f890e4b6146] DataBrokerTestModule: use AbstractDataBrokerTest without inheritance

	87cdec [https://git.opendaylight.org/gerrit/#/q/87cdecd4b8a1ca5a1d111701822d7dbb0760f106] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: expose backing client actor reference

	35dbc0 [https://git.opendaylight.org/gerrit/#/q/35dbc0f7940cb35aa10ac1f392abb8ff8f75c08c] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: make EmptyQueue public

	f6d208 [https://git.opendaylight.org/gerrit/#/q/f6d208dc56bdd615a5894bab4dcb1bfe01412c60] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: fix a few warnings

	d82a58 [https://git.opendaylight.org/gerrit/#/q/d82a580cc10c67767326023c35757895cde1a3ab] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: add ExplicitAsk utility class

	c2964f [https://git.opendaylight.org/gerrit/#/q/c2964fb0b40d6a06b4723008e89509b117acf98c] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: Create AbstractProxyHistory class

	44d363 [https://git.opendaylight.org/gerrit/#/q/44d363664f580998dbec730232c6f734c0ceaf0d] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: move proxy instantiation to AbstractClientHistory

	ee7e56 [https://git.opendaylight.org/gerrit/#/q/ee7e56a14d93d70f232ebbf640769c93691ddf80] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: separate request sequence and transmit sequence

	6e2480 [https://git.opendaylight.org/gerrit/#/q/6e24804afba563d2a3f501f092b5cff37170c45d] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: split out cds akka client substrate

	e70b8f [https://git.opendaylight.org/gerrit/#/q/e70b8fb7b35ef4b94cbcbe0523db44eca8b8d2df] Move MessageTrackerTest

	081550 [https://git.opendaylight.org/gerrit/#/q/081550a518548a077dd6542d95b82796272ac093] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: add maxMessages field to ConnectClientSuccess

	d833b7 [https://git.opendaylight.org/gerrit/#/q/d833b7bcd1300cae765fbb952a67d499a76d76d4] BUG-5280 [https://bugs.opendaylight.org/show_bug.cgi?id=5280]: add FrontendMetadata

	cc9e36 [https://git.opendaylight.org/gerrit/#/q/cc9e36025f69fd006c117b169f0f40c1a751a1f6] BUG-6540 [https://bugs.opendaylight.org/show_bug.cgi?id=6540]: EOS - Prune pending owner change commits on leader change

	692916 [https://git.opendaylight.org/gerrit/#/q/69291624b6dbfedd126e9caff2bf2806f88e9dd8] BUG-6540 [https://bugs.opendaylight.org/show_bug.cgi?id=6540]: Fix journal issues on leader changes

	82f5b4 [https://git.opendaylight.org/gerrit/#/q/82f5b445c9a7ca309baf269d0ae3598ad7ae9a48] BUG-6540 [https://bugs.opendaylight.org/show_bug.cgi?id=6540]: Move LeaderInstallSnapshotState to FollowerLogInformation

	12c069 [https://git.opendaylight.org/gerrit/#/q/12c069ad709b2c70cb8fb2f8b4544c4ef19b2c10] BUG-6540 [https://bugs.opendaylight.org/show_bug.cgi?id=6540]: Refactor FollowerToSnapshot to its own class

	54d6e3 [https://git.opendaylight.org/gerrit/#/q/54d6e3cbf243e6e8f3928a269af5f4bca6641237] Fix relativePaths for mdsal-it-parent under controller

DLUX

	771965 [https://git.opendaylight.org/gerrit/#/q/7719655c78be37258edd1de2ebaf25077858f22e] BUG-6956 [https://bugs.opendaylight.org/show_bug.cgi?id=6956] - Do not wrap Guava as a bundle in the feature definition

Documentation

	ce7361 [https://git.opendaylight.org/gerrit/#/q/ce7361ed4c73cf079d5f04c045607025f377da8f] Update requirements for Tox

	5f1abe [https://git.opendaylight.org/gerrit/#/q/5f1abe641f1289fd4719d9625ad3b6f5b25da242] BGP user guide reworked

	2449ff [https://git.opendaylight.org/gerrit/#/q/2449fff03897865ac08457bd98f67f59b60b12f9] Add warning about RtD not cleaning up between runs

	ce5b0b [https://git.opendaylight.org/gerrit/#/q/ce5b0be0623a89879fa9772983f711f7569cf842] Replace supported admonitions with rst directives

	d39f1b [https://git.opendaylight.org/gerrit/#/q/d39f1bc9a85f4b488ac5d10f245d543ba0393e6e] Note that nested formatting isn’t supported

	1364a2 [https://git.opendaylight.org/gerrit/#/q/1364a2e880185c841032328dfbb7ca8e458c8aa9] Fix two typos

	0c45de [https://git.opendaylight.org/gerrit/#/q/0c45deb348ebe8646adba94fe05c0fbdc6107945] Update PacketCable User-Guide

	8ce9c9 [https://git.opendaylight.org/gerrit/#/q/8ce9c98f45ad28344c48e37b1ad8259013ecfbb4] Update Unimgr Documentation for Boron Release

	2347d5 [https://git.opendaylight.org/gerrit/#/q/2347d50199e76e114c59d3b65aa99d2e3ca42ac7] Remove non-participating project’s features from Boron docs

	ca9eb6 [https://git.opendaylight.org/gerrit/#/q/ca9eb6b51f870734978ff7c18edcbc493a909ee8] Change image to figure

	d036d7 [https://git.opendaylight.org/gerrit/#/q/d036d7d0b2738dafc5af00b118aa42a96bbc393d] Fix sphinx warnings (and some formatting)

	8fbdde [https://git.opendaylight.org/gerrit/#/q/8fbdde79c4996e8fe100520a2d6029f6646c1fdf] Update tutorial to use OOR instead of LISP

	668436 [https://git.opendaylight.org/gerrit/#/q/668436c261bca1fb66e5db225b0dd3bb32b549b2] Add documentation for SalFlatBatchService in OFP

	648a06 [https://git.opendaylight.org/gerrit/#/q/648a063cbf0177f11eaddff8f02c8adaf36220f7] Update tutorial docs to replace add mapping RPCs with RESTCONF calls

Genius

	cecdfc [https://git.opendaylight.org/gerrit/#/q/cecdfca33a60e5b61a70d08b252409e277607959] BUG-6765 [https://bugs.opendaylight.org/show_bug.cgi?id=6765]: Overriding in_port in table0 with Zero value

	2f201d [https://git.opendaylight.org/gerrit/#/q/2f201db79f427f25220f01b31f904270a653b30c] Fixes for IT base

	eb07cb [https://git.opendaylight.org/gerrit/#/q/eb07cbadaed370673e1f6ddb15919b0a2fe869f2] Add pom for commons

	d10198 [https://git.opendaylight.org/gerrit/#/q/d101988057a9820580481111dfce1cdb33f2d11d] BUG-6278 [https://bugs.opendaylight.org/show_bug.cgi?id=6278]: Switch to use odlparent’s karaf-parent

	ec321a [https://git.opendaylight.org/gerrit/#/q/ec321a46ba1c7c2c91c8139dd66a14663d989c36] IdManager Performance Improvements

	f5be80 [https://git.opendaylight.org/gerrit/#/q/f5be800d8e4638e47ff558ec73a2b7cf51d194e0] Enhancements to improve DJC transaction retry mechanisms

	e49433 [https://git.opendaylight.org/gerrit/#/q/e49433123811bf6acd6ed19e910ad6965c6650dd] Upstreaming ITM cache impl and monitoring bug fix

	bb9f02 [https://git.opendaylight.org/gerrit/#/q/bb9f027aa2931363d210ee726e5b728c16acb7b2] ODL BUG-6095 [https://bugs.opendaylight.org/show_bug.cgi?id=6095], bundle:diag failing for ITM bundle. UT:- RemoveExternalEndpoint is pointing to a vpnservice package which is causing the issue, Started the Karaf and checked the bundle status and diag. coming up jjst fine.

	b16704 [https://git.opendaylight.org/gerrit/#/q/b167043c23bf5956f438354e2a152b058e9dd561] Make local variables creation and assignment in a single statement. Some other minor formatting (removing commented code, etc.)

	8be9b2 [https://git.opendaylight.org/gerrit/#/q/8be9b26a2c4d0f7c784b6b61984daf6fbb9f9d1c] Checkstyle and formatting.

	d76bde [https://git.opendaylight.org/gerrit/#/q/d76bde80e480fb1859b5d21f514a9c32a20e1dcf] BUG-6786 [https://bugs.opendaylight.org/show_bug.cgi?id=6786]: L3VPN is not honoring VTEP add or delete in operational cloud

	1826f3 [https://git.opendaylight.org/gerrit/#/q/1826f3e230c3b93f5ef73dc7675446ed784b8e4e] BUG-6726 [https://bugs.opendaylight.org/show_bug.cgi?id=6726] : Loss of traffic during ODL Cluster reboot

	08b545 [https://git.opendaylight.org/gerrit/#/q/08b5457ca3dd1cdb418bfdf1241e74a12dca5396] Arp cache feature changes

	9e74d4 [https://git.opendaylight.org/gerrit/#/q/9e74d40018480660756213326dc3de74645dbddd] BUG-6776 [https://bugs.opendaylight.org/show_bug.cgi?id=6776] - Bad instructions returned by genius RPC

	c977fb [https://git.opendaylight.org/gerrit/#/q/c977fb06abba134690e7743affa572d6a0a2eaf6] Intro. new TestIMdsalApiManager implements IMdsalApiManager

	46b8e6 [https://git.opendaylight.org/gerrit/#/q/46b8e6115f5db8d7f703df549c3f7a487d159e6f] Adding the Add/Remove ExternalEndpoint commands.

	42e57e [https://git.opendaylight.org/gerrit/#/q/42e57e0c8c0cd62652449b9bf45b6f453d6c6e86] BUG-6838 [https://bugs.opendaylight.org/show_bug.cgi?id=6838]: Retry Mechanism for Batched Transaction

	3aac36 [https://git.opendaylight.org/gerrit/#/q/3aac3630e06fa436ed0fa40bbdad57eda960ed4f] BUG-6642 [https://bugs.opendaylight.org/show_bug.cgi?id=6642] - Improvising Batching code

	8bdc93 [https://git.opendaylight.org/gerrit/#/q/8bdc9348cc8f389d717488ddca2efd7073cd984b] Implement an action type nx_load_in_port

	14e9d6 [https://git.opendaylight.org/gerrit/#/q/14e9d67cafa3fe7399f12b186999f4386f2cea9f] Fixing overflow in long-to-IPv4 address conversion

	c547a9 [https://git.opendaylight.org/gerrit/#/q/c547a95ca9218f59a1d409041448c09bd9eaf151] Replace some collection.size() > 0 for !collection.isEmpty() to improve readability. Some other minor changes.

	338db8 [https://git.opendaylight.org/gerrit/#/q/338db8d696ccbdeaf61d95b78ea85da61b5a3be3] Add SFC relevant service binding constants

	3c1775 [https://git.opendaylight.org/gerrit/#/q/3c1775e3fe078bc949084ca71c35cdc9a4a84624] Add JavaDoc to AsyncDataTreeChangeListenerBase init() re. @PostConstruct

	5c8895 [https://git.opendaylight.org/gerrit/#/q/5c8895e60a5bde5827a1e8341ff8b33f52915195] Add support to the ITM to create Transport Zones with different UDP: VxLAN: default port VxLAN-GPE: 4880

	9c5d78 [https://git.opendaylight.org/gerrit/#/q/9c5d782b2b1f38d84a980a6f8f8baa3b2a77519d] Improved error message for jobs

	a36863 [https://git.opendaylight.org/gerrit/#/q/a36863288d7d3b071104453930477bbb2c5f2ce3] Add fcapsapplication-impl XML config to features/pom.xml

	f18f59 [https://git.opendaylight.org/gerrit/#/q/f18f5900625f8638a0bc7330d6f3801c3a06de9c] AsyncDataTreeChangeListenerBase @PreDestroy close() for easier DI

	2e8028 [https://git.opendaylight.org/gerrit/#/q/2e8028972b25fb5abdbf6e7efb74a31e7651f9bc] NPE in InterfaceTopologyStateListener

	631a2e [https://git.opendaylight.org/gerrit/#/q/631a2e2aea9dab1d95fea0ec4bbda770ad4518d8] Reverting Overriding in_port in table0 with Zero value

	eddde4 [https://git.opendaylight.org/gerrit/#/q/eddde4c272565b251d3c5bceb4693ea071cf3c70] Implement action types required for ping responder

	749c4b [https://git.opendaylight.org/gerrit/#/q/749c4b2ada02e5a1696770e3e98d3b3fe28c7092] Performs a residual cleanup of ElanPseudoPort flows

	20d32c [https://git.opendaylight.org/gerrit/#/q/20d32cb01df74966f5b1a2b4c3ffdb3e44e98ed1] BUG-6765 [https://bugs.opendaylight.org/show_bug.cgi?id=6765] : Overriding in_port in table0 with Zero value

	b7834a [https://git.opendaylight.org/gerrit/#/q/b7834a3bda67bffce27de803a50b5495bedcd891] BUG-6748 [https://bugs.opendaylight.org/show_bug.cgi?id=6748]: Added support for match on nxm_reg5

	d9fbcb [https://git.opendaylight.org/gerrit/#/q/d9fbcb92b02215b5e2659058e571d2b014a936cd] VM Migration: Flows not programmed in new DPN

	6bd6b9 [https://git.opendaylight.org/gerrit/#/q/6bd6b94a9d6b222fe0c2288f7f9cf68f94001a11] Arp cache feature changes

	3e0a4e [https://git.opendaylight.org/gerrit/#/q/3e0a4e9baf65ec39ce95d310fee66490f9c062df] BUG-6689 [https://bugs.opendaylight.org/show_bug.cgi?id=6689] - long delays between vm boot and flow installation

	a45578 [https://git.opendaylight.org/gerrit/#/q/a455789b710b63ce73dac9b8f9127182df762a4d] Add VxLAN-GPE to the interface types list handled by the IFM

	0b877b [https://git.opendaylight.org/gerrit/#/q/0b877b6cd84fd2cbbd2bc3cf48eeec8c76407c3f] BUG-6493 [https://bugs.opendaylight.org/show_bug.cgi?id=6493] - Interface-Manager performance optimizations

	de231c [https://git.opendaylight.org/gerrit/#/q/de231cc52684710939239bd490b3d73a1836da51] BUG-6557 [https://bugs.opendaylight.org/show_bug.cgi?id=6557] : NPE thrown during Interface-mgr RPCs call

	01704e [https://git.opendaylight.org/gerrit/#/q/01704e8413aad5626cb5d988382024de257241d5] BUG-6610 [https://bugs.opendaylight.org/show_bug.cgi?id=6610] Moving ACL service as highest among all the services.

Group Based Policy (GBP)

	6e665c [https://git.opendaylight.org/gerrit/#/q/6e665c0ddcf207ac558008e1d3891ace7f85eb21] BUG-6953 [https://bugs.opendaylight.org/show_bug.cgi?id=6953]: fix renderer-node overwriting

	375d4c [https://git.opendaylight.org/gerrit/#/q/375d4c013b1db48cc1f5db63a4482c608f02e981] Increasing coverage on faas-renderer

	334cef [https://git.opendaylight.org/gerrit/#/q/334cefff590c0f8e102a2d14c3117bef492c5566] introducing vpp-demo

	ca2892 [https://git.opendaylight.org/gerrit/#/q/ca2892a641585f98cd31e9507e6b9260fa8244d9] Improved GBP-VBD communication process

	dfe97d [https://git.opendaylight.org/gerrit/#/q/dfe97dfd48667a052b36a8a6a81379f172440496] BUG-6858 [https://bugs.opendaylight.org/show_bug.cgi?id=6858]: adapt to ise api, fix sgt-generator

	ebba85 [https://git.opendaylight.org/gerrit/#/q/ebba85849d74d3438500bebc5be84ad6cb8665ad] BUG-6858 [https://bugs.opendaylight.org/show_bug.cgi?id=6858]: adapt to ise api, fix NPE in listener when missing masterDB

	27a291 [https://git.opendaylight.org/gerrit/#/q/27a291d46621e5763e9e38986cc2ac858e4e1fb1] BUG-6858 [https://bugs.opendaylight.org/show_bug.cgi?id=6858]: adapt to ise api, wire harvestAll to template-provider

	4adb23 [https://git.opendaylight.org/gerrit/#/q/4adb237ca9080a70c76f996fcefcbba2c3677124] BUG-6858 [https://bugs.opendaylight.org/show_bug.cgi?id=6858]: adapt to ise api, change lookup from ise

	91afd6 [https://git.opendaylight.org/gerrit/#/q/91afd65cfa15ac78b3243d7e9e9dda85a3ac1850] BUG-6858 [https://bugs.opendaylight.org/show_bug.cgi?id=6858]: adapt to ise api, simultaneous queries

	e19aad [https://git.opendaylight.org/gerrit/#/q/e19aad7a9fa8d4dacfd01c42029e09b0c1ed93bd] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, bump sxp dep.version to SR1

	ce403c [https://git.opendaylight.org/gerrit/#/q/ce403cb4a1eecdcc65c15f6cdd6973e828dc5e72] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, remove sxp-mapper

	36336d [https://git.opendaylight.org/gerrit/#/q/36336d2b176dc6ed23170f5771b72f4f43d6a861] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, update/rename models and yangs for sxp-ise-adapter

	ed1db1 [https://git.opendaylight.org/gerrit/#/q/ed1db1fa56f6dfc88d1c390ffb8c63b2cdc2f5a8] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, propose sxp-generator

	7f9c8a [https://git.opendaylight.org/gerrit/#/q/7f9c8ab38339cfb126e49982d29d8d6366416f20] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, implement and wire template provider

	0a5a00 [https://git.opendaylight.org/gerrit/#/q/0a5a0040ac71d4ef087c7a3d174f7edc19f7b1d8] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, prepare removal of deprecated sxp-mapper

	82d300 [https://git.opendaylight.org/gerrit/#/q/82d3007c73f367e36b0833a9e650f0df17c8bbfd] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, propose initial template provider api

	152d62 [https://git.opendaylight.org/gerrit/#/q/152d62feaad519d59d544d7e53282bf6a5a9a4d3] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, rename groupbasedpolicy-ise-adapter to sxp-ise-adapter

	68133e [https://git.opendaylight.org/gerrit/#/q/68133ec166f262b2642472dd3f69a5ef58d9159b] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-ip/sgt, move groupbasedpolicy-ise-adapter into sxp-integration

	e97dcf [https://git.opendaylight.org/gerrit/#/q/e97dcf9add5c5738035b28d970a7bb937be5f8c1] BUG-6650 [https://bugs.opendaylight.org/show_bug.cgi?id=6650]: ep-sgt/ip, propose initial sxp-ep-provider

	508454 [https://git.opendaylight.org/gerrit/#/q/50845497a7e831c9937430fcc4108956fcfe308a] [ios-xe-renderer] Increases coverage for PolicyWriterUtil

	8d1960 [https://git.opendaylight.org/gerrit/#/q/8d1960b69d5f07c3ad7d98e913e973f39fedf3f2] BUG-6743 [https://bugs.opendaylight.org/show_bug.cgi?id=6743] switch to clustered data listener

	eeeec5 [https://git.opendaylight.org/gerrit/#/q/eeeec5dd858f40e6510fbe18f5f0697e17d71748] BUG-6743 [https://bugs.opendaylight.org/show_bug.cgi?id=6743]: Service group identifier set for neutron-vpp-mapper and vpp-renderer

Honeycomb Virtual Bridge Domain

	f92940 [https://git.opendaylight.org/gerrit/#/q/f9294072cb725204d9fb02a04f08b1e9f4c87be0] Reference to DataBroker added into VBD blueprint/instance

	2b7628 [https://git.opendaylight.org/gerrit/#/q/2b7628baf0266930fd7f059b5a2e42d572a831a8] Added current status about bridge domain processing

	c323d9 [https://git.opendaylight.org/gerrit/#/q/c323d9a414e48105c3d56adf20a3c49669839381] added support for blueprint and ClusterSingletonService

Infrastructure Utilities

	58ca84 [https://git.opendaylight.org/gerrit/#/q/58ca8489e3c0a1cd81aa9c0bb1dcebf3a87f4245] Remove SingletonWithLifecycle, because @Singleton is not inherited

	6c5388 [https://git.opendaylight.org/gerrit/#/q/6c5388190af66d52eb625c7f28e2d4253ebb3c46] Fix broken build

	b14251 [https://git.opendaylight.org/gerrit/#/q/b14251606b1e965c4635a66c94ae2cedaaf288de] @Inject convenience helper (org.opendaylight.infrautils.inject)

L2 Switch

	29f52d [https://git.opendaylight.org/gerrit/#/q/29f52d8738546efdeffb63a8baaac641c0777253] BUG-6655 [https://bugs.opendaylight.org/show_bug.cgi?id=6655] - arphandler unable to flood arp packet

	0aea1f [https://git.opendaylight.org/gerrit/#/q/0aea1fc4d1df3b0343e080af8ec71ae94cf1ff3a] Using incremental numbers for initial flow can easily conflict with the flows installed through config data store. To make a simple fix, this patch adds L2switch prefix with the incremental flow-id

	430922 [https://git.opendaylight.org/gerrit/#/q/430922440525ec5019c289235f3be29110f25efe] BUG-6278 [https://bugs.opendaylight.org/show_bug.cgi?id=6278]: Switch to use odlparent’s karaf-parent

LISP Flow Mapping

	9d63b2 [https://git.opendaylight.org/gerrit/#/q/9d63b25fa5d0c97532a892270d254ce4a6203d17] BUG-7035 [https://bugs.opendaylight.org/show_bug.cgi?id=7035]: Fix race condition in HashMapDbTest

	e56d74 [https://git.opendaylight.org/gerrit/#/q/e56d747fcfb933cb1fc87b208f230a7dac6648d3] BUG-5047 [https://bugs.opendaylight.org/show_bug.cgi?id=5047]: Use Netty Epoll in SB when available

	6bd3b1 [https://git.opendaylight.org/gerrit/#/q/6bd3b168e05bd031ff5cd9b640a9a30953f0f663] JUnit Test - RadixTrie test with random IPs.

	95a77d [https://git.opendaylight.org/gerrit/#/q/95a77d1bf375ed0e1b383593eecf1bf7e3cc3493] BUG-6925 [https://bugs.opendaylight.org/show_bug.cgi?id=6925]: Fix NPE in SimpleMapCache

	387553 [https://git.opendaylight.org/gerrit/#/q/3875534af84ec2b79e589fbca66302ec48fdf7b7] BUG-6782 [https://bugs.opendaylight.org/show_bug.cgi?id=6782]: Fix parent insertions for empty children

	31ef90 [https://git.opendaylight.org/gerrit/#/q/31ef9000bc59bf906d39b313b671faa011220ba9] Add RadixTrie parent insertion unit test

	2a6b14 [https://git.opendaylight.org/gerrit/#/q/2a6b14b2bfd1df661346740ac412122e91936f7f] BUG-6782 [https://bugs.opendaylight.org/show_bug.cgi?id=6782]: Fix RadixTrie parent insertions

	d95b1b [https://git.opendaylight.org/gerrit/#/q/d95b1bb94a67790d3d62765c69769a6a6265c82b] BUG-6759 [https://bugs.opendaylight.org/show_bug.cgi?id=6759]: Fix NPE when request for expired mapping

	0e94ae [https://git.opendaylight.org/gerrit/#/q/0e94aee5a0e3bab17e4d102d974084f6d6e0db6c] BUG-6754 [https://bugs.opendaylight.org/show_bug.cgi?id=6754]: Add serializer for IPv6 prefix SimpleAddress

	8d605d [https://git.opendaylight.org/gerrit/#/q/8d605db7c8710066d6d26c3cd33843ec0c5844c5] Add OOR conf files in tutorial

	238406 [https://git.opendaylight.org/gerrit/#/q/2384066cb283579e3f61eb8ea1e4a460d68ee3c1] Fix RESTCONF collection for delete IPv4 Key call.

MD-SAL

	67197e [https://git.opendaylight.org/gerrit/#/q/67197eaaa42b6501917e0dfa59e815bc6994b2a9] BUG-7009 [https://bugs.opendaylight.org/show_bug.cgi?id=7009]: fix invalid model

	999641 [https://git.opendaylight.org/gerrit/#/q/9996417cb9569e39e2aed4a82a9b69a2fc9ab583] Remove augmentableToAugmentations maps

	6f071d [https://git.opendaylight.org/gerrit/#/q/6f071d8474f75208e112f542d2759147889fe978] Clean up apparently dead (and not thread safe) code

	efc5ff [https://git.opendaylight.org/gerrit/#/q/efc5fff4e5e7a52821bb44eb6f8cdab772897024] BUG-5561 [https://bugs.opendaylight.org/show_bug.cgi?id=5561]: retain SchemaContext order for bits

	d07e90 [https://git.opendaylight.org/gerrit/#/q/d07e90fde95e989da40376771b8e96abdffddfa8] Convert to using BatchedListenerInvoker

	f17c5a [https://git.opendaylight.org/gerrit/#/q/f17c5ab39d43de758c3f3c7bd642d7fa436a6983] Move transaction-invariants into producer

	7723a3 [https://git.opendaylight.org/gerrit/#/q/7723a349513ae47974fa014586e887cc731f69ce] Add cursor lookup fast-path

	e47199 [https://git.opendaylight.org/gerrit/#/q/e47199a976bce4ed4949b840f7aaf175253ec144] Fix a raw type warning

	13ed3b [https://git.opendaylight.org/gerrit/#/q/13ed3bf48711e76a4e2bd2b277d12e557ade02b6] Fix raw types

	d49ac5 [https://git.opendaylight.org/gerrit/#/q/d49ac5a3f5512614b3b0c2c5c25ae5f940f47dec] Make sure we optimize DOMDataTreeIdentifier

	fb75a6 [https://git.opendaylight.org/gerrit/#/q/fb75a602fddfdbbb97c10596c632b25f79096bb0] Do not allow transaction creation with an empty shard map.

	9d2575 [https://git.opendaylight.org/gerrit/#/q/9d2575e58dc95a35ea097dd95453b45a3e33063c] Remove public keyword

	c182e1 [https://git.opendaylight.org/gerrit/#/q/c182e1d32720044c42a187725e5effc57313b31d] Encapsulate ShardedDOMDataTreeProducer layout

	7452aa [https://git.opendaylight.org/gerrit/#/q/7452aa04ddc0b919c768efc454cd5e2493a1c276] Fix warnings in AbstractDOMShardTreeChangePublisher

	3653b3 [https://git.opendaylight.org/gerrit/#/q/3653b34fe4de5af40a9f9c99dc50c72775794f0a] Do not instantiate iterator for debugging

	1b1273 [https://git.opendaylight.org/gerrit/#/q/1b1273f401e6eb1e8a6216d4d6df2c0f03970d06] Perform delegate cursor enter/exit first

	23e32b [https://git.opendaylight.org/gerrit/#/q/23e32be97e2f7b5f98c779e6c3e992dd9da929d6] Move lookup check

	a2aa3d [https://git.opendaylight.org/gerrit/#/q/a2aa3dee79b0facf9b9e75d41378f5bb85894770] Eliminate ShardedDOMDataTreeWriteTransaction.doSubmit()’s return

	d64f50 [https://git.opendaylight.org/gerrit/#/q/d64f504392ed8348735d7c609022c7eebcd38d29] Do not use entrySet() where values() or keySet() suffices

	0b4eee [https://git.opendaylight.org/gerrit/#/q/0b4eee8d787f1c4871e6fc44047d6f5f89e22ba6] Do not use ExecutorService unnecessarily

	b143da [https://git.opendaylight.org/gerrit/#/q/b143dad18b24cf971beb360783bbd276f37378d8] Use ImmutableMap instead of Collections.emptyMap()

	41c7b4 [https://git.opendaylight.org/gerrit/#/q/41c7b41f761ff4c150a9e55455e8598e420ac984] Speed up InmemoryDOMDataTreeShardWriteTransaction’s operations

	2ea7c1 [https://git.opendaylight.org/gerrit/#/q/2ea7c184fa28c47e390ea26ace13bbfd9a7868a3] Switch to using StampedLock

	11da30 [https://git.opendaylight.org/gerrit/#/q/11da30fa7af8ce1bd6c02798a4958e548146d185] Remove mdsal-binding-util from features because it’s only a pom file

	5f693a [https://git.opendaylight.org/gerrit/#/q/5f693add15c8702d72e0018ef2d30af076a5e537] Improve ShardedDOMDataTreeProducer locking

	4c7bb2 [https://git.opendaylight.org/gerrit/#/q/4c7bb26126048b161f545ccc203b8bdb7d1b040f] Improve ShardedDOMDataTreeProducer locking

	6ffa81 [https://git.opendaylight.org/gerrit/#/q/6ffa8194f3ae4630f958bf4ab36c79709b951799] Improve ShardedDOMDataTreeWriteTransaction performance

	74425f [https://git.opendaylight.org/gerrit/#/q/74425faef2cc216605188e70e2d2916398d85301] Optimize InMemoryDOMDataTreeShardProducer

	dca009 [https://git.opendaylight.org/gerrit/#/q/dca009bba2d4ceb2e13537f3ac6f9a5f1b05302f] Fix InMemory shard transaction chaining.

	395348 [https://git.opendaylight.org/gerrit/#/q/395348596fcc6296e1a9ed0d9899b5aa16f08625] Add batching of non-isolated transaction in ShardedDOMDataTreeProducer

	c37d38 [https://git.opendaylight.org/gerrit/#/q/c37d38386002ed12b279938051813f99a4de70ff] checkStyleViolationSeverity=error implemented for mdsal-dom-broker Resolved the merge conflicts. Implemented code review comments. Implemented another set of code review comments.

	093b38 [https://git.opendaylight.org/gerrit/#/q/093b38a5c2a4f6ed8b015916e4765be29e3d51e2] Use a bounded blocking queue in InmemoryDOMDataTreeShards.

	41c34c [https://git.opendaylight.org/gerrit/#/q/41c34ca065881c748d1811b7ba6a5145ce6ed608] checkStyleViolationSeverity=error implemented for mdsal-dom-inmemory-datastore Changed the local variable indVal to index. An unwanted folder was added accidentally, removed. Code review comments are implemented.

NETCONF

	c16afa [https://git.opendaylight.org/gerrit/#/q/c16afa5c7ee98c04a907e194b79c41258a53a63c] Remove unused imports

	b7c112 [https://git.opendaylight.org/gerrit/#/q/b7c112db4b2bf1d971c99e1e9bcc89d3d867d330] Update netconf-topology-singleton.xml file formatting

	38935a [https://git.opendaylight.org/gerrit/#/q/38935ab893a1c39b51d267c8ce81cfc371c21847] Add serialVersionUID to all java.io.Serializable messages

	a7f406 [https://git.opendaylight.org/gerrit/#/q/a7f406e41c52253d3e9e5cbdfed10ce77ba7c8be] Add the RemoteDeviceId at the begining of the log

	d4e0ec [https://git.opendaylight.org/gerrit/#/q/d4e0ecaeb1e2fae65e50b14b7270ded16cf2f6b2] BUG-6714 [https://bugs.opendaylight.org/show_bug.cgi?id=6714] - Use singleton service in clustered netconf topology

	07000c [https://git.opendaylight.org/gerrit/#/q/07000c2571eb3d437b3a48b4a241418b8e053947] BUG-6256 [https://bugs.opendaylight.org/show_bug.cgi?id=6256] - OpenDaylight RESTCONF XML selects wrong YANG model for southbound NETCONF

	1ebd12 [https://git.opendaylight.org/gerrit/#/q/1ebd12993444b186f84ae845f8c003bb80e72a0d] Fix tests after merging Change 47121 to Yangtools

	7999d7 [https://git.opendaylight.org/gerrit/#/q/7999d7d7f0eb0300df263f859b2010f157a0ca67] BUG-6272 [https://bugs.opendaylight.org/show_bug.cgi?id=6272] - support RESTCONF PATCH for mounted NETCONF nodes

	1ad4d5 [https://git.opendaylight.org/gerrit/#/q/1ad4d5b06c69ee20e72742e6ec4c7c7e97953fb3] Add xml config dependency to features pom

	08a3d1 [https://git.opendaylight.org/gerrit/#/q/08a3d1ab7f3110a520a93974ab86129853fe87b3] BUG-6023 [https://bugs.opendaylight.org/show_bug.cgi?id=6023] - Adress for config subsystem netconf endpoint is not configurable

	91be81 [https://git.opendaylight.org/gerrit/#/q/91be81c2b1f60a73f6baa1d2b5520c6e681c3b49] BUG-6936 [https://bugs.opendaylight.org/show_bug.cgi?id=6936] - Fix post request

	362ab0 [https://git.opendaylight.org/gerrit/#/q/362ab0db04c7a8431ee771fbf3df8e879a81296c] Unit test for PostDataTransactionUtil class

	c389ac [https://git.opendaylight.org/gerrit/#/q/c389acda66a92a03d358f1fa1340ec784c76e2b6] Unit test for RestconfInvokeOperationsUtil class

	a90a3e [https://git.opendaylight.org/gerrit/#/q/a90a3ea4d95712c6023e18c6842551ebff1b6d1e] BUG-5615 [https://bugs.opendaylight.org/show_bug.cgi?id=5615] - Netconf connector update overwriting existing topology data

	6d5c49 [https://git.opendaylight.org/gerrit/#/q/6d5c4984c04ea0e1f4ac345c921f039136e994b2] BUG-6848 [https://bugs.opendaylight.org/show_bug.cgi?id=6848] - update url pattern of restconf from 16 to 17

	054442 [https://git.opendaylight.org/gerrit/#/q/0544423b481d0d1a699175f3c62f1fed762a8169] BUG-6848 [https://bugs.opendaylight.org/show_bug.cgi?id=6848] - repackage providers for jersey+create xml and json reader for restconf draft17

	14efd6 [https://git.opendaylight.org/gerrit/#/q/14efd63caf23df80943613d16dadff144ae222bd] BUG-6848 [https://bugs.opendaylight.org/show_bug.cgi?id=6848] - upgrade XML media type

	2e946b [https://git.opendaylight.org/gerrit/#/q/2e946b43c88218c56861ce6282fb8e0e930c4425] BUG-6848 [https://bugs.opendaylight.org/show_bug.cgi?id=6848] - upgrade namespace of notification container

	3608c0 [https://git.opendaylight.org/gerrit/#/q/3608c04278804cc61c24d1eeaa552aa4d1a82b55] BUG-6848 [https://bugs.opendaylight.org/show_bug.cgi?id=6848] - Renaming to draft17

	d575fc [https://git.opendaylight.org/gerrit/#/q/d575fcc19692affa6a0677bbf48fd276552acef4] Do a proper disconnect when deleting a connector.

	efe5c7 [https://git.opendaylight.org/gerrit/#/q/efe5c7dfe820b42414e1dc3d433630d7059c673a] BUG-6099 [https://bugs.opendaylight.org/show_bug.cgi?id=6099] - ControllerContext#addKeyValue ignores key type when key is derived type from instance-identifier

	5db0cc [https://git.opendaylight.org/gerrit/#/q/5db0cc7926ff0f153ecfb2ef94413fa842856816] BUG-6797 [https://bugs.opendaylight.org/show_bug.cgi?id=6797] - Fix deadlock on cached schema-changed notifications

	11655d [https://git.opendaylight.org/gerrit/#/q/11655db49111c6d58fb44340563c0c4c63d88b84] BUG-6664 [https://bugs.opendaylight.org/show_bug.cgi?id=6664] - upgrade draft15 to draft16 - change media types

	b996bc [https://git.opendaylight.org/gerrit/#/q/b996bcb19480f327ae1568becebe0db8c783beff] BUG-6664 [https://bugs.opendaylight.org/show_bug.cgi?id=6664] - upgrade draft15 to draft16 - renaming

	1f5873 [https://git.opendaylight.org/gerrit/#/q/1f5873056667db3a8e13d2174d266aac755a4aa8] Fix broken ApiDocGeneratorTest

	0607c0 [https://git.opendaylight.org/gerrit/#/q/0607c0f4dd7ee388a9df962c664a6f11656b29ad] BUG-6343 [https://bugs.opendaylight.org/show_bug.cgi?id=6343] - Incorrect handling of configuration failures in SAL netconf connector

NetIDE

	464082 [https://git.opendaylight.org/gerrit/#/q/46408255fd98761c5a1ff3bfd280e5cfcab9a700] BUG-6812 [https://bugs.opendaylight.org/show_bug.cgi?id=6812]: Add fix to handing of NetIP protocol version

Network Virtualization

	815885 [https://git.opendaylight.org/gerrit/#/q/815885d9aabaf4fdf380c8ca3c1d5de9e845250d] Fix for BUG-7059 [https://bugs.opendaylight.org/show_bug.cgi?id=7059]

	1ca70c [https://git.opendaylight.org/gerrit/#/q/1ca70c114f0f6d1d71d1b5951f27543362a40e39] BUG-7024 [https://bugs.opendaylight.org/show_bug.cgi?id=7024]: When router is associated to L3VPN , VRF entry creations takes long time

	2ea687 [https://git.opendaylight.org/gerrit/#/q/2ea687bf15e9fc4eda20a8787a088e3100b16290] BUG-6089 [https://bugs.opendaylight.org/show_bug.cgi?id=6089]: Fix the wrong implementation for ICMPV6

	e7917c [https://git.opendaylight.org/gerrit/#/q/e7917ce882886eb998aaab6ab48394a7dbc6ca8a] BUG-7031 [https://bugs.opendaylight.org/show_bug.cgi?id=7031]: Implement ping responder for router interfaces

	56fe0c [https://git.opendaylight.org/gerrit/#/q/56fe0c97f63df280cbfeb89c848c4178e8062017] BUG-6476 [https://bugs.opendaylight.org/show_bug.cgi?id=6476] : After configuring NAPT, table 26 and table 46 are not programmed

	4793ff [https://git.opendaylight.org/gerrit/#/q/4793ff9f1b924000f398905e1c93a30ffe0f947d] Changed the AsyncDataChangeListenerBase to AsyncDataTreeChangeListenerBase in the NAT reated files

	f55516 [https://git.opendaylight.org/gerrit/#/q/f55516cfed80403b64e52982535d15532e2e29dc] Fix missing init for VpnPseudoPortListener

	594ad8 [https://git.opendaylight.org/gerrit/#/q/594ad80285cfbfdccc07fe0af36799df141c6fdd] BUG-6717 [https://bugs.opendaylight.org/show_bug.cgi?id=6717] - Output to external network group entry is not installed on NAPT FIB table for new DPN

	456698 [https://git.opendaylight.org/gerrit/#/q/456698965b2b62754d121c6cfe9864e60e62ef6b] BUG-6831 [https://bugs.opendaylight.org/show_bug.cgi?id=6831]: support for l3 directly connected subnet After the fix only unique mac values will be stored in the vpn interface adjacency. This values will be used for the group programming. No duplicate groups will be created.

	59afa8 [https://git.opendaylight.org/gerrit/#/q/59afa8ffc4774a56118c6e27fa0622c6df818e1b] BUG-6778 [https://bugs.opendaylight.org/show_bug.cgi?id=6778] - VPN interface for external port is deleted when clearing router gw interface

	3ec9cd [https://git.opendaylight.org/gerrit/#/q/3ec9cd8763a3b2ab656ab0f910e7de19980392b1] BUG-6395 [https://bugs.opendaylight.org/show_bug.cgi?id=6395]: Fixed the Problems in using ODL and neutron-l3-agent in Openstack

	4297eb [https://git.opendaylight.org/gerrit/#/q/4297eb840fedd5c2a2d6f0ccfbccc65cf4a783dc] BUG-6089 [https://bugs.opendaylight.org/show_bug.cgi?id=6089]:Fix for TCP/UDP and ICMP communication between VM’s using learn Action according to SG

	eb448b [https://git.opendaylight.org/gerrit/#/q/eb448b3399f8f03d6189a84c1468bd9d6f129a43] InterVpnLink cache

	5366c3 [https://git.opendaylight.org/gerrit/#/q/5366c388d5bbaa5a0e488d1cb8593c04b80ac15d] BUG-6934 [https://bugs.opendaylight.org/show_bug.cgi?id=6934]: VpnPseudoPort flows not moved to a new DPN

	8d24e4 [https://git.opendaylight.org/gerrit/#/q/8d24e4601f5e658875c16942f20c29c942fd6508] BUG-6863 [https://bugs.opendaylight.org/show_bug.cgi?id=6863] - Router interfaces incorrectly include network interfaces

	57a4b6 [https://git.opendaylight.org/gerrit/#/q/57a4b660c992188e9eb8faca29b015aa4e100236] AclServiceTest with http://immutables.org “depluralize” option

	acc05f [https://git.opendaylight.org/gerrit/#/q/acc05f6d04792693482f39538616eeb11dd51f01] Cleanup: remove unnecessary boxing/unboxing

	8919f8 [https://git.opendaylight.org/gerrit/#/q/8919f8808a8c4ba3e98a1d8b21af688e8e684964] Cleanup: use Java 8 lambdas

	29e541 [https://git.opendaylight.org/gerrit/#/q/29e541a8db119419a48362fa68c5f3602539fd99] BUG-6482 [https://bugs.opendaylight.org/show_bug.cgi?id=6482]: ERROR Log Observations - CSIT (Boron-Legacy)

	e5fdbf [https://git.opendaylight.org/gerrit/#/q/e5fdbf28cc2260351ad38fa85d7def16dbfb5551] Fixes BUG-6909 [https://bugs.opendaylight.org/show_bug.cgi?id=6909] ACLs TCP/UDP port ranges for the case of all ports 1-65535) should not use port masking at all

	3b63e9 [https://git.opendaylight.org/gerrit/#/q/3b63e907762cfeab726f4a4f8b7dde56b51a6a7c] fix learn security groups

	4ee773 [https://git.opendaylight.org/gerrit/#/q/4ee7730fd2faffed407f8af4a5e156b71cd76749] Arp cache feature changes

	69affd [https://git.opendaylight.org/gerrit/#/q/69affdb36ff44a763b5bc8456e7c20e1c6a7ffa9] BUG-6643 [https://bugs.opendaylight.org/show_bug.cgi?id=6643] fixed broken l2gw functionality

	001624 [https://git.opendaylight.org/gerrit/#/q/0016249d09f948a81cd06139078be42452681929] BUG-6816 [https://bugs.opendaylight.org/show_bug.cgi?id=6816]: NAT breakage fix for GRE provider type

	8607b7 [https://git.opendaylight.org/gerrit/#/q/8607b793b0f3dbcc2ae59b01e1ac2c936e93b74a] BUG-6831 [https://bugs.opendaylight.org/show_bug.cgi?id=6831]: Retain subnetroute with l3 directly-connected subnet

	8b8b63 [https://git.opendaylight.org/gerrit/#/q/8b8b639e41102bd9def28fbccc3240d552c95f80] BUG-6843 [https://bugs.opendaylight.org/show_bug.cgi?id=6843] : NPE in router-add leading to failure of router related cases

	7c8e2e [https://git.opendaylight.org/gerrit/#/q/7c8e2ec28f95102fe8e30d8326c3087a7aa04246] BUG-6779 [https://bugs.opendaylight.org/show_bug.cgi?id=6779] -After a Cluster Reboot, 10 VPNintfs seen

	01f9ab [https://git.opendaylight.org/gerrit/#/q/01f9ab874eb2d138115de1a039dcc885a61874fb] BUG-6824 [https://bugs.opendaylight.org/show_bug.cgi?id=6824] - floating IP rules deleted upon unrelated neutron port delete

	44f658 [https://git.opendaylight.org/gerrit/#/q/44f658aa53ea25cf44ba451d05478b6c3b6516ac] Increase AclServiceTest coverage significantly (from 66% to 84%)

	104259 [https://git.opendaylight.org/gerrit/#/q/10425903f028d1ed8c7c13b5dc192d75da17637f] BUG-6923 [https://bugs.opendaylight.org/show_bug.cgi?id=6923] - sfc-translation-layer : OVS data path locator options (nsp,nsi,nshc*) are not required.

	58a846 [https://git.opendaylight.org/gerrit/#/q/58a8460482cb02b6dd59b68ea39b73ffb0312ecd] BUG-6922 [https://bugs.opendaylight.org/show_bug.cgi?id=6922] - sfc-translation-layer : Do not explictly set RSP name

	3e7fcd [https://git.opendaylight.org/gerrit/#/q/3e7fcda20b01066e80ac458ba18a868c0200edf6] BUG-6921 [https://bugs.opendaylight.org/show_bug.cgi?id=6921] - SFC-Translation-Layer : Skip acl classifier write before chain creation

	48fc20 [https://git.opendaylight.org/gerrit/#/q/48fc2005dc6018fbe7420ff8941b774d017f3810] BUG-6395 [https://bugs.opendaylight.org/show_bug.cgi?id=6395]: Fixed the Problems in using ODL and neutron-l3-agent in Openstack

	54d0ee [https://git.opendaylight.org/gerrit/#/q/54d0eec0231e1d9f1860c948ed2b6deab7ed6d94] BUG-6920 [https://bugs.opendaylight.org/show_bug.cgi?id=6920] : Fix for ACL portSecurityUpdate to work with DjC + listed fixes

	b75028 [https://git.opendaylight.org/gerrit/#/q/b750282f61ea83f129d26dde33598c316ccb732f] De-static-ify aclservice utility classes methods and fields

	3818f1 [https://git.opendaylight.org/gerrit/#/q/3818f178152dcb51b537a403dc65a738e2380999] aclservice end-to-end test, with a bunch of cool new patterns

	4c4488 [https://git.opendaylight.org/gerrit/#/q/4c4488fd4f5e409636d259d1d797fd84e751814f] Remove unneeded alivenessmonitor-xml css dependency

	785cad [https://git.opendaylight.org/gerrit/#/q/785cad3f8e64f44c8af0e28739a81e0592318a8a] BUG-6474 [https://bugs.opendaylight.org/show_bug.cgi?id=6474] : Fixed the issue when using ODL with VXLAN Gateway

	83f1d4 [https://git.opendaylight.org/gerrit/#/q/83f1d4a69103398768ec47c5c733d27941886933] Add clear ping status

	e02b38 [https://git.opendaylight.org/gerrit/#/q/e02b38699762c04f5e5444c6687bf291a47f0236] Fix BROKEN aclservice listeners

	d4e1ca [https://git.opendaylight.org/gerrit/#/q/d4e1ca7c82096c996cf8a3abc100df41cb6fb481] Fixes logging exceptions, plus few formatting changes

	0a2af8 [https://git.opendaylight.org/gerrit/#/q/0a2af8745b1864e16e7fae77d7c0d23909375c98] Drop Maven prerequisite

	759bea [https://git.opendaylight.org/gerrit/#/q/759bea88641384f4528fd2a444bf91392e48929d] ipv6: Use versions from odlparent

	2199c7 [https://git.opendaylight.org/gerrit/#/q/2199c77dd644665e541519df53702d642443694c] Remove duplicate lockmanager bean

	82979d [https://git.opendaylight.org/gerrit/#/q/82979d774100da133a0fcc08dedac73fec3b4632] Modification cloud-servicechain-state.yang key

	28597f [https://git.opendaylight.org/gerrit/#/q/28597f914e3fb31e89b1e9adbf2a8d1ea37bf889] BUG-6861 [https://bugs.opendaylight.org/show_bug.cgi?id=6861] : Fix for proper tableId in punt action

	e9160f [https://git.opendaylight.org/gerrit/#/q/e9160fb939656fe970e5a696b8146354ceae7503] Clean up logging tests

	f39b5a [https://git.opendaylight.org/gerrit/#/q/f39b5a2759d1bec088f80a75b6d34a1b0324bead] BUG-6841 [https://bugs.opendaylight.org/show_bug.cgi?id=6841]: Few Remote flows not deleted on DPNs

	9d0dda [https://git.opendaylight.org/gerrit/#/q/9d0ddaee0460889594edd317a4acbf9846d4b5d8] BUG-6840 [https://bugs.opendaylight.org/show_bug.cgi?id=6840]: New karaf CLI commands

	19b1d3 [https://git.opendaylight.org/gerrit/#/q/19b1d30f9cbd249e035edbb5b4b831bae399da5c] Fixes bgpmanager-api folder structure

	98d6cb [https://git.opendaylight.org/gerrit/#/q/98d6cba6ae0604deba1e04320de8d6e743c1b2d1] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	f8921c [https://git.opendaylight.org/gerrit/#/q/f8921cf2d8879ba65d4f258389f8d15e2c7dceb9] BUG-6842 [https://bugs.opendaylight.org/show_bug.cgi?id=6842] : Incorrect error msg upon associating router to VPN with non-existing VPN-ID

	b71f78 [https://git.opendaylight.org/gerrit/#/q/b71f78d0e1cab42281c08dc382d38c7f763ac79e] BUG-6823 [https://bugs.opendaylight.org/show_bug.cgi?id=6823] : Performance improvement in DHCP

	edba2b [https://git.opendaylight.org/gerrit/#/q/edba2b1db1729d5d42eef89910069db759467595] BUG-6770 [https://bugs.opendaylight.org/show_bug.cgi?id=6770] - Fixes DjC for NPortCL + snmaps serialized + listed changes

	f683c3 [https://git.opendaylight.org/gerrit/#/q/f683c3f0ecf6e3cfeafc7655665e57a7290b1590] BUG-6825 [https://bugs.opendaylight.org/show_bug.cgi?id=6825]:- “BgpManager not started” error when trying to configure Bgp peer For commands class, bgpmanager not supplied as parameter

	4eb05b [https://git.opendaylight.org/gerrit/#/q/4eb05bdded8a75b8d522ded20b5485d8ca0065a6] BGP-configuration read is failing as shard leader is not available implemeted retry mechanism in bgp-get-config (100Seconds) for MDSAL read

	76abf7 [https://git.opendaylight.org/gerrit/#/q/76abf770d37ea82153a2a13cd76bd77a7412b0e0] fix whitespace

	93d86e [https://git.opendaylight.org/gerrit/#/q/93d86e9930027ddeb3b294f4fbaec209ed4a326d] modified stale route cleanup timer to 600Sec, in case nothing configured. enabled route removal on stale-path timer expiry

	a5f5de [https://git.opendaylight.org/gerrit/#/q/a5f5de9b604e589c5b1cefaf07aadb562897f8ec] minor fixes related to BGP - command output: F-bit always set to true and fetch Stale-path time from config, show GR-stalepathTime as default in case not-configured.

	cc5d42 [https://git.opendaylight.org/gerrit/#/q/cc5d42f4d2eab48d25df06fcca58f80a74902033] set FBIT for bgp to true (always), as we expect to keep the forwarding state (of CSS) eventhough the controller goes down.

	b715b9 [https://git.opendaylight.org/gerrit/#/q/b715b91a593be571f5b2b5a79c25e1cd8601cbba] BGP networks update callback is triggered even if the content remain same Fix: On Update callback, verify old and new values and act on it

	81ae16 [https://git.opendaylight.org/gerrit/#/q/81ae1614ecfb1d04c1de89902bad6c28fab0d90e] BUG-6839 [https://bugs.opendaylight.org/show_bug.cgi?id=6839]: Fixes for import/export RT and router dissociation in L3Vpn

	dbd173 [https://git.opendaylight.org/gerrit/#/q/dbd173f75c618f2439ed37042009c11eb9c63662] BUG-6673 [https://bugs.opendaylight.org/show_bug.cgi?id=6673]: DCN to DTCN changes

	58abb3 [https://git.opendaylight.org/gerrit/#/q/58abb3d30903161c7c41343df335ea15951c95dc] BUG-6725 [https://bugs.opendaylight.org/show_bug.cgi?id=6725]: fix contains below issues

	e66046 [https://git.opendaylight.org/gerrit/#/q/e66046ce3e804a4ced4c3d4bc88ff6bb0bb44134] BUG-6446 [https://bugs.opendaylight.org/show_bug.cgi?id=6446]: Concurrency changes related to NeutronPortChangeListener

	35e7c6 [https://git.opendaylight.org/gerrit/#/q/35e7c655203a355afdf9f64175599fc6da002781] BUG-6668 [https://bugs.opendaylight.org/show_bug.cgi?id=6668] - Security Groups (all implementations) - port_security extension and default DHCP/ICMP drop rules

	5a158d [https://git.opendaylight.org/gerrit/#/q/5a158ded632798bc607dea282be9b708c2cd803f] BUG-6831 [https://bugs.opendaylight.org/show_bug.cgi?id=6831]: support for l3 directly connected subnet

	e2f944 [https://git.opendaylight.org/gerrit/#/q/e2f94444492f76240b12421e1d1fa815d2f24a5f] Flow Entries to match ARP packets in GwMacTable(19)

	aa8246 [https://git.opendaylight.org/gerrit/#/q/aa82462012880009a07e55143a73d8f877ab57ef] BUG-6721 [https://bugs.opendaylight.org/show_bug.cgi?id=6721]: first few ping requests to a floating IP are receiving multiple responses

	94efae [https://git.opendaylight.org/gerrit/#/q/94efae87c009cdb7c63bb8113bb1676326a0c1e1] BUG-6773 [https://bugs.opendaylight.org/show_bug.cgi?id=6773]: Floating IP response answered from all

	f58d8b [https://git.opendaylight.org/gerrit/#/q/f58d8b74fbc21006af654269dbbfd9a83c833d98] Performs a residual cleanup of ElanPseudoPort flows

	fd8fd4 [https://git.opendaylight.org/gerrit/#/q/fd8fd45bf4116690e995ac971937ebfb7b6d1c82] BUG-6758 [https://bugs.opendaylight.org/show_bug.cgi?id=6758]: Remove inter-VPN link state even if error

	57d40e [https://git.opendaylight.org/gerrit/#/q/57d40e3682d2972767bea3756868f26b98d35f45] BUG-6673 [https://bugs.opendaylight.org/show_bug.cgi?id=6673] : DCN to DTCN Changes for various modules

	adc66f [https://git.opendaylight.org/gerrit/#/q/adc66f76004a3100862e7a16640dd8fdea4f3e24] BUG-6691 [https://bugs.opendaylight.org/show_bug.cgi?id=6691]: Fix exceptions in natservice for a dual-stack network

	e13013 [https://git.opendaylight.org/gerrit/#/q/e130135709d36e3edb5709e4a68e774200b16af7] BUG-6089 [https://bugs.opendaylight.org/show_bug.cgi?id=6089]: Fix for communication between VM’s according to SG.

	e98862 [https://git.opendaylight.org/gerrit/#/q/e988624b46844df89a30a20dc8756755ae9f5724] Thrift interface changes to support EVPN operations over Quagga BGP stack

	e2e329 [https://git.opendaylight.org/gerrit/#/q/e2e32923acc7654681eaef7468d7df89001e10f3] BUG-6716 [https://bugs.opendaylight.org/show_bug.cgi?id=6716]:Fix NPE in NeutronvpnNatManager

	033052 [https://git.opendaylight.org/gerrit/#/q/0330521d33997ce7404a08b333290b54259b2b59] Mask IPv6Prefix in ACL flows

	28d2f3 [https://git.opendaylight.org/gerrit/#/q/28d2f3ad106e9906de4b1114cec4ee1cc82f8fdf] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	d2e1ad [https://git.opendaylight.org/gerrit/#/q/d2e1adc41ad0733df78a01e3b17c1e3eb12d8328] bgp logging fixes

	9c217e [https://git.opendaylight.org/gerrit/#/q/9c217eea2ffd252fd62a233d639c43f05f26b85b] aclservice-impl Listener without dumb @PreDestroy super.close()

	863fd2 [https://git.opendaylight.org/gerrit/#/q/863fd2de327746001ed3ddb26855e8b4b985c87a] Fix WARNING when port is updated with allowed_address_pairs

	749762 [https://git.opendaylight.org/gerrit/#/q/749762b2d7e6796c5b5e6a6529d4f2d996d5185c] Fix 6693 -DHCP Server responds to DHCP requests punted from its table(60) only -DHCP server should not run at all when the controller-dhcp-enabled flag is false

	a3d16b [https://git.opendaylight.org/gerrit/#/q/a3d16bac4ec2eb03a9fb129533e89c5b37be7eb6] BUG-6708 [https://bugs.opendaylight.org/show_bug.cgi?id=6708] Neighbor NAPT switches group table buckets remain empty Fix race by triggering NAPT neighbor group table update upon tunnel interface state addition

	e9c655 [https://git.opendaylight.org/gerrit/#/q/e9c6555dea76b6db3c439416d0ebf7af9d6994f8] BUG-6727 [https://bugs.opendaylight.org/show_bug.cgi?id=6727] ExternalRouterListener ignore multiple routers implementation

	f41a80 [https://git.opendaylight.org/gerrit/#/q/f41a802a367624aeccc6cda96107bb019a012a89] BUG-6628 [https://bugs.opendaylight.org/show_bug.cgi?id=6628] - DMAC for L3 entities flows installation only after reversal

	a303b5 [https://git.opendaylight.org/gerrit/#/q/a303b57fbcc154594f00c9439fe354e058c7ee60] Fix wiring issue in openstack.sfc-translator-impl

	eea48c [https://git.opendaylight.org/gerrit/#/q/eea48ce55790b5a4df9bb2b5cb61521595fd1d99] BUG-6741 [https://bugs.opendaylight.org/show_bug.cgi?id=6741]: eth1 flows on table 0 are missing from d2 ovs

	307a1e [https://git.opendaylight.org/gerrit/#/q/307a1ecccb56d686d72fa3a7dddbbefd1a15cec7] BUG-6707 [https://bugs.opendaylight.org/show_bug.cgi?id=6707] - FIB table rules are not created when DPNTEPInfo is not available

	d88d71 [https://git.opendaylight.org/gerrit/#/q/d88d717924c6efbc72ec8d33f2a58e0e780455bf] BUG-6732 [https://bugs.opendaylight.org/show_bug.cgi?id=6732]: ARP Replies Intermittent for Floating IP Addresses

	047979 [https://git.opendaylight.org/gerrit/#/q/047979394229d2e4230d441d79e9b73d18034f98] BUG-6690 [https://bugs.opendaylight.org/show_bug.cgi?id=6690] - when mixing dpdk & non-dpdk OVS with the same ODL no way to configure different datapath types

	3a57d5 [https://git.opendaylight.org/gerrit/#/q/3a57d5b30dccb2bbd513d638110d3a5a8adf3e27] BUG-6742 [https://bugs.opendaylight.org/show_bug.cgi?id=6742] FloatingIPHanlder should use the external interface-name

	ded594 [https://git.opendaylight.org/gerrit/#/q/ded594be46dc79ce3df2428e7ddfe5bee8ca4484] BUG-6756 [https://bugs.opendaylight.org/show_bug.cgi?id=6756]: Fix related to missing ACL flows

	3e2f52 [https://git.opendaylight.org/gerrit/#/q/3e2f523f15c53cc9b2216f6987d9389192f90a91] BUG-6748 [https://bugs.opendaylight.org/show_bug.cgi?id=6748]: ACL mechanism uses reg5 instead of reg6.

	dbedee [https://git.opendaylight.org/gerrit/#/q/dbedeebab3ba6103daa6c4a9d04e5686f059f250] Fixes default SG remote groups rules. 1))Remote default SG rules are not added with Ip addres asn same is fixed 2)Flow id is fixed for ipv4 and ipv6 rules.

	5a1ae8 [https://git.opendaylight.org/gerrit/#/q/5a1ae835eb5b6711032e57e5f80159c91344c98a] BUG-6752 [https://bugs.opendaylight.org/show_bug.cgi?id=6752]: DHCP service is not bound

	837ac6 [https://git.opendaylight.org/gerrit/#/q/837ac6023a0d701e4fa89e580479fa1119b653f3] aclservice-impl use infrautils AbstractLifecycle

	68766e [https://git.opendaylight.org/gerrit/#/q/68766e46584bed36dff7613a80ca9a11268b3eb1] BUG-6452 [https://bugs.opendaylight.org/show_bug.cgi?id=6452]: Error logs when deleting neutron network

	fd9b21 [https://git.opendaylight.org/gerrit/#/q/fd9b211569b9456bde0f0d229376d57c7f2b3eec] aclservice AclInterfaceStateListener update() TODO replace with comment

	0c7c0a [https://git.opendaylight.org/gerrit/#/q/0c7c0a96d387ce190d520e38be625f4070c674a2] BUG-6677 [https://bugs.opendaylight.org/show_bug.cgi?id=6677]: Create ext-routers when a router is created with ext-gw

	9feab4 [https://git.opendaylight.org/gerrit/#/q/9feab4746b86f44a17a34106ee6abf62c685eba5] BUG-6687 [https://bugs.opendaylight.org/show_bug.cgi?id=6687]: Fix NPE when updating ExternalNetwork

	1876ba [https://git.opendaylight.org/gerrit/#/q/1876ba3f89017727d435495cd67d1fbc9e484140] BUG-6688 [https://bugs.opendaylight.org/show_bug.cgi?id=6688] - Patch port is not correctly associated to ELAN

	3f99ad [https://git.opendaylight.org/gerrit/#/q/3f99ad50a6cf88cfe770751dfd59155067fe7e29] Code for myMAC in the L3VPN pipeline

	9ff1e5 [https://git.opendaylight.org/gerrit/#/q/9ff1e57b509e3db557004925963c274cc186d80e] BUG-6666 [https://bugs.opendaylight.org/show_bug.cgi?id=6666]: Making sure no 0 datapathID is used when adding interfaces to the model, and when the node updated with the datapathID, create the relevant interfaces

	80ccfd [https://git.opendaylight.org/gerrit/#/q/80ccfd380f2a8244c85b9c7631c48760c87c3959] BUG-6628 [https://bugs.opendaylight.org/show_bug.cgi?id=6628] - Handling missing router entities DMAC table flows

	b3d85d [https://git.opendaylight.org/gerrit/#/q/b3d85d4e9dff599ef7f0fc67295dde3c54a42c17] Support multiple routers per external GW

	4a0531 [https://git.opendaylight.org/gerrit/#/q/4a0531a3c5dada4d5b5f93db8f60fd8a5fd4b383] Fix bad design of AclClusterUtil to make it pluggable for e2e tests

	ee219d [https://git.opendaylight.org/gerrit/#/q/ee219d6c23f6ca0f9c781bc471ca243ee73a2255] BUG-6609 [https://bugs.opendaylight.org/show_bug.cgi?id=6609]: when 2 vm belonging to the same NETWORK/SUBNET get created in different COMOUTE NODE - ping between those 2 did not work

Neutron Northbound

	21ae38 [https://git.opendaylight.org/gerrit/#/q/21ae385a48dfa07a55bd006f204ad32e92fb2b53] BUG-6865 [https://bugs.opendaylight.org/show_bug.cgi?id=6865] - Transcriber skips the uppercase protocol field

	7ac89e [https://git.opendaylight.org/gerrit/#/q/7ac89e09352af7a786d51fec71999b07d0e1bba8] BUG-6736 [https://bugs.opendaylight.org/show_bug.cgi?id=6736]: Fix incorrect destination ip prefix value

ODL Root Parent

	597e62 [https://git.opendaylight.org/gerrit/#/q/597e622c5da9ffa5fb6c5863a2a579f6fca68ca1] Disable stack trace trimming

	7d99fd [https://git.opendaylight.org/gerrit/#/q/7d99fd11c424f12df42c87da103958eb0861afad] Copy in supporting bouncycastle PKIX/CMS/EAC/PKCS/OCSP/TSP/OPENSSL packages

	817ade [https://git.opendaylight.org/gerrit/#/q/817ade40845eae9d639153f27bc3631879d7c350] BUG-6790 [https://bugs.opendaylight.org/show_bug.cgi?id=6790]: use non-blocking /dev/urandom

	6125cd [https://git.opendaylight.org/gerrit/#/q/6125cd25918e065d3b5d6094cf32e4c0b74ae439] BUG-6712 [https://bugs.opendaylight.org/show_bug.cgi?id=6712]: fix bin/shell’s classpath

OVSDB Integration

	18c226 [https://git.opendaylight.org/gerrit/#/q/18c22618faced8388b69e0cd4a52b00c58ed3276] BUG-6851 [https://bugs.opendaylight.org/show_bug.cgi?id=6851] fix: handling OtherConfig column clear

	2c79ca [https://git.opendaylight.org/gerrit/#/q/2c79cabee925f967f920648b277c3d44e7db1b92] BUG-6692 [https://bugs.opendaylight.org/show_bug.cgi?id=6692]: don’t mock Optional

	9ee9ec [https://git.opendaylight.org/gerrit/#/q/9ee9ec144ed57c7dec08c0687dc751a15a528753] BUG-6692 [https://bugs.opendaylight.org/show_bug.cgi?id=6692]: remove InstanceIdentifierCodec instance from SBU

	ff745e [https://git.opendaylight.org/gerrit/#/q/ff745eeb5227af7157929e622d9d661d23408ffb] Change cipher suites for SSL connection

	31f29c [https://git.opendaylight.org/gerrit/#/q/31f29cbc4a6262917469d32cca2f0717eca5d487] BUG-6854 [https://bugs.opendaylight.org/show_bug.cgi?id=6854]: remove unnecessary generics from OVSDB schema classes

	1ffd3c [https://git.opendaylight.org/gerrit/#/q/1ffd3cab9cdc2e363f4b2e6c5569d2ef54486e9b] BUG-5995 [https://bugs.opendaylight.org/show_bug.cgi?id=5995]: remove org.json

	bca1f7 [https://git.opendaylight.org/gerrit/#/q/bca1f7cd05ea23194b197257a3ca6f2d5783a455] BUG-6692 [https://bugs.opendaylight.org/show_bug.cgi?id=6692]: use non-deprecated firstKeyOf() variant

	194a08 [https://git.opendaylight.org/gerrit/#/q/194a08cf62f33523e62cdd43c8e6f081399514a0] BUG-6692 [https://bugs.opendaylight.org/show_bug.cgi?id=6692]: improve TyperUtils tests (first pass)

	41c08b [https://git.opendaylight.org/gerrit/#/q/41c08b1c8b04614d6b6b31aba0f81ec7e2101297] Fixed inappropriate WARN message.

	46366f [https://git.opendaylight.org/gerrit/#/q/46366fcad259124e42b7422f78c45a67cbcadf44] BUG-6692 [https://bugs.opendaylight.org/show_bug.cgi?id=6692]: clean up MonitorRequestBuilder

	43b759 [https://git.opendaylight.org/gerrit/#/q/43b759881437b15676538bf5255517d819f02f17] Clean up SouthboundConstants

	aa1893 [https://git.opendaylight.org/gerrit/#/q/aa189319f0c80ea9d3227815e2c8095da73803f6] Fix clear bug related to “num” in JSON Node

OpenFlow Plugin

	d2ad11 [https://git.opendaylight.org/gerrit/#/q/d2ad11ee8d25733be58b740c7259b36eb5c250ac] Fix direct statistics

	ff2b50 [https://git.opendaylight.org/gerrit/#/q/ff2b50f49c0f28c14bd848928078b986919d459b] Fix flow matching function

	a3e97a [https://git.opendaylight.org/gerrit/#/q/a3e97a1f137b7a30851fc6e18972bf4c9e49f4ef] Remove RoleManager and RoleContext

	e8c17a [https://git.opendaylight.org/gerrit/#/q/e8c17a4317b95c7c5dae9c5ad3d26a8c5a88c013] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]: Edit to cfg file reflecting that statistics collection is turned on by default

	0641dc [https://git.opendaylight.org/gerrit/#/q/0641dc3ed62f5264ddca2c9f70d62f8cd64be34e] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]:

	7f05ed [https://git.opendaylight.org/gerrit/#/q/7f05ed115fe006111356ee1b55d180c2e82d0b82] BUG-6930 [https://bugs.opendaylight.org/show_bug.cgi?id=6930] Notiifcation-suppliers was broken

	ee3af8 [https://git.opendaylight.org/gerrit/#/q/ee3af80a232be72af5faeb893c185fba22e87eeb] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]: Updated the cfg file with detailed description of usage

	c7e373 [https://git.opendaylight.org/gerrit/#/q/c7e373ced437c006452f35a71d78ecdd6671ba2a] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]: Enabling statistics collection through a config parameter in openflowplugin.cfg

	983cb0 [https://git.opendaylight.org/gerrit/#/q/983cb09d49b5b5bc91cf16761c986e2467b08cfa] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]: Enabling echo timout configurable through config file

	e1d998 [https://git.opendaylight.org/gerrit/#/q/e1d99863374af8594f296b39cc26962f9a3cabe9] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]: Enabling barrier configurability through cfg file

	37cdc5 [https://git.opendaylight.org/gerrit/#/q/37cdc51b6d2576f20c34c2599edd2450bbb1ddbb] Optimize LLDP packet check

	a6fece [https://git.opendaylight.org/gerrit/#/q/a6fecefa8e6bc1349af38760ea1ab7b75bd7370d] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] SimplifiedOperationalListener optimation

	4e32df [https://git.opendaylight.org/gerrit/#/q/4e32dfa5a37728be87d4410d0c8ffd850735f830] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] Do not skip first data for reconciliation

	4eca5f [https://git.opendaylight.org/gerrit/#/q/4eca5f950c57b467a175e254062b83caff661556] Create SemaphoreKeeper inside decorators

	82b167 [https://git.opendaylight.org/gerrit/#/q/82b1671fb718bbf5b6a18761c41ce8f8be2e2898] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] Improve compression queue locking and handle InterruptedException

	1dd929 [https://git.opendaylight.org/gerrit/#/q/1dd9291cbd748c1eca5678f00a497cec1f1f9cf3] Add finals and move thread name constant to provider

	be6a07 [https://git.opendaylight.org/gerrit/#/q/be6a071a6ea167f144307755ff20909ebb4cef91] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] Set compression semaphore to fair

	4bc17c [https://git.opendaylight.org/gerrit/#/q/4bc17cdd66b71a4fbf95cd032e31aeb52ac366aa] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] Do not ignore syncup return value

	a2299a [https://git.opendaylight.org/gerrit/#/q/a2299a1d768815eb29f37c54f6512cbe75ac85ed] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] Remove thread renaming and unnecessary logging

	2b99a1 [https://git.opendaylight.org/gerrit/#/q/2b99a1082a4a6cd6fd987a863a7c431ef92ce8bc] BUG-6745 [https://bugs.opendaylight.org/show_bug.cgi?id=6745] Fix replacing in compression queue

	0d0777 [https://git.opendaylight.org/gerrit/#/q/0d0777a182dc880cddaa376b0f99e013359c3edc] Write SwitchFeatures to operational datastore

	bb1ea2 [https://git.opendaylight.org/gerrit/#/q/bb1ea2d67a61c5b3e14f85fcc83dcde1c59a7516] Remove excessive (trace) logging in FRS

	c44de6 [https://git.opendaylight.org/gerrit/#/q/c44de6771bda0e32f07cafc5da8f98091f3b26b4] Fix translation to packet.received.MatchBuilder

	8da0e5 [https://git.opendaylight.org/gerrit/#/q/8da0e5766b0bd2eb693a291f7ad2cce6dcf44972] Create DeviceMasterShipManager before forwarders

	c63deb [https://git.opendaylight.org/gerrit/#/q/c63deb33470cfb1b3518038639479814327faf3d] BUG-6633 [https://bugs.opendaylight.org/show_bug.cgi?id=6633] : NXM_OF_IN_PORT support in openflowplugin

	0ab612 [https://git.opendaylight.org/gerrit/#/q/0ab612aa5635b4612fbee5cb7cde456f0bf538a5] Update comments and imports after DataChangeListener changes

	01f583 [https://git.opendaylight.org/gerrit/#/q/01f583e04d2f62d8c2bd647db6976190ab4a4510] BUG-6749 [https://bugs.opendaylight.org/show_bug.cgi?id=6749]: Set the openflow connection config at xml file

	5fffad [https://git.opendaylight.org/gerrit/#/q/5fffad88c5940f04001bee1ac4190d47f5fea34b] Fix connection closing before initialization

	56def6 [https://git.opendaylight.org/gerrit/#/q/56def6d49145bb0371ecaaa112627368dae06841] BUG-6665 [https://bugs.opendaylight.org/show_bug.cgi?id=6665] Clean code

	ab966a [https://git.opendaylight.org/gerrit/#/q/ab966aac8b75f051fbd18d69b47338b5a77a2865] ClusterSingletonService cleaning FRM/FRS

	74500b [https://git.opendaylight.org/gerrit/#/q/74500b868f8cdce042c53d7bdd994a9c7ff7314c] SONAR TD - StatisticsContextImpl, StatisticsManagerImpl

	db2f2f [https://git.opendaylight.org/gerrit/#/q/db2f2fefe1a46abc151a07498d14eb0565ef6d86] Update comments around flat-batch service

	f12541 [https://git.opendaylight.org/gerrit/#/q/f12541e7fcde220dae7cf9f62616744340294fcc] Convert openflowplugin-it to use DTCL instead of DCL

	731845 [https://git.opendaylight.org/gerrit/#/q/7318454368be093d0e1f0eff98ca90f08f4bfab0] Convert OF samples to use DTCL instead of DCL

	9a08ed [https://git.opendaylight.org/gerrit/#/q/9a08edede0be699b0f40fe654989a1728d524b9f] Update old links in code to deprecated DataChangeListener

	4dec3f [https://git.opendaylight.org/gerrit/#/q/4dec3fed43ec4be8f71964cc07c1e76740d304ca] BUG-6665 [https://bugs.opendaylight.org/show_bug.cgi?id=6665] - Fix switches scalability

	018ab3 [https://git.opendaylight.org/gerrit/#/q/018ab358c128db9ef389935fec96cfe752e1cdf0] BUG-6118 [https://bugs.opendaylight.org/show_bug.cgi?id=6118]: making the OFentityListener aware of the InJeopardy() flag

	aba015 [https://git.opendaylight.org/gerrit/#/q/aba015594c05accaec81d508806042f51afc76b2] BUG-6542 [https://bugs.opendaylight.org/show_bug.cgi?id=6542] FRS - prevent concurrent reconciliation node config add

OpenFlow Protocol Library

	0d1629 [https://git.opendaylight.org/gerrit/#/q/0d1629bee1803e3059897143f2b7345ac8f5cbca] BUG-6744 [https://bugs.opendaylight.org/show_bug.cgi?id=6744] - the parameters of the function of registerMeterBandSerializer need to be more refined

	d068a6 [https://git.opendaylight.org/gerrit/#/q/d068a6ec5bb54c05e7546207a200dcc0edd398cb] BUG-6674 [https://bugs.opendaylight.org/show_bug.cgi?id=6674] - the key of the serialization function registered by the vendor is not refinement enough

SDN Interface Application (SDNi)

	ddc016 [https://git.opendaylight.org/gerrit/#/q/ddc0169af867c06052e5558bf1c35c4f783dfa5b] Use of DataBroker from CSS instead of OFP for boron branch OF SDNINTERFACEAPP

Secure tag eXchange Protocol (SXP)

	a36aee [https://git.opendaylight.org/gerrit/#/q/a36aee834c03c772d8737be1c8cec7b1b08fe38e] BUG-6849 [https://bugs.opendaylight.org/show_bug.cgi?id=6849] - PurgeAll message is not propagated to other domains

	02a8a0 [https://git.opendaylight.org/gerrit/#/q/02a8a052f0728d2bf26a1c78ac10146bb2590f89] BUG-6448 [https://bugs.opendaylight.org/show_bug.cgi?id=6448] - Add blueprint and clustering support to sxp-controller

	c5a4ab [https://git.opendaylight.org/gerrit/#/q/c5a4ab804aae046e3b61472787e6f4a84d8fb64c] BUG-6448 [https://bugs.opendaylight.org/show_bug.cgi?id=6448] - Add blueprint and clustering support to sxp-controller

Service Function Chaining

	07b43c [https://git.opendaylight.org/gerrit/#/q/07b43cc65cb1948c2cb6f2a1d9942bd48c16f9ef] BUG-7039 [https://bugs.opendaylight.org/show_bug.cgi?id=7039]: Fixing when RSPs are deleted by SF/SFF updates

User Network Interface Manager (UNIMGR)

	f49cbd [https://git.opendaylight.org/gerrit/#/q/f49cbd4c58a271e8c19c0090367f7049d159f505] BUG-6767 [https://bugs.opendaylight.org/show_bug.cgi?id=6767] - Null pointer exception when adding an EVC with no UNIs

Virtual Tenant Network (VTN)

	5e248d [https://git.opendaylight.org/gerrit/#/q/5e248dbc78ba54c7a149aa754e055c13fe82f941] BUG-6278 [https://bugs.opendaylight.org/show_bug.cgi?id=6278]: Use odlparent’s karaf-parent to build local distro only for IT.

	b33c56 [https://git.opendaylight.org/gerrit/#/q/b33c56996ee7a6364fcd4a3a67f536099ded28f4] BUG-6846 [https://bugs.opendaylight.org/show_bug.cgi?id=6846]: Fixed bug in VTN Coordinator shutdown sequence.

	69cf85 [https://git.opendaylight.org/gerrit/#/q/69cf85fcd733ac42298c9e2dcb10afaa82475b31] BUG-6278 [https://bugs.opendaylight.org/show_bug.cgi?id=6278]: Switch to use odlparent’s karaf-parent.

	e9b37c [https://git.opendaylight.org/gerrit/#/q/e9b37c999efb2dd4b0ba3a624996ecca6f8a54dc] BUG-6715 [https://bugs.opendaylight.org/show_bug.cgi?id=6715]:Fixed issue in maven-site generation.

	beb01e [https://git.opendaylight.org/gerrit/#/q/beb01e34af7c909e3a63912200c682ff79170a09] BUG-6632 [https://bugs.opendaylight.org/show_bug.cgi?id=6632]: Fixed VTN coordinator build error on Fedora 24.

YANG Tools

	3a6559 [https://git.opendaylight.org/gerrit/#/q/3a65590fbedd5c6c5bf9399548a004ef3e637da0] Hide BuildGlobalContext methods

	3ae284 [https://git.opendaylight.org/gerrit/#/q/3ae284eca4438de2ea80d5a1cf2c006e54fdc1d2] BUG-4456 [https://bugs.opendaylight.org/show_bug.cgi?id=4456]: rework leaker integration

	9774e1 [https://git.opendaylight.org/gerrit/#/q/9774e100ad46b9bd3153e4cf58d84d56394c26ab] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: do not re-read models

	4705f8 [https://git.opendaylight.org/gerrit/#/q/4705f8012b52d48f45c0a2eb4cc76a9c24ced3e0] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: grow namespaces lazily

	fc760c [https://git.opendaylight.org/gerrit/#/q/fc760cddecbd779c3387011c9e9a579e93f676d6] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: Optimize toString() methods

	ab7e06 [https://git.opendaylight.org/gerrit/#/q/ab7e06a283615ea5f8595ce7a2c002418507628d] Cleanup SupportedExtensionsMapping

	e3757f [https://git.opendaylight.org/gerrit/#/q/e3757f971d2a6f67995026b9f29ae22ad303699c] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: streamline QNameToStatementDefinitionMap API

	05cf5b [https://git.opendaylight.org/gerrit/#/q/05cf5b72fea08ffc57b8d7b429ebab73ccae69a4] BUG-6964 [https://bugs.opendaylight.org/show_bug.cgi?id=6964]: reuse StatementDefinitionNamespace

	fb8b10 [https://git.opendaylight.org/gerrit/#/q/fb8b10c420cd458ea4451a9795bf4e8c507f91fc] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: intern cached QNames

	fd79ee [https://git.opendaylight.org/gerrit/#/q/fd79ee1fa169f1ceab339abb377afc08ba29f2e3] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: Remove an unneeded branch

	4e6f54 [https://git.opendaylight.org/gerrit/#/q/4e6f543113c39b77354c6ca6c573af4076a11524] BUG-7025 [https://bugs.opendaylight.org/show_bug.cgi?id=7025]: make the parser tree immutable

	89a15d [https://git.opendaylight.org/gerrit/#/q/89a15d03fdc1fed74eca4b2cbd70de25bba50747] BUG-7025 [https://bugs.opendaylight.org/show_bug.cgi?id=7025]: Use ParseTreeWalker.DEFAULT

	57fee4 [https://git.opendaylight.org/gerrit/#/q/57fee412b50da4a41a75e71d42061251916b11a8] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: lower map sizing

	3f498d [https://git.opendaylight.org/gerrit/#/q/3f498d3b1b1d6d09a1926a70607d1dad7ba87b92] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: do not accidentally grow lists

	d4b39b [https://git.opendaylight.org/gerrit/#/q/d4b39b9de4fac2f214444f893f36b9c73d9888d3] BUG-6972 [https://bugs.opendaylight.org/show_bug.cgi?id=6972]: optimize SourceSpecificContext

	936f49 [https://git.opendaylight.org/gerrit/#/q/936f49c81f8e69826ef2c5a5923dfe697853675f] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: Improve parser reactor logging

	032498 [https://git.opendaylight.org/gerrit/#/q/032498569b883d97a7a514056dbca2426b51df1f] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: grow StatementContext collections lazily

	f40575 [https://git.opendaylight.org/gerrit/#/q/f4057501941de73f146c908a0a109bf89ba81fd9] BUG-6972 [https://bugs.opendaylight.org/show_bug.cgi?id=6972]: refactor copy checking

	613764 [https://git.opendaylight.org/gerrit/#/q/613764aa6c8a0d57bf5c8bf5a78335acb70d3a73] BUG-6972 [https://bugs.opendaylight.org/show_bug.cgi?id=6972]: Remove GroupingUtils.needToCreateNewQName()

	65e018 [https://git.opendaylight.org/gerrit/#/q/65e0184cc3aa82dcf42122154184afbebb922afc] BUG-6972 [https://bugs.opendaylight.org/show_bug.cgi?id=6972]: eliminate AugmentUtils

	bedd5f [https://git.opendaylight.org/gerrit/#/q/bedd5fb29190060101877b3d36ca891e7de303ff] BUG-6669 [https://bugs.opendaylight.org/show_bug.cgi?id=6669]: Mandatory nodes cannot be added to node from another module via augment

	5f14ad [https://git.opendaylight.org/gerrit/#/q/5f14ad62021743476c4e5a6c71aba3d7165cb194] BUG-6972 [https://bugs.opendaylight.org/show_bug.cgi?id=6972]: Consolidate copy operations

	bbde9e [https://git.opendaylight.org/gerrit/#/q/bbde9e23036db9c5cf029ab9da8d01042ef48446] BUG-6979 [https://bugs.opendaylight.org/show_bug.cgi?id=6979] - yang.model.util.EffectiveAugmentationSchema is mutable

	a7427e [https://git.opendaylight.org/gerrit/#/q/a7427ef38846c04dd09d90052df2e6a0a16c92a9] BUG-6329 [https://bugs.opendaylight.org/show_bug.cgi?id=6329]: Parser fails when target node of uses-augment is an unknown node

	e6ceb0 [https://git.opendaylight.org/gerrit/#/q/e6ceb049c4e6bdff58a76a2d718a7186a05516de] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: create a specialized CopyHistory object

	75ec31 [https://git.opendaylight.org/gerrit/#/q/75ec3145e6d9124a4a654759b76ffe5ac18fb0d1] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: share instances of Config(Effective)Statement

	992f98 [https://git.opendaylight.org/gerrit/#/q/992f987ef71f9e13dbf5da39fe721ee2763952de] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: allocate copyHistory lazily

	954cfd [https://git.opendaylight.org/gerrit/#/q/954cfda6950fcbd91ecc3e66660e2ac12e2fb95f] BUG-6522 [https://bugs.opendaylight.org/show_bug.cgi?id=6522]: Adjust collection sizes

	056f73 [https://git.opendaylight.org/gerrit/#/q/056f7377fbac6ef8ebe27f45fa18c2e8704af39d] Improve ContextBuilder error reporting

	3182c7 [https://git.opendaylight.org/gerrit/#/q/3182c71548bf8c2b9394c2f7c4333bcbb3d5e31d] BUG-6965 [https://bugs.opendaylight.org/show_bug.cgi?id=6965]: introduce BuiltinDeclaredStatements

	c157a9 [https://git.opendaylight.org/gerrit/#/q/c157a9dd65426473b7cd87de68d6639c9e91f403] BUG-6964 [https://bugs.opendaylight.org/show_bug.cgi?id=6964]: define a namespace to hold model-defined statements

	9d06db [https://git.opendaylight.org/gerrit/#/q/9d06db90139388fff727f3be349c7d0e310a6e64] BUG-6491 [https://bugs.opendaylight.org/show_bug.cgi?id=6491]: Some imports are not exposed in Module.getImports

	755a50 [https://git.opendaylight.org/gerrit/#/q/755a50a76b06f89ee5d4905145fe0e124e42aea4] BUG-6961 [https://bugs.opendaylight.org/show_bug.cgi?id=6961]: SchemaContext.getAllModuleIdentifiers() doesnt work for submodules

	124100 [https://git.opendaylight.org/gerrit/#/q/124100376e7885a74b1e26957979eec3de618ee3] Reuse cardinality constants

	29c174 [https://git.opendaylight.org/gerrit/#/q/29c174b87c0075c6adc8ec78e2b2443a6253a6c6] Fix inefficient ConstraintEffectiveStatements

	97896a [https://git.opendaylight.org/gerrit/#/q/97896a806e6a52a89ab385b93a06f180c3d6a529] Fix GroupingEffectiveStatementImpl’s unknown nodes

	80c95e [https://git.opendaylight.org/gerrit/#/q/80c95e16025e2531b722edb3c486df75105f013f] BUG-4456 [https://bugs.opendaylight.org/show_bug.cgi?id=4456]: add RecursiveExtensionResolver

	91f43b [https://git.opendaylight.org/gerrit/#/q/91f43b1ce6453fef9e04e6673e7637fb5dba8b38] BUG-6757 [https://bugs.opendaylight.org/show_bug.cgi?id=6757]: revert fix for BUG-4456 [https://bugs.opendaylight.org/show_bug.cgi?id=4456]

	0de136 [https://git.opendaylight.org/gerrit/#/q/0de136825605fc7c15b49bdb1841ff5ea48d8a21] Fix failing unit test in QueuedNotificationManagerTest

	ad1f74 [https://git.opendaylight.org/gerrit/#/q/ad1f7479a9c886e7c358cc4191a787fd39108d7b] Use lambdas instead of anonymous classes

	29596d [https://git.opendaylight.org/gerrit/#/q/29596dac02aa54e632490709bc065607ac7468d7] Use lambdas instead of StmtContextUtils.build{Declared,Effecive}

	0e2419 [https://git.opendaylight.org/gerrit/#/q/0e241927ffcdf246f947d61fac6c8b8c2427b094] BUG-5561 [https://bugs.opendaylight.org/show_bug.cgi?id=5561]: use canonical Bits order

	e4b8cc [https://git.opendaylight.org/gerrit/#/q/e4b8cc31f1030825b3482cc7e33c3de3c13ff679] Fix a bunch of warnings

	903b93 [https://git.opendaylight.org/gerrit/#/q/903b9333f1c01ed554ac26b853617f5137266998] Intro. new yangtools.testutils artifacts (incl. Mikito)

	086f01 [https://git.opendaylight.org/gerrit/#/q/086f01c2be55b4ec548276e3d096923cc1517b74] Add YangInstanceIdentifier fast paths

	a92b31 [https://git.opendaylight.org/gerrit/#/q/a92b31ce920f2677d7cce93eb94cfff37547bce8] Use YangInstanceIdentifier.EMPTY

	c87622 [https://git.opendaylight.org/gerrit/#/q/c876221202e810d12a3f3c36d79fd22b69233763] BUG-6771 [https://bugs.opendaylight.org/show_bug.cgi?id=6771]: Problem with typedefs nested in augment

	0ab997 [https://git.opendaylight.org/gerrit/#/q/0ab9979b537056119507bbed776f1b5ff668844b] Allow QueuedNotificationManager to batch notifications

	21782e [https://git.opendaylight.org/gerrit/#/q/21782e414bc65f82975f62fb560c12f23c5d2acb] Add batching to QueuedNotificationManager

	8fb1f4 [https://git.opendaylight.org/gerrit/#/q/8fb1f4dda6d063c1a3b11139ec21e1d5ee880075] Cleanup QueuedNotificationManager

	920c87 [https://git.opendaylight.org/gerrit/#/q/920c8711850b01440ecf9967744e970d14fb6326] BUG-6551 [https://bugs.opendaylight.org/show_bug.cgi?id=6551]: Support for third-party Yang extensions implementation

	c55522 [https://git.opendaylight.org/gerrit/#/q/c555220106c810ceaf2ac91b7428553edb5271f1] Fix ConstraintDefinition inconsistency

Boron-SR2 Release Notes

This page details changes and bug fixes between the Boron Stability Release 1 (Boron-SR1) and the Boron Stability Release 2 (Boron-SR2) of OpenDaylight.

Projects with No Noteworthy Changes

The following projects had no noteworthy changes in the Boron-SR2 Release:

	ALTO

	Atrium Router

	Authentication, Authorization and Accounting (AAA)

	Cardinal

	Centinel

	Control And Provisioning of Wireless Access Points (CAPWAP)

	Controller Shield

	Device Identification and Driver Management (DIDM)

	Energy Management Plugin

	Fabric As A Service (FaaS)

	Infrastructure Utilities

	Integration/Distribution

	Internet of Things Data Management (IoTDM)

	L2 Switch

	Link Aggregation Control Protocol (LACP)

	NAT Application Plugin

	NEtwork MOdeling (NEMO)

	NeXt UI Toolkit

	NetIDE

	ORI C&M Protocol (OCP)

	OpenFlow Configuration Protocol (OF-CONFIG)

	OpenFlow Protocol Library

	Packet Cable/PCMM

	SNMP Plugin

	SNMP4SDN

	Secure Network Bootstrapping Infrastructure (SNBI)

	Table Type Patterns (TTP)

	Time Series Data Repository (TSDR)

	Topology Processing Framework

	Unified Secure Channel (USC)

	Virtual Tenant Network (VTN)

	YANG PUBSUB

BGP PCEP

	20f0ea [https://git.opendaylight.org/gerrit/#/q/20f0ead22adb474614a5efc83555db5627a0c27e] BUG-7222 [https://bugs.opendaylight.org/show_bug.cgi?id=7222]: Fix clustering BGPPeer NPE

	2bbe79 [https://git.opendaylight.org/gerrit/#/q/2bbe797ade7139a2552184ff77fb74a37d00c372] Pcepy: Address pep8 violations

	537319 [https://git.opendaylight.org/gerrit/#/q/537319c9fd4c82146579706f32464dc05fa34a6f] BUG-7003 [https://bugs.opendaylight.org/show_bug.cgi?id=7003]: Remove Thread.sleep() calls in tests

	0ab7e5 [https://git.opendaylight.org/gerrit/#/q/0ab7e50af15c4969dc3940b7d871d97b146f104f] BUG-7006 [https://bugs.opendaylight.org/show_bug.cgi?id=7006]: Unit-tests sometimes hangs during execution

	e931d3 [https://git.opendaylight.org/gerrit/#/q/e931d35ddbabb3d4832e5f4c5278f5ea69eb96ab] BUG-7003 [https://bugs.opendaylight.org/show_bug.cgi?id=7003]: Introduce CheckUtil

	0cbce4 [https://git.opendaylight.org/gerrit/#/q/0cbce45c997cc85d05c66e355730da65a4ee36b7] BUG-7098 [https://bugs.opendaylight.org/show_bug.cgi?id=7098]: Fix Sonar complains

Controller

	d6e8fd [https://git.opendaylight.org/gerrit/#/q/d6e8fdcdbab2f72bd60c3f4f9c150af64748c28d] BUG-6003 [https://bugs.opendaylight.org/show_bug.cgi?id=6003]: Create config-filtering-parent

DLUX

	834781 [https://git.opendaylight.org/gerrit/#/q/8347818ffbdec42ba9eb1dd7f536947a39e8eb5d] YangUI - quickfix operational list form Yangman - fix mountpoint disconnect Yangman - fix loading Yin schemas for mountpoints

	335429 [https://git.opendaylight.org/gerrit/#/q/3354297bcaa1c6c559d5360b896557bae98864e6] Yangman - requests settings

	0b8364 [https://git.opendaylight.org/gerrit/#/q/0b83643488b7b7d9cc32931505cd55084eb0f58c] Logout button added

	be6883 [https://git.opendaylight.org/gerrit/#/q/be688333c146067c51a571080d5184e7e466a07e] Yangman - make elements accessible via ids - part3

	d49783 [https://git.opendaylight.org/gerrit/#/q/d49783382c1b3761afa521a4b843cea09f38f431] Yangman - make elements accessible via ids - part2

	59e637 [https://git.opendaylight.org/gerrit/#/q/59e637e6597167951161a5b6ee6c424257aa7302] Yangman - make elements accessible via ids - part1

	a06cbb [https://git.opendaylight.org/gerrit/#/q/a06cbb21c47c8d5df63abeb3aea4362f79ca5ce7] Yangman - view switched to json when request is run from history

	4666bf [https://git.opendaylight.org/gerrit/#/q/4666bfa3f1aaa1962290764dadcbc333e0ab6ac6] Yangman - hide show previous item icon if there are no data

	7fceb3 [https://git.opendaylight.org/gerrit/#/q/7fceb3d2730d400b0b991bda4eebfea1b89e4393] Remove version tags from modules pom.xml

	6c1e09 [https://git.opendaylight.org/gerrit/#/q/6c1e0964269d702fb1afb103eb5408df8dfff449] Yangman - delayed progress bar is displayed

	268a48 [https://git.opendaylight.org/gerrit/#/q/268a484ddde619f9a5dc0ef4a5562883f519d9af] Yangman - zero out Status and Time-update

	70fd6d [https://git.opendaylight.org/gerrit/#/q/70fd6d9b2d084b1f8a5d57dd034ab3767f004752] Yangman - Show all items box showed for a moment-update

	9b42a6 [https://git.opendaylight.org/gerrit/#/q/9b42a63b03b8931b3d8b8a1f02f7e37b6f14e8ba] Yangman - Rpc output list is appending elements instead of replacing

	0b06e2 [https://git.opendaylight.org/gerrit/#/q/0b06e2310a1c9fa80f78f1575b3a675563d63d3a] Nodes app doesn’t display nodes at all

Genius

	5d42fc [https://git.opendaylight.org/gerrit/#/q/5d42fcbe32d510d1cae49176be36beb220934e3b] Enhancing DataStoreJobCoordinaor logs

	ad7d96 [https://git.opendaylight.org/gerrit/#/q/ad7d96bd3819c44ab3c5ccff7da5b8a176438a27] Add utility apis

	882092 [https://git.opendaylight.org/gerrit/#/q/88209264d3eef2ebab68d73c86635a4cfd18abca] Introduce DataStoreJobCoordinator counters

	91e5fa [https://git.opendaylight.org/gerrit/#/q/91e5fabc3d34d29ff4ec3d100f6224c0a7a8965d] Cleanup unwanted exceptions in interfacemanager

	ba5a09 [https://git.opendaylight.org/gerrit/#/q/ba5a09a682ef8b2c4b82966092df12744160ccf2] BUG-7220 [https://bugs.opendaylight.org/show_bug.cgi?id=7220] :port updates are not getting reflected in Table 220

	80c847 [https://git.opendaylight.org/gerrit/#/q/80c847b75b73622b88c24e319100928adf67483f] New match Reg4 type and temporary SMAC table definitions

	adde04 [https://git.opendaylight.org/gerrit/#/q/adde04b06f5d37504c97332ff41ffcfa7a1c195f] BUG-7220 [https://bugs.opendaylight.org/show_bug.cgi?id=7220] - OVS egress table (220) contains stale rules that send the packet to the wrong port

	ac8710 [https://git.opendaylight.org/gerrit/#/q/ac87105051c6679f857d3f5db3b861c1b6277bc2] Fcaps: changing alarm text parameter to be same while raising and clearing

	c46818 [https://git.opendaylight.org/gerrit/#/q/c46818a79841a194b5cb328a9c13de877a818989] Gateway mac table should have unique MAC address for vhu hosts other than 00:00:00:00:00:00

	f6bd5b [https://git.opendaylight.org/gerrit/#/q/f6bd5b94498de4c454fac475e988310176924900] BUG-6952 [https://bugs.opendaylight.org/show_bug.cgi?id=6952]: DPN can’t be added in multiple TZ

	f3fccb [https://git.opendaylight.org/gerrit/#/q/f3fccb18d2acd1abbf56a262bd4796f8e5374547] BUG-6791 [https://bugs.opendaylight.org/show_bug.cgi?id=6791] adding async clustered listeners for hwvtep

	4560ed [https://git.opendaylight.org/gerrit/#/q/4560ed2610a806c0745669f4f35620aa0b6800c3] BUG-7230 [https://bugs.opendaylight.org/show_bug.cgi?id=7230]: tun_id from vxlan tunnel is incorrectly stored into gre key

	4d10ae [https://git.opendaylight.org/gerrit/#/q/4d10ae3650a0d4192d6c86e5d7d2c6efc4579cb1] Upstreaming BFD monitoring fixes

	b05d26 [https://git.opendaylight.org/gerrit/#/q/b05d260aa0e7403d38e94c121f7e8ab56ce23646] Addition of constants for ARP Responder

	5871b9 [https://git.opendaylight.org/gerrit/#/q/5871b96b2639212a882f70bf0e6d01729ec1cde3] BUG-7205 [https://bugs.opendaylight.org/show_bug.cgi?id=7205] l2gw itm mesh is not getting built

	ec7d05 [https://git.opendaylight.org/gerrit/#/q/ec7d05fc1329590a1ecfea0642cba8e59485dfe1] Bug Fix: 7203 Wrong handling of binding service to a tunnel

	21791d [https://git.opendaylight.org/gerrit/#/q/21791ddc886d8562a1edae06212ead2ba1f78042] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	90983b [https://git.opendaylight.org/gerrit/#/q/90983b551a530bf2f595b4d77a90dc1951c4cab8] BUG-7178 [https://bugs.opendaylight.org/show_bug.cgi?id=7178]: DataStoreCoordinator code and related classes missing

	4a5654 [https://git.opendaylight.org/gerrit/#/q/4a5654baeefd133cff350cfc372ac0e51b1807ce] move interface utilities from ElanUtils, undeprecate Genius IIM

	990095 [https://git.opendaylight.org/gerrit/#/q/9900956745f0be5471bf05e4fe1f2c528546fe5e] Add egress split horizon drop flows for external interfaces

	fa6b37 [https://git.opendaylight.org/gerrit/#/q/fa6b3793707eb5c1d40d7ab55a22ab90c6dec870] Cleanup: use plain String concatenation

	fcf814 [https://git.opendaylight.org/gerrit/#/q/fcf8144c4c8598b875e2fc4584d83687107031e7] Cleanup: various performance issues

	d6c81e [https://git.opendaylight.org/gerrit/#/q/d6c81e17e07951c8cd0a1132164aace326f92b47] Cleanup: remove unnecessary type casts

	9870ee [https://git.opendaylight.org/gerrit/#/q/9870eefcf2f2cd0b93b06ade1f589b485acceee0] Cleanup: remove redundant type declarations

	0b7dce [https://git.opendaylight.org/gerrit/#/q/0b7dcefb0cba788c948a37a27c125a801b3ed798] Cleanup: remove redundant modifiers

	947ce3 [https://git.opendaylight.org/gerrit/#/q/947ce390a92f82bd0bfc0b92b763e3c52149c233] BUG-6726 [https://bugs.opendaylight.org/show_bug.cgi?id=6726] : Loss of traffic during ODL Cluster reboot

	dc01a8 [https://git.opendaylight.org/gerrit/#/q/dc01a815a6f5570a0555442577bfa586ba2b5f7b] BUG-6836 [https://bugs.opendaylight.org/show_bug.cgi?id=6836] - No access to external network

	73b09a [https://git.opendaylight.org/gerrit/#/q/73b09a29728e471bd9136d883b798f73fc70bf7e] BUG-6836 [https://bugs.opendaylight.org/show_bug.cgi?id=6836] - No access to external network

	792862 [https://git.opendaylight.org/gerrit/#/q/79286209bcfc5f1791df63b794e6449fe9989294] Add info to log message with ARP response details on transmit

	c4b0a1 [https://git.opendaylight.org/gerrit/#/q/c4b0a16109c4d1e6d30627e1a84cc94ee5815e24] Fix for merge build breakage

	bbb993 [https://git.opendaylight.org/gerrit/#/q/bbb9934a259e792a778c541e8da95c0850af354f] BUG-6626 [https://bugs.opendaylight.org/show_bug.cgi?id=6626] Packet IN handler thread in deadlock after high ARP rate

	db93f4 [https://git.opendaylight.org/gerrit/#/q/db93f4151fcc8dc3190d9954c2dccf5181a159ee] Added postman collections for id-manager

	b3697e [https://git.opendaylight.org/gerrit/#/q/b3697ef68125bf61a83616e7c73f1879005f19c3] Adding resourcemanager postman collection

	ad917b [https://git.opendaylight.org/gerrit/#/q/ad917b8832107f0a2272361422b6c57729ea1498] target-ide/ on .gitignore

	716657 [https://git.opendaylight.org/gerrit/#/q/716657ace6e94703fcb055ea5d564efa9cf98b4d] BUG-7048 [https://bugs.opendaylight.org/show_bug.cgi?id=7048] - Update to OF port does not change 220 flow

	f011dc [https://git.opendaylight.org/gerrit/#/q/f011dc40a18a7a007aa0382a008b4949ea3fe725] Fix for fcaps application module config push error

Group Based Policy (GBP)

	af0d40 [https://git.opendaylight.org/gerrit/#/q/af0d4015a02a26084b3c190574b90ac0ccfd2c31] BUG-6898 [https://bugs.opendaylight.org/show_bug.cgi?id=6898] - fixed too slow build in GBPSFC demo

	47c806 [https://git.opendaylight.org/gerrit/#/q/47c8061f2e0e53a0b4db4fa789ec42bbf18bbf70] Wire ip-sgt-distribution-service - renderer part

	ddb351 [https://git.opendaylight.org/gerrit/#/q/ddb35108bc484b15a29ae74179aa533cb1020144] Wire ip-sgt-distribution-service - service part

	e04b67 [https://git.opendaylight.org/gerrit/#/q/e04b67e50991946be1dba7b7ff12bc5f0ec325ff] ip-sgt-distribution-service

	3bb3a7 [https://git.opendaylight.org/gerrit/#/q/3bb3a7f665cb6dab9e3ec582b03ea2f9651d85d6] Fix collision between VBD UI and GBP UI

	253e7b [https://git.opendaylight.org/gerrit/#/q/253e7bdce4b5758d418264a1b4eb87abd1abd82d] BUG-7241 [https://bugs.opendaylight.org/show_bug.cgi?id=7241]: Fix logging for VPP node

	5ebf40 [https://git.opendaylight.org/gerrit/#/q/5ebf40be12e2412b45ed40b1f29f5502aca4161c] BUG-7174 [https://bugs.opendaylight.org/show_bug.cgi?id=7174]: stop propagating mandatory/min-elements in configuration nodes

	f652ad [https://git.opendaylight.org/gerrit/#/q/f652adc76d00517846466ada5bc469153240127c] Stop manadatory flag propagation in range-value/*

Honeycomb Virtual Bridge Domain

	010d7c [https://git.opendaylight.org/gerrit/#/q/010d7cce2d170c2004285319fb71066c6bbb82bc] GUI - fixed various REST calls

LISP Flow Mapping

	0b94ac [https://git.opendaylight.org/gerrit/#/q/0b94aca4ea1d19ee48398a9abf5f4f8c0c89f6e0] Fix radix trie lookup exact

	8fa29b [https://git.opendaylight.org/gerrit/#/q/8fa29b064deec032dc70e34a4f95096b89eff910] BUG-7272 [https://bugs.opendaylight.org/show_bug.cgi?id=7272]: Fix prefix removal in MultiTableMapCache

	a6d25c [https://git.opendaylight.org/gerrit/#/q/a6d25ce6fb09570db2845ed3b06da69401b34ca3] BUG-7293 [https://bugs.opendaylight.org/show_bug.cgi?id=7293]: Fix radix trie removals that update the root (2)

	0429b7 [https://git.opendaylight.org/gerrit/#/q/0429b736bd285a619b745572ce1ba18bd7544beb] BUG-7293 [https://bugs.opendaylight.org/show_bug.cgi?id=7293]: Fix radix trie node removals that update the root

	ad596c [https://git.opendaylight.org/gerrit/#/q/ad596ce58f2cf3328fc8fb606a6934a828a4c6f8] BUG-7018 [https://bugs.opendaylight.org/show_bug.cgi?id=7018]: Fix NPE when SMR and no locators

MD-SAL

	1b56fa [https://git.opendaylight.org/gerrit/#/q/1b56fa17938e8afc2a306ce7b61ce15515802e13] BUG-6163 [https://bugs.opendaylight.org/show_bug.cgi?id=6163]: fixed number of argument when resolving rpc input

	ecbf2b [https://git.opendaylight.org/gerrit/#/q/ecbf2bf2d0398d008f8eeb9c7200e72f450a120a] BUG-6135 [https://bugs.opendaylight.org/show_bug.cgi?id=6135]: Java binding v1: IAE from provideTypeForLeafref

	62a591 [https://git.opendaylight.org/gerrit/#/q/62a591d105563555955efeeddb4f16af38529d57] BUG-6710 [https://bugs.opendaylight.org/show_bug.cgi?id=6710] - Close ClusterSingletonServiceRegistration fix

	8216db [https://git.opendaylight.org/gerrit/#/q/8216dbb9b22b70155a583e7d5444c0f6da78b0a1] BUG-7013 [https://bugs.opendaylight.org/show_bug.cgi?id=7013]: do not rely on default character encoding

	3abb16 [https://git.opendaylight.org/gerrit/#/q/3abb1680f36ece1f05e6bca3f326a9430ae1405b] BUG-7064 [https://bugs.opendaylight.org/show_bug.cgi?id=7064]: yang-to-source error on description

NETCONF

	f5d851 [https://git.opendaylight.org/gerrit/#/q/f5d85147d570a735e222e36673b98896a8ccc9ec] BUG-6911 [https://bugs.opendaylight.org/show_bug.cgi?id=6911] - RPC support in singleton

	10de38 [https://git.opendaylight.org/gerrit/#/q/10de3839b43f052c8879d191052f6018c354cd14] Add mdsal-singleton-common-api to singleton pom

	8f4b6f [https://git.opendaylight.org/gerrit/#/q/8f4b6f2c815e88e490510e931a5e00dca3cb18e9] Remove old clustered netconf topology implementation

	84ff02 [https://git.opendaylight.org/gerrit/#/q/84ff029f8dd16a86a83c573045d7f22d47b5657b] BUG-7172 [https://bugs.opendaylight.org/show_bug.cgi?id=7172] - Correct error-info for missing-attribute errors

	90c9b6 [https://git.opendaylight.org/gerrit/#/q/90c9b68c357411e079f8703db9f9ea5654b791fa] BUG-7240 [https://bugs.opendaylight.org/show_bug.cgi?id=7240] - Restconf returns Status.Ok if delete fails

	655930 [https://git.opendaylight.org/gerrit/#/q/655930e448934c1187a669f0186c16a64ba6806b] BUG-6324 [https://bugs.opendaylight.org/show_bug.cgi?id=6324] - Notifications stream output is not same as restconf data

	d2591f [https://git.opendaylight.org/gerrit/#/q/d2591fc3f2fb81a1013b13a9c9dc89a3ea4af716] Set mdsal version to Boron-SR2 version

	ba253b [https://git.opendaylight.org/gerrit/#/q/ba253bbefed3bf18a37f6c04fa989237574f0956] Add logging in tx facade along with the RemoteDeviceId

	9651a9 [https://git.opendaylight.org/gerrit/#/q/9651a9c795e8a5714505e6f7123a81106bba3855] Move SubmitFailedReply in the appropriate package

	43302f [https://git.opendaylight.org/gerrit/#/q/43302f3e798920ea37a6caf6b5b3bfdb5aab28a0] Use SerializationUtils to (de)serialize NormalizedNode and YangInstanceIdentifier

Network Intent Composition (NIC)

	b02d45 [https://git.opendaylight.org/gerrit/#/q/b02d45ba6642f92f7942999e89e34c3b872be424] Fix FlowBuilder issue

	2206ff [https://git.opendaylight.org/gerrit/#/q/2206ff3f4ee910ce2cd956115238b8e58951814f] Fix issue related to ‘Flows aren’t pushed to switches’

	ead10c [https://git.opendaylight.org/gerrit/#/q/ead10c2b6a45864789684620ba782ab0a55ee54e] Removed ‘min-element’ restriction in Intent

Network Virtualization

	1d12f3 [https://git.opendaylight.org/gerrit/#/q/1d12f362da4790bd5fd72544ff553ce690133a9c] BUG-7368 [https://bugs.opendaylight.org/show_bug.cgi?id=7368]: VPN Engine unable to process external interfaces

	54d7e3 [https://git.opendaylight.org/gerrit/#/q/54d7e39652ac80016174b2955e96c22a550c8117] BUG-7343 [https://bugs.opendaylight.org/show_bug.cgi?id=7343] - NETVIRT Boron Autorelease Breaking

	6a2d10 [https://git.opendaylight.org/gerrit/#/q/6a2d10457a78970e7e2dfa6ff3b2e64f26ca5ed9] Cleanup ArpNotificationHandler code

	5e4b78 [https://git.opendaylight.org/gerrit/#/q/5e4b784ceee1bedb68da637929111a6b7d1171d3] BUG-7077 [https://bugs.opendaylight.org/show_bug.cgi?id=7077] - NAPT inbound rules never Expire

	c6f457 [https://git.opendaylight.org/gerrit/#/q/c6f457c85eee849f60f932d343f651a79496af1e] BUG-7333 [https://bugs.opendaylight.org/show_bug.cgi?id=7333]: Fix for Arp flows were not deleted for DHCP port in Control node.

	c7638e [https://git.opendaylight.org/gerrit/#/q/c7638ef799cc06080eb1ca901658b21a6fcdd7f6] BUG-7319 [https://bugs.opendaylight.org/show_bug.cgi?id=7319]: thread.sleep in group installation

	72d9a5 [https://git.opendaylight.org/gerrit/#/q/72d9a53338cca3032384cee62aabb4e88c13b18b] BUG-7305 [https://bugs.opendaylight.org/show_bug.cgi?id=7305]: DHCP fails for Dual stack ports

	6b8760 [https://git.opendaylight.org/gerrit/#/q/6b8760b2a1f936e95f7501d083be0b60e144c906] BUG-7312 [https://bugs.opendaylight.org/show_bug.cgi?id=7312]: modify param reference of AclNodeListener

	5dfd60 [https://git.opendaylight.org/gerrit/#/q/5dfd602fe8080b01e8224297d9eba7d117baf375] Netvirt IT: Assert return value of ping in Netvirt IT tests

	48a428 [https://git.opendaylight.org/gerrit/#/q/48a4289e3890d19f05f231d9bf73d4b7351e7bed] Fixed BGP AS number field size

	d6a948 [https://git.opendaylight.org/gerrit/#/q/d6a948dff758db1a77777bd8dfe89b85f0dc09f3] BUG-7331 [https://bugs.opendaylight.org/show_bug.cgi?id=7331]: CLI command to create VPNs allows creation of two VPNs with the same RD

	ac846f [https://git.opendaylight.org/gerrit/#/q/ac846fe3b6d60e81944710416e0080994972b7c7] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] Adding retry mechanism to listener

	b6cca3 [https://git.opendaylight.org/gerrit/#/q/b6cca36b7a27837442ce38258aa4eb75d5c9fd30] BUG-7264 [https://bugs.opendaylight.org/show_bug.cgi?id=7264] Fix missing flows for Remote SG rule Problem: Missing SG remote flows to the first VM associated with the SG. The sample reproduction scenario as below: 1. create empty SG1 2. create VM1 with the SG1 3. add custom TCP rule to SG1 with remote group id as SG1 4. create VM2 with the SG1 There is flow for TCP rule added for VM1 to VM2 but the flow from VM2 to VM1 is missing

	4ed9a5 [https://git.opendaylight.org/gerrit/#/q/4ed9a51ae645c688eb7bedc858a55e620b07a76b] BUG-7324 [https://bugs.opendaylight.org/show_bug.cgi?id=7324]: Stale FIB Entries are not getting Removed

	1768e8 [https://git.opendaylight.org/gerrit/#/q/1768e8fce374621d23bb8ae1546f71116d66ef87] 7280 - ARP Responder fix for Floating Ips (extension of BUG-6726 [https://bugs.opendaylight.org/show_bug.cgi?id=6726])

	2f454b [https://git.opendaylight.org/gerrit/#/q/2f454b1ea4eb73d4334eb3e881bf074ade7da1af] BUG-7236 [https://bugs.opendaylight.org/show_bug.cgi?id=7236]: handle high rate of src mac learning packet-ins

	b50fe0 [https://git.opendaylight.org/gerrit/#/q/b50fe0a546a2690f92633ac70b7623de1bd2f5b5] BUG-7081 [https://bugs.opendaylight.org/show_bug.cgi?id=7081] - NAPT is not functional

	2d0fdb [https://git.opendaylight.org/gerrit/#/q/2d0fdb7bed074d369aeaaa2703ada3a9bc9409e1] BUG-7081 [https://bugs.opendaylight.org/show_bug.cgi?id=7081] - NAPT is not functional

	53d48f [https://git.opendaylight.org/gerrit/#/q/53d48f4a845d29f3162064fa467a77089cb0e783] BUG-7253 [https://bugs.opendaylight.org/show_bug.cgi?id=7253]: Added learn support for other protocols rule (protocol Number)

	ea6d27 [https://git.opendaylight.org/gerrit/#/q/ea6d27ab8d2b8217e5ef2f0524fc0582ab3ae6c6] BUG-7128 [https://bugs.opendaylight.org/show_bug.cgi?id=7128]: Added learn support for other protocols rule (ANY)

	0bd8b8 [https://git.opendaylight.org/gerrit/#/q/0bd8b82f55cfbcf8c174ea22acf5d07482ad714d] BUG-7250 [https://bugs.opendaylight.org/show_bug.cgi?id=7250]: Add IPv6 integration tests

	55cf96 [https://git.opendaylight.org/gerrit/#/q/55cf965c16311585113e2fb15cd978ee64779896] BUG-6998 [https://bugs.opendaylight.org/show_bug.cgi?id=6998]: Fix for VM Instance . Ip Address Not Assigned

	846d06 [https://git.opendaylight.org/gerrit/#/q/846d067777744f9c03bbe899ebece26b0dd0fcae] BUG-7302 [https://bugs.opendaylight.org/show_bug.cgi?id=7302]: Enable Ping Responder for router interface IPs , on a BGPVPN that has this router associated.

	5f8434 [https://git.opendaylight.org/gerrit/#/q/5f84343ac5841623c8e507ae114ed8c31020dd1b] IT for provider network

	db8803 [https://git.opendaylight.org/gerrit/#/q/db8803ce17d8ee9a7975489efcdfa4da1613487a] cleanup unused dependencies for ipv6

	c8031e [https://git.opendaylight.org/gerrit/#/q/c8031e92d5d8fea1a7eeb5edf24d9746e0bdc937] cleanup unused dependencies for it

	b3a97e [https://git.opendaylight.org/gerrit/#/q/b3a97e8677f15799055ff477e07dc9e9d0d84d40] cleanup from previous cherry-picks

	ba807d [https://git.opendaylight.org/gerrit/#/q/ba807dea1312d01e630363d931ef42c1c35a2ee0] BUG-7236 [https://bugs.opendaylight.org/show_bug.cgi?id=7236]: Add temporary SMAC learning table

	fc38df [https://git.opendaylight.org/gerrit/#/q/fc38df36a44622d183571410cc470edb49cc6a08] BUG-7239 [https://bugs.opendaylight.org/show_bug.cgi?id=7239] : Multiple FIB entries for extra route get created when neutron route-update is done

	1bdc3e [https://git.opendaylight.org/gerrit/#/q/1bdc3e92b0e3bd6a164a3a83ee2605772d11bec8] BUG-7298 [https://bugs.opendaylight.org/show_bug.cgi?id=7298]: NPE in vpn manager

	209217 [https://git.opendaylight.org/gerrit/#/q/209217c2747418253b68f6daa76ea0361a155bab] BUG-7294 [https://bugs.opendaylight.org/show_bug.cgi?id=7294]: Use delete_learned flag on learn flows

	b25b7a [https://git.opendaylight.org/gerrit/#/q/b25b7a61b449c7820b4a720af66fab50ceb7cfa6] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] Logging exception

	44e845 [https://git.opendaylight.org/gerrit/#/q/44e845ec6a253545350310e7c814ce1da42c9cd4] Fcaps: changing alarm text parameter to be same while raising and clearing

	c3ee9c [https://git.opendaylight.org/gerrit/#/q/c3ee9c6b8257d21e050c3c5476f36306c46e4535] BUG-7239 [https://bugs.opendaylight.org/show_bug.cgi?id=7239] : Multiple FIB entries for extra route get created when neutron route-update is done

	c54c8a [https://git.opendaylight.org/gerrit/#/q/c54c8a7106b20f69aa3e2b02fb92d44ba058a9ef] Fix Bug #7289 Set delete_learned flag to Acl Learn flow Entries

	9d5885 [https://git.opendaylight.org/gerrit/#/q/9d5885f13f465cba1b09cd5b27224b6c7d13bcc6] BUG-7263 [https://bugs.opendaylight.org/show_bug.cgi?id=7263]: Spread InterVpnLinks among available DPNs

	c75d04 [https://git.opendaylight.org/gerrit/#/q/c75d0408a5f4395f1165e686d355d459d8971713] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	fa0d4d [https://git.opendaylight.org/gerrit/#/q/fa0d4d414d096c6a7d40c7bb63693cc389b7002f] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	773a1c [https://git.opendaylight.org/gerrit/#/q/773a1c23f96182ab0ee2034beecf8af45c2a44f6] BUG-6668 [https://bugs.opendaylight.org/show_bug.cgi?id=6668] - Security Groups (all implementations) - port_security extension and default DHCP/ICMP drop rules

	9b78ad [https://git.opendaylight.org/gerrit/#/q/9b78adca08a995089336f6b7d112d308b4b729be] BUG-6833 [https://bugs.opendaylight.org/show_bug.cgi?id=6833]: InterVpnLink FIB routes not populated when no VM on VPN

	c80380 [https://git.opendaylight.org/gerrit/#/q/c80380e18b38b49e5b608b0606348bd29b0b9520] BUG-7283 [https://bugs.opendaylight.org/show_bug.cgi?id=7283]: Fix exception in VpnInterfaceManager for IPv6 subnets

	9d0413 [https://git.opendaylight.org/gerrit/#/q/9d04133be0b05e116756d59c92753754fcb7c74d] BUG-7233 [https://bugs.opendaylight.org/show_bug.cgi?id=7233]: Multiple VLAN external network communication failed while using compute nodes.

	9c1ffe [https://git.opendaylight.org/gerrit/#/q/9c1ffed0a7416da8db21da4cb049754807d5cd4b] BUG-7247 [https://bugs.opendaylight.org/show_bug.cgi?id=7247]-The BGP configuration is getting configured as “router bgp 0”

	86e1ae [https://git.opendaylight.org/gerrit/#/q/86e1ae9ca2d4dd17ace65ba3a6d258fecbfb99a7] BUG-7233 [https://bugs.opendaylight.org/show_bug.cgi?id=7233]: Multiple VLAN external network communication failed while using compute nodes.

	f6b06c [https://git.opendaylight.org/gerrit/#/q/f6b06c37bbf5a15de8998968f47df00cf168a5be] BUG-7278 [https://bugs.opendaylight.org/show_bug.cgi?id=7278] - SC to Elan handover flows priority is wrong

	8d8505 [https://git.opendaylight.org/gerrit/#/q/8d850563ee5a41df6d9a77eb21bdc954009a9687] BUG-7170 [https://bugs.opendaylight.org/show_bug.cgi?id=7170]: ARP thread is sleeping 2s

	a078b6 [https://git.opendaylight.org/gerrit/#/q/a078b64f0282250e9d0debe41cdeabd1b88628dc] BUG-7282 [https://bugs.opendaylight.org/show_bug.cgi?id=7282] - The egress table flows(table 220) are not deleted on port delete.

	debe02 [https://git.opendaylight.org/gerrit/#/q/debe02d814030b97e2e82ebf1cb0e710273a7755] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	b0f5aa [https://git.opendaylight.org/gerrit/#/q/b0f5aa5d8499490566c87691a99af7841a5d2c9a] Add configurable timeouts for acl security groups in Legacy NetVirt. Also sync up default timeout values with those in current new NetVirt (see aclservice-config.yang)

	a95429 [https://git.opendaylight.org/gerrit/#/q/a954291872e57501bc8390dbdbfdac23d2aade16] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	07dea3 [https://git.opendaylight.org/gerrit/#/q/07dea30fd9bb36449a55058154a2fcf08015d2ad] legacy netvirt: forcibly disable port security for network port

	47558e [https://git.opendaylight.org/gerrit/#/q/47558e4df89c0d8e59d353a4cb51af8f1d57b82a] Listen on Topology Node instead of Inventory’s

	f7a9d7 [https://git.opendaylight.org/gerrit/#/q/f7a9d708260515aeb26c6784edeb2c75b361e8c3] BUG-7234 [https://bugs.opendaylight.org/show_bug.cgi?id=7234] : Placeholder for BGP minor fixes

	d2f8c9 [https://git.opendaylight.org/gerrit/#/q/d2f8c9533a22293130972edbcb9eb04db4ee2276] BUG-6786 [https://bugs.opendaylight.org/show_bug.cgi?id=6786]: L3VPN is not honoring VTEP add or delete in operational cloud

	df867d [https://git.opendaylight.org/gerrit/#/q/df867d40dd6a67fbc0e9e9f877a53aeeb7585345] BUG-6726 [https://bugs.opendaylight.org/show_bug.cgi?id=6726] : Arp Responder for Internal Subnet Gateway IPAddress

	a212e4 [https://git.opendaylight.org/gerrit/#/q/a212e4699561f952187ba968416fa3cdf1d12e4c] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	947917 [https://git.opendaylight.org/gerrit/#/q/9479174769ec3c41008ca8fd75400e7e3e958218] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] adding support for hwvtep devices ha

	54a2d9 [https://git.opendaylight.org/gerrit/#/q/54a2d9542aa9b0ff8b56b7e37e05ed65b72641d5] BUG-7096 [https://bugs.opendaylight.org/show_bug.cgi?id=7096]: After disassociation/association of Router to VPN , it takes 2minutes to update in FIB table

	ca50b0 [https://git.opendaylight.org/gerrit/#/q/ca50b0d803d85a4f1d7ddc3fe2819f8f389582a5] BUG-6786 [https://bugs.opendaylight.org/show_bug.cgi?id=6786]: L3VPN is not honoring VTEP add or delete in operational cloud

	1c8b4e [https://git.opendaylight.org/gerrit/#/q/1c8b4e7eebeee04420228d8e6ba29c57b0cc0703] Refactor the code that updates the vpn-to-dpn list

	0ee5c8 [https://git.opendaylight.org/gerrit/#/q/0ee5c86413204e8c4a0d23a4613dd589e746ecae] BUG-7192 [https://bugs.opendaylight.org/show_bug.cgi?id=7192] - Inter-VPN link routes BGP leaking not working

	320bb6 [https://git.opendaylight.org/gerrit/#/q/320bb652b80fbf2b99fbfa99a25e5b3ac91f3d21] Added default Security Group to test modes other than transparent.

	193b5d [https://git.opendaylight.org/gerrit/#/q/193b5d504cbcfdf5884686d6a8c9c72898db2d24] Apply checkstyle fixes on cloud-servicechain

	05de78 [https://git.opendaylight.org/gerrit/#/q/05de781d8bc97a441d9d65c11de8da2e4344c748] BUG-7208 [https://bugs.opendaylight.org/show_bug.cgi?id=7208]: Import-Export RT feature is not working on stable-boron

	dcf199 [https://git.opendaylight.org/gerrit/#/q/dcf199075b1624c3cee85539c95258f99bf43af4] BUG-7119 [https://bugs.opendaylight.org/show_bug.cgi?id=7119]: gw arp didn’t resolve

	0d1472 [https://git.opendaylight.org/gerrit/#/q/0d1472663b7690837c0f69f4c7f87ea4864754a6] BUG-7188 [https://bugs.opendaylight.org/show_bug.cgi?id=7188]: VpnInterface creation is delayed for 90s

	e29938 [https://git.opendaylight.org/gerrit/#/q/e299384166b2f57f6e674ca8c24d83a6ad3cf1d8] legacy netvirt: forcibly disable port security for network port

	c0db2c [https://git.opendaylight.org/gerrit/#/q/c0db2cde3b1d481752c952bbd0a30374523b0b57] Checkstyle for dhcpservice-impl

	fa7b58 [https://git.opendaylight.org/gerrit/#/q/fa7b5869759060c922a7bd24ca5ffc068778fb0d] BUG-7168 [https://bugs.opendaylight.org/show_bug.cgi?id=7168] - MAC Learning from ARP to be allowed on Ext-Interfaces

	7f250a [https://git.opendaylight.org/gerrit/#/q/7f250a4b6d275a969c3b75e9e9d84f85033cb0a3] Switch the NeutronFloatingIP listener to DTCL

	229228 [https://git.opendaylight.org/gerrit/#/q/2292285ee5b649bc8ff6c9085092ec303cadc207] Checkstyle for dhcpservice-api

	d93bc9 [https://git.opendaylight.org/gerrit/#/q/d93bc990a7b7399abbc73ca148ab8074772842eb] Fix version warning

	14894a [https://git.opendaylight.org/gerrit/#/q/14894a48f7895c9e6ac2bf85f6cfe4e89ae75b4f] BUG-6089 [https://bugs.opendaylight.org/show_bug.cgi?id=6089]:Add support for All ICMP code and type in SG using learn

	ec6f3d [https://git.opendaylight.org/gerrit/#/q/ec6f3d3d20b3af72d7539ecdd0924443acefbbe2] Add aggregator pom for commons

	7b0640 [https://git.opendaylight.org/gerrit/#/q/7b0640ddfd8f8b1cac57d0f8035825d8cb6b7f18] Make aggregator poms consistent

	9a48ee [https://git.opendaylight.org/gerrit/#/q/9a48eebd9ddcb9924798b7c49d8ee51141e79627] Implement InterVpnLink update operation

	527429 [https://git.opendaylight.org/gerrit/#/q/5274292df0b8cf164e87ced08317c46abfe90aeb] BUG-7162 [https://bugs.opendaylight.org/show_bug.cgi?id=7162] - legacy netvirt: null pointer exception

	1fc33f [https://git.opendaylight.org/gerrit/#/q/1fc33f46923412d527e8fc4d8eefbc8eefdeceed] BUG-7105 [https://bugs.opendaylight.org/show_bug.cgi?id=7105]: Fix learned matches for all TCP/UDP SG

	bf38b8 [https://git.opendaylight.org/gerrit/#/q/bf38b863db30a33770fc96316a49adf7511c3739] BUG-7075 [https://bugs.opendaylight.org/show_bug.cgi?id=7075]: AlivenessMonitor skip non-neutron ports

	8d5cb9 [https://git.opendaylight.org/gerrit/#/q/8d5cb9d7c501daf06408aa6ad78c755504636c15] BUG-7093 [https://bugs.opendaylight.org/show_bug.cgi?id=7093]

	a0ec4b [https://git.opendaylight.org/gerrit/#/q/a0ec4b42a780d5b9eb70fb92bc40ff07c7f000a3] BUG-7127 [https://bugs.opendaylight.org/show_bug.cgi?id=7127] - legacy netvirt: null pointer exception SecurityServicesImpl

	e79020 [https://git.opendaylight.org/gerrit/#/q/e79020f41eb1103353224f377ef667b3457d94a5] Support for IPv6 East-West Routing

	421acd [https://git.opendaylight.org/gerrit/#/q/421acdbaf8bc5e38629f6102d4221331f1ee02bc] BUG-7126 [https://bugs.opendaylight.org/show_bug.cgi?id=7126] - legacy netvirt: null pointer exception NeutronSubnetInterface.fromMd

	cb4087 [https://git.opendaylight.org/gerrit/#/q/cb4087fdf44a357ae72f773ed8eee1df59614888] BUG-7016 [https://bugs.opendaylight.org/show_bug.cgi?id=7016] flows fix the bug that flows is not corrrect after the reconnection of ovs

	a24a12 [https://git.opendaylight.org/gerrit/#/q/a24a129e68a615cdf685ae3f32b97e72696fea9c] BUG-7157 [https://bugs.opendaylight.org/show_bug.cgi?id=7157]: Modify inter-VPN link model to enable route leaking

	1c3ef2 [https://git.opendaylight.org/gerrit/#/q/1c3ef2ff29c2a7bad219b42a059710eae5cb1af5] BUG-7125 [https://bugs.opendaylight.org/show_bug.cgi?id=7125] - legacy: ConcurrentModificationException

	0bc43c [https://git.opendaylight.org/gerrit/#/q/0bc43c898e30ef0d711fd4e351d29f26ac819970] BUG-7147 [https://bugs.opendaylight.org/show_bug.cgi?id=7147]: VpnInterfaces not removed when InterVpnLink is removed

	f15d95 [https://git.opendaylight.org/gerrit/#/q/f15d952ff0d4ae8e1d5aec6194a3c26e1d7b1bc8] BUG-7124 [https://bugs.opendaylight.org/show_bug.cgi?id=7124] - legacy netvirt: null pointer exception in SouthboundHandler

	6270ac [https://git.opendaylight.org/gerrit/#/q/6270ac6f6393f3e343f5d265e9a1c15770151751] BUG-6786 [https://bugs.opendaylight.org/show_bug.cgi?id=6786]: L3VPN is not honoring VTEP add or delete in operational cloud

	f4663f [https://git.opendaylight.org/gerrit/#/q/f4663fd19b9a951216d31f6144dfd864a061fffa] BUG-6822 [https://bugs.opendaylight.org/show_bug.cgi?id=6822]: IVpnLink Static routes not removed on cascade

	903ea2 [https://git.opendaylight.org/gerrit/#/q/903ea2ac3382a4c8ef98ef86ea89e87aaf93b5b1] BUG-6853 [https://bugs.opendaylight.org/show_bug.cgi?id=6853] : Directly removing floatingip doesn’t rmv mac entries from T19

	5ecc07 [https://git.opendaylight.org/gerrit/#/q/5ecc07e18824b2c424a02c7898843ccf67f57b07] BUG-6777 [https://bugs.opendaylight.org/show_bug.cgi?id=6777] - FIB entries for RNH routed to VxLAN tunnel for flat/VLAN provider networks

	ebb9ed [https://git.opendaylight.org/gerrit/#/q/ebb9ed4abc6a033eaf517d5629537ce585af5c32] BUG-7116 [https://bugs.opendaylight.org/show_bug.cgi?id=7116]: Change in TunnelInterfaceStateListener.java

	5eb3b8 [https://git.opendaylight.org/gerrit/#/q/5eb3b8e365b51994ed3e150ca6b11fa307ab5afa] BUG-6934 [https://bugs.opendaylight.org/show_bug.cgi?id=6934]: VpnPseudoPort flows not moved to a new DPN (II)

	304089 [https://git.opendaylight.org/gerrit/#/q/304089d4bb61386a12ca192476468341f524d0da] BUG-6904 [https://bugs.opendaylight.org/show_bug.cgi?id=6904] : ELANInstance read causing NPE on cluster reboot while sending notifs.

	13cdf6 [https://git.opendaylight.org/gerrit/#/q/13cdf63bd044bfffac97376c52acab6e361990f4] Fixed UT failure in AclServiceTest

	c3c46c [https://git.opendaylight.org/gerrit/#/q/c3c46c3c889006d6abb44069130d8a139adb2188] BUG-7020 [https://bugs.opendaylight.org/show_bug.cgi?id=7020]: Deletion issue when VM has multiple SGs with same rules

	ea39a9 [https://git.opendaylight.org/gerrit/#/q/ea39a94132477ad8c798f21fdb3b21e51f5a5116] BUG-7106 [https://bugs.opendaylight.org/show_bug.cgi?id=7106]: Handles static routes at InterVpnLink creation

	a6ad9e [https://git.opendaylight.org/gerrit/#/q/a6ad9ecdbf2d4f5a11720d4cfc1f50f3174f4373] BUG-7086 [https://bugs.opendaylight.org/show_bug.cgi?id=7086]: ELAN broadcast group for VLAN network

	3f04b6 [https://git.opendaylight.org/gerrit/#/q/3f04b6ec9165f8e9fea0e549cdc0ab212cd54b47] BUG-7107 [https://bugs.opendaylight.org/show_bug.cgi?id=7107]: RouteOrigin updated to support Local routes

	cede4c [https://git.opendaylight.org/gerrit/#/q/cede4c173af4e4b9c313f964836793704e5b7520] BUG-7101 [https://bugs.opendaylight.org/show_bug.cgi?id=7101]: Restrict ARP to only learn non-neutron IPs

	c25143 [https://git.opendaylight.org/gerrit/#/q/c25143816a4889cbfb390ce7a0ead609889e9a77] BUG-7120 [https://bugs.opendaylight.org/show_bug.cgi?id=7120] : NAT Support For GRE TEP add/del is missing

	14a21b [https://git.opendaylight.org/gerrit/#/q/14a21b9c8e1fe5df0e9271ebc370744c41827eb3] Fixes BUG-7076 [https://bugs.opendaylight.org/show_bug.cgi?id=7076] SSH between vm in different network on same compute is blocked even with an allow rule.

	5a39d5 [https://git.opendaylight.org/gerrit/#/q/5a39d50bf3fcd04d7a6cf0539521ba3c71352a98] Fix one of the Netvirt IT test cases failure.

	ea3930 [https://git.opendaylight.org/gerrit/#/q/ea39306a8961a0cb3a76f1f11ba18a4d461898d0] Listens to Network-topology nodes instead of inventory ones

	13938b [https://git.opendaylight.org/gerrit/#/q/13938b34c6482c478beeb7237d3040bb70920e06] BUG-7034 [https://bugs.opendaylight.org/show_bug.cgi?id=7034] : Replace all write_actions by apply_actions.

	deb9d2 [https://git.opendaylight.org/gerrit/#/q/deb9d2eba8250a6c30fe3cf816d35d24fe77ad08] small fixes related to BUG-7031 [https://bugs.opendaylight.org/show_bug.cgi?id=7031]

	38b5e7 [https://git.opendaylight.org/gerrit/#/q/38b5e7d0a0a921d7041906020ab9d7d68d96caa0] BUG-7091 [https://bugs.opendaylight.org/show_bug.cgi?id=7091] : When Primary NAPT switch goes down, NAPT switch re-election is not happening.

	c2648d [https://git.opendaylight.org/gerrit/#/q/c2648d5c94e8148e8b1be333ec8a4fcfc7343596] BUG-7074 [https://bugs.opendaylight.org/show_bug.cgi?id=7074] Fix wrong validation check in dynamic tunnel creation logic

	11b2f8 [https://git.opendaylight.org/gerrit/#/q/11b2f8a134da66f19aeaef0d276f70fc25228453] BUG-7055 [https://bugs.opendaylight.org/show_bug.cgi?id=7055]: Interface removals donot keep Op DS and Cfg DS consistent.

	ccdff1 [https://git.opendaylight.org/gerrit/#/q/ccdff11848587db64b6ae27ec4c80f28f8482f9e] BUG-7084 [https://bugs.opendaylight.org/show_bug.cgi?id=7084]: Fix for IP is not assigned in single OpenStack node while creating more than one VM at a time.

	8f0fab [https://git.opendaylight.org/gerrit/#/q/8f0fabb08def29f6568ea74a6828491221be0e1c] BUG-6940 [https://bugs.opendaylight.org/show_bug.cgi?id=6940] - Avoid TZ subnet per neutron subnet

	731423 [https://git.opendaylight.org/gerrit/#/q/7314238d55895dfd46287f5212ee78d13ca20478] BUG-7045 [https://bugs.opendaylight.org/show_bug.cgi?id=7045]: ACL: Default flows are not programmed in Cluster environment

	ee8c12 [https://git.opendaylight.org/gerrit/#/q/ee8c126ea990de82a2c6b09e99e3d368a74eaaaa] Fix for ACL UT failure

	df93c2 [https://git.opendaylight.org/gerrit/#/q/df93c2e2e81a3020f0ebd1fe8429af9d426c0f62] BUG-6992 [https://bugs.opendaylight.org/show_bug.cgi?id=6992] - legacy: ignore IPv6 router interface

	c23e4f [https://git.opendaylight.org/gerrit/#/q/c23e4f7b82daa7ba910b9d2607ca1c6e510eab7e] Disable SG IT test until learn test is included

	eb6f82 [https://git.opendaylight.org/gerrit/#/q/eb6f826f1d23287edf5d9061a885c882a9e3354d] Do not add br-int when manually deleted

	b2b3eb [https://git.opendaylight.org/gerrit/#/q/b2b3eb81fa047b4e6dc4413032762ff249c720fe] IT - L3 tests

	0340d3 [https://git.opendaylight.org/gerrit/#/q/0340d3b8ffc3eb1b0e0ad6263f80e1ecea9683bd] Do not log frequest NeutronHostConfig updates

Neutron Northbound

	f40027 [https://git.opendaylight.org/gerrit/#/q/f400276294c1969c926fd2579802a91f940fbb9d] NeutornLogger: print data when node is deleted

ODL Root Parent

	1b6ded [https://git.opendaylight.org/gerrit/#/q/1b6ded38b027f39585dba457ae1bac977349f660] BUG-6577 [https://bugs.opendaylight.org/show_bug.cgi?id=6577]: package fixed TrieMap

	a82ccf [https://git.opendaylight.org/gerrit/#/q/a82ccfd92155dc9140d2a7f7dcb5e319666cbca8] Blacklist the Triple DES cipher suite

OVSDB Integration

	b8c692 [https://git.opendaylight.org/gerrit/#/q/b8c6924dc62ece22071713ca78913fc8c9406ba9] Add docs for OVSDB

	2aa094 [https://git.opendaylight.org/gerrit/#/q/2aa0947fd12e91f16dc6ba11bb38f5d36d671e85] Prep for provider network IT

	d5a921 [https://git.opendaylight.org/gerrit/#/q/d5a921d09c065f6008476b596c546cc4044f2a38] Checkstyle clean-up: Remove useless “final” in interfaces

	cd1bbd [https://git.opendaylight.org/gerrit/#/q/cd1bbd3e4dd3890394449cd3d121d227d1b6bb16] BUG-7201 [https://bugs.opendaylight.org/show_bug.cgi?id=7201] skip monitoring stats tables

	d54079 [https://git.opendaylight.org/gerrit/#/q/d540796f9ca173487ba752a04bbb3ffaa9192ac0] BUG-7202 [https://bugs.opendaylight.org/show_bug.cgi?id=7202] upon node reboot hwvtep op ds is missing

	5a3245 [https://git.opendaylight.org/gerrit/#/q/5a324508b3927cbd848893bc903820dc2faa8c2b] BUG-6643 [https://bugs.opendaylight.org/show_bug.cgi?id=6643] hwvtep configuration reconcilation

	121f89 [https://git.opendaylight.org/gerrit/#/q/121f890a0f24045e418b6461d93f04873560e064] Corrected data type for “src-mac” in hwvtep.yang

OpenFlow Plugin

	5a9a2b [https://git.opendaylight.org/gerrit/#/q/5a9a2b6b99d6f6574016c9e23469de646c63160f] BUG-6820 [https://bugs.opendaylight.org/show_bug.cgi?id=6820] - Implement SalExperimenterMpMessageService

	e9deca [https://git.opendaylight.org/gerrit/#/q/e9deca32b7e455ba805adc35aa49d635b2a2537e] BUG-7209 [https://bugs.opendaylight.org/show_bug.cgi?id=7209] - Null Pointer Exception in LearnCodecUtil when add learn flow for ipv6

	a47ccf [https://git.opendaylight.org/gerrit/#/q/a47ccf345dcabb0dbd3f2b15cce79e587149c572] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]:Flow-Removed Notification configuration

	ac114e [https://git.opendaylight.org/gerrit/#/q/ac114ea16d60aff29106fdf687e2f35a33f7e0d6] lower log level when stats come before flow is written to deviceflowregistry

	6990bb [https://git.opendaylight.org/gerrit/#/q/6990bb0fe2e30c0d3985b8a53d5e13a35e01fa0a] Implement SalExperimenterMpMessageService

	4ac927 [https://git.opendaylight.org/gerrit/#/q/4ac927548dfd7f66ded8a636b518fbac3f17ec8c] Improve cleanup after device disconnected event

	fe3ece [https://git.opendaylight.org/gerrit/#/q/fe3ece2fa855e8dcefea3f1630f25864065c1932] BUG-7058 [https://bugs.opendaylight.org/show_bug.cgi?id=7058] - [Helium Plugin]Stats collection issue when controller disconnect the device

	e65e86 [https://git.opendaylight.org/gerrit/#/q/e65e86cc688f636fc5dbf75bea938bdf7609f734] BUG-6890 [https://bugs.opendaylight.org/show_bug.cgi?id=6890]: Statistics-polling configuration

	9d78c3 [https://git.opendaylight.org/gerrit/#/q/9d78c397b981b614ea31053a9660eb1065a6f285] Optimize port number lookups

	e790c2 [https://git.opendaylight.org/gerrit/#/q/e790c278d1ce0090f364dcc5fef240adddf02f46] BUG-7011 [https://bugs.opendaylight.org/show_bug.cgi?id=7011] - Race condition in statistics collection related transaction chain handling

SDN Interface Application (SDNi)

	c92ed0 [https://git.opendaylight.org/gerrit/#/q/c92ed00fc2e1c8a71c72fb86582e81103848fd97] Do not skip deployment of UI artifacts

Secure tag eXchange Protocol (SXP)

	9d4992 [https://git.opendaylight.org/gerrit/#/q/9d499262817cb9da6ebe4314ac365cf092e1367b] BUG-7121 [https://bugs.opendaylight.org/show_bug.cgi?id=7121] - SXP filtering model does not contain presence statement

	e0a7da [https://git.opendaylight.org/gerrit/#/q/e0a7da153e5967705522702e735c1ce9c9ad5ed2] BUG-6760 [https://bugs.opendaylight.org/show_bug.cgi?id=6760] - Connections in both mode need to be handled separately

	2a9beb [https://git.opendaylight.org/gerrit/#/q/2a9beb22dc3cdcbdac008c07107a72ebd5c5143c] BUG-6999 [https://bugs.opendaylight.org/show_bug.cgi?id=6999] - Node Listener closes its own datastore access

Service Function Chaining

	a6d185 [https://git.opendaylight.org/gerrit/#/q/a6d185e0f5f8e0816e8faf9d807737dade572ce6] BUG-7243 [https://bugs.opendaylight.org/show_bug.cgi?id=7243] : Modify the checkbox text color to be visible

User Network Interface Manager (UNIMGR)

	ce8ddf [https://git.opendaylight.org/gerrit/#/q/ce8ddf83165a4123e9386c61ef2e726799f5fcfa] BUG-7100 [https://bugs.opendaylight.org/show_bug.cgi?id=7100] - Fix null pointer exception

YANG Tools

	2bb7fc [https://git.opendaylight.org/gerrit/#/q/2bb7fc03c0c5f79c3a1bbc8868ad5b6f043c5b28] BUG-5968 [https://bugs.opendaylight.org/show_bug.cgi?id=5968]: Mandatory leaf enforcement does not work in some cases

	cf932e [https://git.opendaylight.org/gerrit/#/q/cf932ef18598b624e4079b1cf99c2fa7d5481fd5] Eliminate use of environment variables

	42475e [https://git.opendaylight.org/gerrit/#/q/42475e5eb7c4f57542837f1521efe221c1bb928a] Fix IT test instantiation

	f55a31 [https://git.opendaylight.org/gerrit/#/q/f55a3162fe8c64357f0d28805c0c91095afe513d] BUG-5717 [https://bugs.opendaylight.org/show_bug.cgi?id=5717]: eliminate StmtContext.substatements()

	cbe54f [https://git.opendaylight.org/gerrit/#/q/cbe54fe28185409bba130b076343791846fdde5c] BUG-6150 [https://bugs.opendaylight.org/show_bug.cgi?id=6150]: add an import statement special-case

	f10946 [https://git.opendaylight.org/gerrit/#/q/f109466c50f313fe3b7ea172a3643c1ce6a8ea84] BUG-5968 [https://bugs.opendaylight.org/show_bug.cgi?id=5968]: Mandatory leaf enforcement does not work in some cases

	ff8790 [https://git.opendaylight.org/gerrit/#/q/ff87907590ae538c938c0d395298cc7ebefceda0] Intern SchemaContext.NAME

	146a53 [https://git.opendaylight.org/gerrit/#/q/146a533809751c119a5962df201daf6a2f9d2077] BUG-6814 [https://bugs.opendaylight.org/show_bug.cgi?id=6814]: Fix (de)serialization of anyxml in JSON

	a125b1 [https://git.opendaylight.org/gerrit/#/q/a125b129dd6359ca3c08361b713c44a57135e8f8] BUG-7057 [https://bugs.opendaylight.org/show_bug.cgi?id=7057]: introduce UntrustedXML class

	655c13 [https://git.opendaylight.org/gerrit/#/q/655c13c48277155b02706b75c88554c4a05ce673] BUG-5968 [https://bugs.opendaylight.org/show_bug.cgi?id=5968]: Mandatory leaf enforcement does not work in some cases

Boron-SR3 Release Notes

This page details changes and bug fixes between the Boron Stability Release 2 (Boron-SR2) and the Boron Stability Release 3 (Boron-SR3) of OpenDaylight.

Projects with No Noteworthy Changes

The following projects had no noteworthy changes in the Boron-SR3 Release:

	Atrium Router

	Control And Provisioning of Wireless Access Points (CAPWAP)

	DLUX

	Device Identification and Driver Management (DIDM)

	Group Based Policy (GBP)

	Infrastructure Utilities

	Link Aggregation Control Protocol (LACP)

	NeXt UI Toolkit

	Network Intent Composition (NIC)

	OpenFlow Protocol Library

	Packet Cable/PCMM

	SNMP Plugin

	Secure Network Bootstrapping Infrastructure (SNBI)

	Table Type Patterns (TTP)

	Time Series Data Repository (TSDR)

	Topology Processing Framework

	YANG PUBSUB

ALTO

	2502cc [https://git.opendaylight.org/gerrit/#/q/2502cc9b78774034111ac62981b68f1ace478f24] Remove missed import of odl-mdsal-all

	75de1f [https://git.opendaylight.org/gerrit/#/q/75de1f71dbc061310604fdcf62bf9a85e40f2808] Do not pull in odl-mdsal-all

	2d452b [https://git.opendaylight.org/gerrit/#/q/2d452b83648ccbe4899febfe61bc40935be0e500] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Authentication, Authorization and Accounting (AAA)

	82b267 [https://git.opendaylight.org/gerrit/#/q/82b26750e34e118d1c3641ef412a38591597d096] BUG-7774 [https://bugs.opendaylight.org/show_bug.cgi?id=7774]: Cherry pick aaa-cert refactoring from master branch

	c6ba3c [https://git.opendaylight.org/gerrit/#/q/c6ba3c74b8f3f85ddfbb0e43e633a4ab0a8e148e] move aaa-encrypiotn service to blueprint

	1414a8 [https://git.opendaylight.org/gerrit/#/q/1414a8f95e48efbce98d204d0744b7704697171e] Remove RBAC rule implementation

BGP PCEP

	5a3311 [https://git.opendaylight.org/gerrit/#/q/5a331178e6cb001ff80983c18b178c98a71f25b8] Correct XSD pattern

	1b62e3 [https://git.opendaylight.org/gerrit/#/q/1b62e3aa22bfae955d8e60f684388ae9e766c892] Fix NPE under TopologyProviderTest test

	7b48d5 [https://git.opendaylight.org/gerrit/#/q/7b48d57ba01775ff48b1686ea8093b009df2ee3c] BUG-7964 [https://bugs.opendaylight.org/show_bug.cgi?id=7964]: IllegalStateException under testReconectClient test

	5fd9a9 [https://git.opendaylight.org/gerrit/#/q/5fd9a9408b18f19ffa344e085449a897f5d019f1] BUG-7958 [https://bugs.opendaylight.org/show_bug.cgi?id=7958]: Fix IllegalArgumentException

	2f0a98 [https://git.opendaylight.org/gerrit/#/q/2f0a98de2a2def1fca8c8911b318c45f952c7676] BUG-7003 [https://bugs.opendaylight.org/show_bug.cgi?id=7003]: Remove sleeping from Tests

	412963 [https://git.opendaylight.org/gerrit/#/q/41296399260357ea6280f5b1ebab4aeca6a78d2a] BUG-7937 [https://bugs.opendaylight.org/show_bug.cgi?id=7937]: Fix BGPTerminationReason

	45fc10 [https://git.opendaylight.org/gerrit/#/q/45fc103ec2653e3411d2f10a2cc0da3fd71cc104] BUG-7505 [https://bugs.opendaylight.org/show_bug.cgi?id=7505]: Conflict Modification

	0148d9 [https://git.opendaylight.org/gerrit/#/q/0148d933a5325bd4495c51715f8494508b02af62] BUG-7386 [https://bugs.opendaylight.org/show_bug.cgi?id=7386] Remove blocking gracefulshutdown

	259f28 [https://git.opendaylight.org/gerrit/#/q/259f2849339461f4a1e5c88b93741b3cffa9160d] BUG-7768 [https://bugs.opendaylight.org/show_bug.cgi?id=7768] Fix missing registration

	8b71ff [https://git.opendaylight.org/gerrit/#/q/8b71ffb11b3c04870b644c16e239d806cc4e5cf4] BUG-7614 [https://bugs.opendaylight.org/show_bug.cgi?id=7614]: LocRibWriter does not recover well from transaction chain failure

	d2849f [https://git.opendaylight.org/gerrit/#/q/d2849ff56cf15906a89cce26df40275213d1787c] BUG-7222 [https://bugs.opendaylight.org/show_bug.cgi?id=7222]: Make BGP DS clean up asynchronous

	5e1eb9 [https://git.opendaylight.org/gerrit/#/q/5e1eb98f43719f020e978e954474be0b03d7a43d] BUG-4808 [https://bugs.opendaylight.org/show_bug.cgi?id=4808]: remove reference to IdentityHashMap

	7a866e [https://git.opendaylight.org/gerrit/#/q/7a866eee4dec5dc368ef11c90473b3c2a256f281] BUG-7768 [https://bugs.opendaylight.org/show_bug.cgi?id=7768] Synchronize ServerSessionManager for PCEP

	ec57bc [https://git.opendaylight.org/gerrit/#/q/ec57bcaaaee06edc2288029df2a7a78442375b56] BUG-7732 [https://bugs.opendaylight.org/show_bug.cgi?id=7732]: Improve BGPDeployer synchronization

	16e0aa [https://git.opendaylight.org/gerrit/#/q/16e0aa31e782252f25860556bd3eb4fd59431789] BUG-7708 [https://bugs.opendaylight.org/show_bug.cgi?id=7708]: Invalid Route Distinguisher error while processing withdraw update containing VPN route

	7bb4e2 [https://git.opendaylight.org/gerrit/#/q/7bb4e26afe870e17e8d16d68583d0bb1035a21c6] BUG-7723 [https://bugs.opendaylight.org/show_bug.cgi?id=7723] Change BGP connection failure log level

	fdce89 [https://git.opendaylight.org/gerrit/#/q/fdce899f5b755b1f0d4f1b080759ae6715829a9a] BUG-7351 [https://bugs.opendaylight.org/show_bug.cgi?id=7351]: Update IRO reference

	dbd80d [https://git.opendaylight.org/gerrit/#/q/dbd80d32e002caef370b88fdbabfd61821f10dde] BUG-7673 [https://bugs.opendaylight.org/show_bug.cgi?id=7673]: Improve synchonization under BGP/PCEP Session

	6f6317 [https://git.opendaylight.org/gerrit/#/q/6f6317790870cc1f142711b1bdc4412d22d3c5fa] BUG-7673 [https://bugs.opendaylight.org/show_bug.cgi?id=7673]: Fix PCC Mock test failures

	dbc2f5 [https://git.opendaylight.org/gerrit/#/q/dbc2f57ac03dff97d9c0b87841a5bc456c8856ae] BUG-7215 [https://bugs.opendaylight.org/show_bug.cgi?id=7215]: Fix App Peer ModifiedNodeDoesNotExistException

Cardinal

	a54a34 [https://git.opendaylight.org/gerrit/#/q/a54a34510d7fd44126b0e956ef191b4b3b50a886] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Centinel

	492742 [https://git.opendaylight.org/gerrit/#/q/4927426675147983ccfebafc61bfbd3b33983d47] Do not pull in odl-mdsal-all

	58a4d4 [https://git.opendaylight.org/gerrit/#/q/58a4d49187e13badc884eb69feec09c4ae30e96d] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Controller

	8c9dfe [https://git.opendaylight.org/gerrit/#/q/8c9dfeed77628d346219f3e7acd8a246ea68b642] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: remove xsql from archetype

	faf24d [https://git.opendaylight.org/gerrit/#/q/faf24d4688f47ebeacd3d8e32be4979d416d1ad4] BUG-7814 [https://bugs.opendaylight.org/show_bug.cgi?id=7814]: Fix InvalidActorNameException

	cbdd5d [https://git.opendaylight.org/gerrit/#/q/cbdd5d2a5c233a00fe057bd0359cdeefdb7de4da] Fix timing issue in testChangeToVotingWithNoLeader

	adcd0c [https://git.opendaylight.org/gerrit/#/q/adcd0c4fe3ce5477a7713fa9e9b209e41f180656] BUG-6856 [https://bugs.opendaylight.org/show_bug.cgi?id=6856]: Rpc definition should implicitly define input/output

	bc9977 [https://git.opendaylight.org/gerrit/#/q/bc9977c2b59023f882910e1b03717caf62eaabb2] BUG-7746 [https://bugs.opendaylight.org/show_bug.cgi?id=7746]: Fix intermittent EOS test failure and synchronization

	be7c84 [https://git.opendaylight.org/gerrit/#/q/be7c8496b92dec6ee77e86fc166c7df45e9e5eab] Fix intermittent failure in testCloseCandidateRegistrationInQuickSuccession

	c71eca [https://git.opendaylight.org/gerrit/#/q/c71ecaf8a0d2d04c343dbfec0a9cfd5162c277f6] Usage of Collections.unmodifiableCollection is unsafe

	8dfdfb [https://git.opendaylight.org/gerrit/#/q/8dfdfb5627c0434a4d253945a8f590f9c66f4777] Add OnDemandShardState to report additional Shard state

	65f9c2 [https://git.opendaylight.org/gerrit/#/q/65f9c2ce82b354a6b3e022be309783886b5d2184] Add DOMDataTreeCommitCohort example for the cars model

	5b78f9 [https://git.opendaylight.org/gerrit/#/q/5b78f9fc29eda0f2f023c74b9f0ac4078748a174] Add more info logging in sal-akka-raft

	944822 [https://git.opendaylight.org/gerrit/#/q/94482209080ff3b75968ab86f859e783254cb13f] CDS: updateMinReplicaCount on RemoveServer

	25f26d [https://git.opendaylight.org/gerrit/#/q/25f26d7425475eab989a0a5ee591595f08335f25] BUG-7608 [https://bugs.opendaylight.org/show_bug.cgi?id=7608]: activate action-service element

	c6b367 [https://git.opendaylight.org/gerrit/#/q/c6b367ebd6c635689493af20203931e3db5bd340] BUG-7573 [https://bugs.opendaylight.org/show_bug.cgi?id=7573]: add BucketStore source monitoring

	1b1643 [https://git.opendaylight.org/gerrit/#/q/1b164355ea2d868bcc92052ce78160f5244231f2] BUG-3128 [https://bugs.opendaylight.org/show_bug.cgi?id=3128]: cache ActorSelections

	cf005e [https://git.opendaylight.org/gerrit/#/q/cf005e61579cc0848b2f76524db84aa7a65de178] BUG-3128 [https://bugs.opendaylight.org/show_bug.cgi?id=3128]: rework sal-remoterpc-connector

	9d1222 [https://git.opendaylight.org/gerrit/#/q/9d1222a1f001c9249f4a6b3dba6b067c65de5b4a] BUG-7608 [https://bugs.opendaylight.org/show_bug.cgi?id=7608]: Clarify DOMRpc routing/invocation/listener interactions

	e247eb [https://git.opendaylight.org/gerrit/#/q/e247eb2421a473c4916d6fcc3f1539707d2a2355] BUG-7697 [https://bugs.opendaylight.org/show_bug.cgi?id=7697]: add defences against nulls

	03f387 [https://git.opendaylight.org/gerrit/#/q/03f387f3997e608a3d1fc41b31334954b2ce38f2] BUG-6937 [https://bugs.opendaylight.org/show_bug.cgi?id=6937]: Add ReachableMember case to Gossiper

	600bba [https://git.opendaylight.org/gerrit/#/q/600bbae9ce3809f39dbc988cac5b7c035db0cd15] BUG-3128 [https://bugs.opendaylight.org/show_bug.cgi?id=3128]: do not open-code routed RPC identification

	285d96 [https://git.opendaylight.org/gerrit/#/q/285d96ffafe14f863f8a0094c6b99a676905fa11] Remove DOMRpcIdentifier.GLOBAL_CONTEXT

	eb7470 [https://git.opendaylight.org/gerrit/#/q/eb7470e5bf7ccbb423d4977f7bdb963c726f2905] BUG-7594 [https://bugs.opendaylight.org/show_bug.cgi?id=7594]: Expand NormalizedNodeData{Input,Output} to handle SchemaPath

	fc008d [https://git.opendaylight.org/gerrit/#/q/fc008d6c7ed466c3542d33b6ae8f996017400b36] BUG-6937 [https://bugs.opendaylight.org/show_bug.cgi?id=6937]: correct format string

	fa66b0 [https://git.opendaylight.org/gerrit/#/q/fa66b0fd9b54c732da2d06339d8dc7a52adebe77] Cleanup RemoteDOMRpcFuture

	d78711 [https://git.opendaylight.org/gerrit/#/q/d787111c6bf6743f142cea1ac564ab16373edae0] BUG-7608 [https://bugs.opendaylight.org/show_bug.cgi?id=7608]: Add ActionServiceMetadata and ActionProviderBean

	0361c9 [https://git.opendaylight.org/gerrit/#/q/0361c989786073139a4053287f7532f816515329] BUG-7506 [https://bugs.opendaylight.org/show_bug.cgi?id=7506]: use common DocumentBuilderFactory

	90fc6d [https://git.opendaylight.org/gerrit/#/q/90fc6d978ba3f608f72410971e480d5e782a52eb] BUG-7608 [https://bugs.opendaylight.org/show_bug.cgi?id=7608]: OpendaylightNamespaceHandler methods can be static

	f2a7e4 [https://git.opendaylight.org/gerrit/#/q/f2a7e4c96858871aa9eeab228c84049be5884bd4] BUG-7608 [https://bugs.opendaylight.org/show_bug.cgi?id=7608]: restructure exception throws

	01941a [https://git.opendaylight.org/gerrit/#/q/01941a54f14c92c26ec81d2f0cbb7b441cff8c81] BUG-7326 [https://bugs.opendaylight.org/show_bug.cgi?id=7326]: Fix ConcurrentModificationException in Blueprint

	4f323d [https://git.opendaylight.org/gerrit/#/q/4f323d3074caeecd415e915930b81b21af59c263] Fix FindBugs warnings in blueprint and enable enforcement

	08a954 [https://git.opendaylight.org/gerrit/#/q/08a95495724e3c3c9907b3de23f3f961039c407e] Checkstyle compliant src/main|test/resources

	98b630 [https://git.opendaylight.org/gerrit/#/q/98b63083a6709b1c69ee31471e28aef23d3ab457] Fix CS warnings in blueprint and enable enforcement

	416a6b [https://git.opendaylight.org/gerrit/#/q/416a6bcaf1bb07ece21b5d65dc9ba306627eb535] BUG-3128 [https://bugs.opendaylight.org/show_bug.cgi?id=3128]: Update RPC router concepts

	c3f368 [https://git.opendaylight.org/gerrit/#/q/c3f368fb047b919991c84eba039e1d3f54f2d446] Update dependendency desc properly in RpcServiceMetadata

	1f0eea [https://git.opendaylight.org/gerrit/#/q/1f0eeaead0e76d2198601aa3954dda47d01577e1] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: offload XSQLBluePrint creation to first access

	707da8 [https://git.opendaylight.org/gerrit/#/q/707da80f72962d05fad69998bd137569fd72116e] BUG-7469 [https://bugs.opendaylight.org/show_bug.cgi?id=7469]: Advertise CDS DOMDataTreeCommitCohortRegistry

	d3293c [https://git.opendaylight.org/gerrit/#/q/d3293cf5dce9f4379f3c7c3d90bf04dd7a02930a] BUG-7391 [https://bugs.opendaylight.org/show_bug.cgi?id=7391]: Fix out-of-order LeaderStateChange events

Controller Shield

	3824fe [https://git.opendaylight.org/gerrit/#/q/3824fe89ef11d8bb61654e6e61d93c340de926e3] Removed fixed (and ancient) version of maven-bundle-plugin

Energy Management Plugin

	9e2e52 [https://git.opendaylight.org/gerrit/#/q/9e2e52bdad42f5bca71cb23654851fb67f7878f1] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Fabric As A Service (FaaS)

	44a7cc [https://git.opendaylight.org/gerrit/#/q/44a7cc27e4c4964ac626509f950b4d64996a2c5d] fix demo scripts

Genius

	9da81f [https://git.opendaylight.org/gerrit/#/q/9da81f477df9b3d1bd69e2c9e8549afb92d4734f] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	864b9f [https://git.opendaylight.org/gerrit/#/q/864b9fed0adfd8fb7578b655ee9e4c826d6099af] BUG-8048 [https://bugs.opendaylight.org/show_bug.cgi?id=8048]: Potential fix for ID Duplication on 1-node

	8c0ebc [https://git.opendaylight.org/gerrit/#/q/8c0ebc03e70ed1492947f1864278474ee0d976e2] BUG-8048 [https://bugs.opendaylight.org/show_bug.cgi?id=8048] : Ensure unique ids are allocated

	894e9e [https://git.opendaylight.org/gerrit/#/q/894e9e070614a693396aba656d0a6fe238a57aab] BUG-8049 [https://bugs.opendaylight.org/show_bug.cgi?id=8049] runOnlyInLeaderNode() - out of order event processing

	b7c672 [https://git.opendaylight.org/gerrit/#/q/b7c67241292b48ec711bb3d73decac2f51e2ca9d] Updated TestIMdsalApiManager.java to support installFlow() with CheckedFuture return value

	757219 [https://git.opendaylight.org/gerrit/#/q/757219ff846bd2657d0207719cbae4da1ac8a523] BUG-7864 [https://bugs.opendaylight.org/show_bug.cgi?id=7864]: Specified Id key does not exist in id pool vpnservices

	88bbb1 [https://git.opendaylight.org/gerrit/#/q/88bbb1e3e9e82aab7b4d699239fb5662d7053999] Improving ITM performance in a scale setup

	c3141a [https://git.opendaylight.org/gerrit/#/q/c3141a49e252a99c7483e86f819889de8053ecc8] Handling RACE conditions in bind/unbind service

	9a49c9 [https://git.opendaylight.org/gerrit/#/q/9a49c9466721fc04465bf28f57ee3d96469e38ce] Harden BFD configuration parameters

	cc7f5e [https://git.opendaylight.org/gerrit/#/q/cc7f5ed7f515afbb1ae4c474015a5d68b6b9a477] Bind/Unbind Service should work irrespective of Port Status

	a5ee0b [https://git.opendaylight.org/gerrit/#/q/a5ee0bdb28541f9056d0ea055bbd352c38f5f844] Enhancing interface-manager logging

	33ec80 [https://git.opendaylight.org/gerrit/#/q/33ec8046492a837e1cff0f70e703b43397c43f2d] Adding job retries for DJC bind/unbind service jobs

	eb8e18 [https://git.opendaylight.org/gerrit/#/q/eb8e182b4f1fc8f73ccafdbf7d66a6e6cb97715f] BUG-7531 [https://bugs.opendaylight.org/show_bug.cgi?id=7531] : Different ids allocated for same key

	44a670 [https://git.opendaylight.org/gerrit/#/q/44a670aafeaba51ed5cbd3e89b4abc9cad0e2cdf] Tunnels in DOWN state in scaled scenario

	0e0c30 [https://git.opendaylight.org/gerrit/#/q/0e0c30e0ba6bd35ffb85d8936fac186bc9fcea38] Optimizing southbound Tunnel Events

	8c514f [https://git.opendaylight.org/gerrit/#/q/8c514fd209f094746590dacfb3f4cebb75a576b2] getInterfaceInfoFromOperationalDS Optimisation

	4664b9 [https://git.opendaylight.org/gerrit/#/q/4664b9cd5596268865a363d4d9ba48f4d2af6ad9] Fix for id duplication for different id keys

	a0939e [https://git.opendaylight.org/gerrit/#/q/a0939e17e4ae00d1aced6c6aced30678b0748c03] To fix grep not working for tep:show & tep:show-state on karaf console

	b92562 [https://git.opendaylight.org/gerrit/#/q/b9256259aaf00b975c7ef68d6b55e58c24adf8a6] Inconsistent Maven Bundle Plugin version in ITM

	ab1866 [https://git.opendaylight.org/gerrit/#/q/ab1866784c97834f6329ea4cdbb86c0d026bb575] Optimizing tunnel configuration

	446aca [https://git.opendaylight.org/gerrit/#/q/446aca1f7bffc33f882429f9234af5f4e414e1ae] Enhancing service binding logic to support more services

	9a08b3 [https://git.opendaylight.org/gerrit/#/q/9a08b3076a39ce9c3ecc5efdc5cd1f4595216126] Ignoring a Junit test case in Idmanager to unblock autorelease

	89af25 [https://git.opendaylight.org/gerrit/#/q/89af25ab90e2acd37d2700f375472b678117366b] BUG-7466 [https://bugs.opendaylight.org/show_bug.cgi?id=7466] - NPE thrown for interface without lport tag

	648c66 [https://git.opendaylight.org/gerrit/#/q/648c668ce0647c1a3f08660445552fc32f76f0a3] Fix Idmanager JUnit test case

	7b80d1 [https://git.opendaylight.org/gerrit/#/q/7b80d1cad78b521a1a673951260f96df75a60748] BUG-7494 [https://bugs.opendaylight.org/show_bug.cgi?id=7494] : Idmanager returns the same Id from the same pool for different threads with different id keys

	b42464 [https://git.opendaylight.org/gerrit/#/q/b424640608cf5fe83a1b22092e4551d222135640] Fixes for duplicate tunnels

	4c281f [https://git.opendaylight.org/gerrit/#/q/4c281fd9559a891b51f3367d7ea42dacbb2adc2e] BUG-7486 [https://bugs.opendaylight.org/show_bug.cgi?id=7486]: ITM perf and scale fixes

	c73bbe [https://git.opendaylight.org/gerrit/#/q/c73bbe6c776230b2cb89cc9174acb67fad90ff0e] Allow Nicira Extension Actions in BoundServices

	ff7b93 [https://git.opendaylight.org/gerrit/#/q/ff7b93b395cc0d5b66e3b6f9b4332506d8d3d7d6] BUG-7450 [https://bugs.opendaylight.org/show_bug.cgi?id=7450] : suppressing unnecessary warning logs

	ca237e [https://git.opendaylight.org/gerrit/#/q/ca237e431963b134fd16aa5109116d4c09454f37] Add new ActionInfo implementations for reg load/move

	85112e [https://git.opendaylight.org/gerrit/#/q/85112e50d436e1e1a6d3f3396a2b2014b2c4e1b4] Moving interface-manager CLI utils to use cached entries

	ee165f [https://git.opendaylight.org/gerrit/#/q/ee165f6a023cb8d5123aba59471b4059c10861a4] BUG-7419 [https://bugs.opendaylight.org/show_bug.cgi?id=7419] : Ids from id pool exhausted

	77a356 [https://git.opendaylight.org/gerrit/#/q/77a356693f71e924edb75850417874165d903a77] flow entries for multiple subports not getting created

	c58a30 [https://git.opendaylight.org/gerrit/#/q/c58a30f862297a74408f2fc4ea91711fce623a6a] Add isIpInSubnet utility API to NwUtil

	032d4b [https://git.opendaylight.org/gerrit/#/q/032d4b1d39be0bd4e2aca54bf4a7f978408113d0] BUG-7270 [https://bugs.opendaylight.org/show_bug.cgi?id=7270] Duplicate remote Mcast mac entry in TOR .

Honeycomb Virtual Bridge Domain

	06db2c [https://git.opendaylight.org/gerrit/#/q/06db2ce8ac4ab872327c49f257f2be2fcc66064f] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Integration/Distribution

	009615 [https://git.opendaylight.org/gerrit/#/q/00961592b1bf411ff30b0302e8e42eccf8b5631b] BUG-4296 [https://bugs.opendaylight.org/show_bug.cgi?id=4296]: Version to inherit from config-filtering-parent

Internet of Things Data Management (IoTDM)

	4b2567 [https://git.opendaylight.org/gerrit/#/q/4b2567be0540692a7f7e0514cf1999bf9b49faec] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

L2 Switch

	47082d [https://git.opendaylight.org/gerrit/#/q/47082dcc8747b6a1af9cac1790bfc0c1bc93a4d1] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	63bffe [https://git.opendaylight.org/gerrit/#/q/63bffef470ec2a7df897fd164c36ca617d69528e] BUG-5452 [https://bugs.opendaylight.org/show_bug.cgi?id=5452] - Adding comments that details the configuration.

LISP Flow Mapping

	ad58d1 [https://git.opendaylight.org/gerrit/#/q/ad58d16ebeaa6fb07b4d37433080be2f303fac20] BUG-6071 [https://bugs.opendaylight.org/show_bug.cgi?id=6071]: Fix fast path Map-Notify auth data

	5af5ce [https://git.opendaylight.org/gerrit/#/q/5af5ce473aed62cd598b218475a9d9e5032a043f] Add postman collection in FD.io tutorial

	ec27bf [https://git.opendaylight.org/gerrit/#/q/ec27bfa462c1e8ff337472d1839ef540310c89e5] WIP: Update Tutorial for FD.io and OOR

MD-SAL

	0c8723 [https://git.opendaylight.org/gerrit/#/q/0c8723bfe18073eddc0a996b18bc1b221dddf056] BUG-7759 [https://bugs.opendaylight.org/show_bug.cgi?id=7759] - TEST - Getter of BA object fails to construct class instance

	7b7b26 [https://git.opendaylight.org/gerrit/#/q/7b7b266da5becc659df7be24ebafd78ef4639d52] BindingGenerator v1 “copy-paste” bug in RPCs

	db2d6f [https://git.opendaylight.org/gerrit/#/q/db2d6f91b55a28d5da6e6b362295b1d412d8d363] BUG-7759 [https://bugs.opendaylight.org/show_bug.cgi?id=7759] - TEST - Getter of BA object fails to construct class instance

	ea12e8 [https://git.opendaylight.org/gerrit/#/q/ea12e80106a48a60c9eb61e5d19def4d493c7755] BUG-6856 [https://bugs.opendaylight.org/show_bug.cgi?id=6856]: Rpc definition should implicitly define input/output

	e54d13 [https://git.opendaylight.org/gerrit/#/q/e54d13bf867f7f7ff392b5746f028a6743717417] BUG-6856 [https://bugs.opendaylight.org/show_bug.cgi?id=6856]: Rpc definition should implicitly define input/ouput

	abb67f [https://git.opendaylight.org/gerrit/#/q/abb67fcf38fdf119522795cc8adab2c265216daf] BUG-6028 [https://bugs.opendaylight.org/show_bug.cgi?id=6028]: check value types for encapsulation

	0819d4 [https://git.opendaylight.org/gerrit/#/q/0819d4e1d990d844a7b1e09f0adcf220bcc43676] Fix generate of comma before augmentations in toString generator

	0f6902 [https://git.opendaylight.org/gerrit/#/q/0f690288f7dbd4f7fb6fdc89a3689a7b757c0bee] BUG-7222 [https://bugs.opendaylight.org/show_bug.cgi?id=7222]: Improve ClusterSingletonService error handling.

	9c244e [https://git.opendaylight.org/gerrit/#/q/9c244e2fa7e6b2762529d6273485e4068cc326ce] BUG-3147 [https://bugs.opendaylight.org/show_bug.cgi?id=3147] - Binding spec v1: auto generated code by YANGTOOLS could be more efficient

	d92aa2 [https://git.opendaylight.org/gerrit/#/q/d92aa291ec070cfaf7b680d99f015f4402dcfe60] Fix getValue() of bits in union

	3c156c [https://git.opendaylight.org/gerrit/#/q/3c156c1ca8c7bb91a2579811c6b0cbe555997a91] BUG-3147 [https://bugs.opendaylight.org/show_bug.cgi?id=3147] - Binding spec v1: auto generated code by YANGTOOLS could be more efficient

	96d661 [https://git.opendaylight.org/gerrit/#/q/96d661e192255c52c590110268ea464527b71b45] Don’t use deprecated SourceIdentifier.create() method anymore

	7b1ef1 [https://git.opendaylight.org/gerrit/#/q/7b1ef1557ab6e21cc2dc54c8696af1c9aacde296] BUG-7425 [https://bugs.opendaylight.org/show_bug.cgi?id=7425]: Recognize instance-identifier in union template

	edcae2 [https://git.opendaylight.org/gerrit/#/q/edcae2f21cb1cc11787ac8e3d1a0953c6db538cb] Fix backport damage

	9be1c8 [https://git.opendaylight.org/gerrit/#/q/9be1c8eb16a03c9189fb7a53e34a299650e32f1b] New test utility AssertDataObjects

	f8094a [https://git.opendaylight.org/gerrit/#/q/f8094ae576dda50fe5f94e2a75ded464b936ed49] BUG-6236 [https://bugs.opendaylight.org/show_bug.cgi?id=6236]: Introduce “mdsal.skip.verbose” property, for build speed

NAT Application Plugin

	822933 [https://git.opendaylight.org/gerrit/#/q/822933541df647494946bd0f82f0f40a54ec9a3b] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

NETCONF

	1dc51d [https://git.opendaylight.org/gerrit/#/q/1dc51de283065160a63f4f938ad2789f79bff9b3] BUG-7906 [https://bugs.opendaylight.org/show_bug.cgi?id=7906]: Fixed json parsing on patch request

	6779d4 [https://git.opendaylight.org/gerrit/#/q/6779d4984608836e28d5d38aef245c827e299df2] BUG-7987 [https://bugs.opendaylight.org/show_bug.cgi?id=7987]: Json HTTP PATCH: Problem parsing simple leaf value

	610d85 [https://git.opendaylight.org/gerrit/#/q/610d858fc0b716dea78bb89ffa70990d3ffbcdba] Fix autorelease fail

	fb4d06 [https://git.opendaylight.org/gerrit/#/q/fb4d0699e1a05f320aaddce08e414cd77ad8b421] BUG-6856 [https://bugs.opendaylight.org/show_bug.cgi?id=6856]: Rpc definition should implicitly define input/output

	0d35db [https://git.opendaylight.org/gerrit/#/q/0d35db00651a1f0161079a1f0eb5b29719bde217] BUG-7728 [https://bugs.opendaylight.org/show_bug.cgi?id=7728] - modules-state conflict kills rest-connector-default-impl

	44a6e6 [https://git.opendaylight.org/gerrit/#/q/44a6e680c43f90f691b7a171bd26a9a53a6de9cb] BUG-7728 [https://bugs.opendaylight.org/show_bug.cgi?id=7728] - modules-state conflict kills rest-connector-default-impl

	ae1a78 [https://git.opendaylight.org/gerrit/#/q/ae1a78857c108ca7d4240c80019eebf485459c18] Fix error reporting for PUT/POST

	b2a304 [https://git.opendaylight.org/gerrit/#/q/b2a304ab25042c634709b564d6f263e1ce3f2fb3] BUG-7686 [https://bugs.opendaylight.org/show_bug.cgi?id=7686] - Make notifications defined by yangs automatic loaded for streaming

	f23b06 [https://git.opendaylight.org/gerrit/#/q/f23b06f092c198fafc9e09b9e47f234a61482dc2] BUG-7295 [https://bugs.opendaylight.org/show_bug.cgi?id=7295] - Incorrect handling of device transactions in clustered setting

	994506 [https://git.opendaylight.org/gerrit/#/q/9945067c4e118198c4ffacc85a73250d66792a71] Clear out tx reference immediately after submit.

	58e0b7 [https://git.opendaylight.org/gerrit/#/q/58e0b7ab5e3a2d31994ebfbcc5656b04d2442af8] Remove blocking get in read transaction

	363f5d [https://git.opendaylight.org/gerrit/#/q/363f5d3cec95393b94a98f0f6cf1d2a24045db76] BUG-5581 [https://bugs.opendaylight.org/show_bug.cgi?id=5581]: Merge empty map instead of exist check

	c30a4c [https://git.opendaylight.org/gerrit/#/q/c30a4c3847d591a10f96280ef49c47d7677abce0] BUG-5581 [https://bugs.opendaylight.org/show_bug.cgi?id=5581]: Minor Exi decoder optimization

	864eda [https://git.opendaylight.org/gerrit/#/q/864eda5c4fa9a3e0b27ff1d953e7dc9d8640bb4d] Clean up Rfc8040

	e20c6e [https://git.opendaylight.org/gerrit/#/q/e20c6ea2ee0eb1ed81ade03214a8aaa98db66a6a] BUG-7735 [https://bugs.opendaylight.org/show_bug.cgi?id=7735] - Update restconf models by RFC 8040

	fff87a [https://git.opendaylight.org/gerrit/#/q/fff87ab9fd135d603a1da10e0cc168c7d16e05b9] BUG-7429 [https://bugs.opendaylight.org/show_bug.cgi?id=7429] - Upgrade docgen in restconf to the latest draft of ietf-restconf

	2c7043 [https://git.opendaylight.org/gerrit/#/q/2c70435bc9b07c409debd6e9ceb64db4871939ab] BUG-7206 [https://bugs.opendaylight.org/show_bug.cgi?id=7206] - Chinese improper code problem.

	edac43 [https://git.opendaylight.org/gerrit/#/q/edac43f52d3791bd9d3de9ad9484aac044682739] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - implement new service RestconfService

	56f1b9 [https://git.opendaylight.org/gerrit/#/q/56f1b96f1b494bb645772941d41dd383b2663af5] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - add new module ietf-restconf

	6a6144 [https://git.opendaylight.org/gerrit/#/q/6a6144e7f0c59613c2fd449a89b57cb7ad17489c] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - implement ietf-restconf-monitoring - cleanup

	bbf615 [https://git.opendaylight.org/gerrit/#/q/bbf615b184ce8e2291a21c0e7d967380961ced9c] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - implement ietf-restconf-monitoring - streams

	285fb8 [https://git.opendaylight.org/gerrit/#/q/285fb8ac463d5085c897ccf6e7b9702932815a57] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - implement ietf-restconf-monitoring - capabilities

	d0faba [https://git.opendaylight.org/gerrit/#/q/d0faba3a377725ed773cedbfa56c1a1a4df6f025] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - prepare constants for ietf-yang-library model

	c00740 [https://git.opendaylight.org/gerrit/#/q/c0074097361fe9a541d52bbd87e7c10b11df038c] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - add new module ietf-restconf-monitoring to restconf

	2be9e7 [https://git.opendaylight.org/gerrit/#/q/2be9e792834ac2e463714d8d433699159ffe6add] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - fix generating of schema by ietf-yang-library and path of RestconfSchemaService

	38c8d0 [https://git.opendaylight.org/gerrit/#/q/38c8d03dae74170d1348067503baa244311f1875] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - ietf-yang-library module implemetation

	f061af [https://git.opendaylight.org/gerrit/#/q/f061afa8a84c9053d53eb88ca3849320636720a4] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - prepare constants for ietf-yang-library model

	31b18b [https://git.opendaylight.org/gerrit/#/q/31b18b3a96bd911b95d85ac81c819613cc3d755c] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - new module ‘models’ for new models in restconf

	f440bd [https://git.opendaylight.org/gerrit/#/q/f440bdd7b68f453b1d1bd74f717ad279b3b9b760] BUG-5679 [https://bugs.opendaylight.org/show_bug.cgi?id=5679] - renamed package rest.services to base.services

	132121 [https://git.opendaylight.org/gerrit/#/q/13212176e7a19319d28ad6c298a969f5f6730f5c] Add missing yang - sal-remote

	f08db0 [https://git.opendaylight.org/gerrit/#/q/f08db04b475debddfd2c60a13482e6e21dcbd7e0] Do not attempt to construct invalid QNames

	7a5c4a [https://git.opendaylight.org/gerrit/#/q/7a5c4a37c4d2b46cdc031e2c45ffdc44ad08e105] BUG-7231 [https://bugs.opendaylight.org/show_bug.cgi?id=7231] - Upgrade ietf-restconf draft17 to draft18

	41429f [https://git.opendaylight.org/gerrit/#/q/41429f5dcf2cc849f353362fed79fcc045366f89] BUG-7207 [https://bugs.opendaylight.org/show_bug.cgi?id=7207] - Bad parsing of identityref in typedef for last ietf-restconf draft

	ff6f68 [https://git.opendaylight.org/gerrit/#/q/ff6f680ca740bd10fbef0b8515e8391402964bd4] BUG-6951 [https://bugs.opendaylight.org/show_bug.cgi?id=6951] - Implement Query parameters - with-defaults

	b262be [https://git.opendaylight.org/gerrit/#/q/b262be2e1351f83f58634f4820d6dc790fa43cfd] BUG-6947 [https://bugs.opendaylight.org/show_bug.cgi?id=6947] / BUG-6948 [https://bugs.opendaylight.org/show_bug.cgi?id=6948] - implement point and insert query params

	4ada21 [https://git.opendaylight.org/gerrit/#/q/4ada21094175465dea12d92b51a1edb68f0adf13] BUG-4883 [https://bugs.opendaylight.org/show_bug.cgi?id=4883] - implement query parameter - filter

	fd7a91 [https://git.opendaylight.org/gerrit/#/q/fd7a9191ae990df3318bc6674510f6537e04b1f3] BUG-6949 [https://bugs.opendaylight.org/show_bug.cgi?id=6949] / BUG-6950 [https://bugs.opendaylight.org/show_bug.cgi?id=6950] - Implementation of start-time and stop-time query parameters

	05767a [https://git.opendaylight.org/gerrit/#/q/05767aee137c8cbf6363df5ab332cb623e1fa469] BUG-6935 [https://bugs.opendaylight.org/show_bug.cgi?id=6935] - RPC in latest draft doesn’t work - problem of parsing to instance identifier

	c7579f [https://git.opendaylight.org/gerrit/#/q/c7579fc501e9fb5f560a697ddce961bf1be8e90b] BUG-6995 [https://bugs.opendaylight.org/show_bug.cgi?id=6995] - Change event notification subscription usability PART2

	a3ec2f [https://git.opendaylight.org/gerrit/#/q/a3ec2f39296ab25499378c29c8ce1fb83bb6f1df] BUG-6995 [https://bugs.opendaylight.org/show_bug.cgi?id=6995] - Change event notification subscription usability PART1

	d61bb8 [https://git.opendaylight.org/gerrit/#/q/d61bb8ba22b92b46d2b0f43665b342f0dee0c4ae] BUG-6903 [https://bugs.opendaylight.org/show_bug.cgi?id=6903] - Implement Query parameters - fields

	cca10c [https://git.opendaylight.org/gerrit/#/q/cca10cbd8a9a9da00183cea858bddbac8f23b739] BUG-6895 [https://bugs.opendaylight.org/show_bug.cgi?id=6895] - Implement Query parameters - depth

	693e5b [https://git.opendaylight.org/gerrit/#/q/693e5b30fa0c60ccf278b3d6679a467a28388c31] BUG-6382 [https://bugs.opendaylight.org/show_bug.cgi?id=6382] - add apidoc for latest restconf draft

	0aa729 [https://git.opendaylight.org/gerrit/#/q/0aa72978633b42dd330246e160f0f18925c38186] BUG-6731 [https://bugs.opendaylight.org/show_bug.cgi?id=6731] - add valid example values

	ef4102 [https://git.opendaylight.org/gerrit/#/q/ef4102da1765316e954649878b360cd99a8c7bd7] BUG-6931 [https://bugs.opendaylight.org/show_bug.cgi?id=6931] - Fix unsupported specific type of leaf

	5019be [https://git.opendaylight.org/gerrit/#/q/5019be3bd6c34ad37a65b8a6489efe4f3fec8e6d] Use UTF-8 as the standard output

	62406a [https://git.opendaylight.org/gerrit/#/q/62406ad5419b8f021d08e139725a1627257b6207] InstanceIdentifierCodecImpl JUnit test

	75b2cc [https://git.opendaylight.org/gerrit/#/q/75b2cc3618533699eecf3eefa2aa2b9f10763766] BUG-6679 [https://bugs.opendaylight.org/show_bug.cgi?id=6679] - api explorer creates false examples

	74f910 [https://git.opendaylight.org/gerrit/#/q/74f910a3441f84558bb223cde6d44cbf17c05432] BUG-6272 [https://bugs.opendaylight.org/show_bug.cgi?id=6272] - support RESTCONF PATCH for mounted NETCONF nodes

	5e5f9d [https://git.opendaylight.org/gerrit/#/q/5e5f9d97f62f1a77ed75da446afcea52762d74d8] BUG-6746 [https://bugs.opendaylight.org/show_bug.cgi?id=6746] - Restconf: Not working GET operation on mount points

	9b0c35 [https://git.opendaylight.org/gerrit/#/q/9b0c354a5c05d4f43024b54c526cbe057ee5b71d] Fix close() in provider

	2c244f [https://git.opendaylight.org/gerrit/#/q/2c244f3929d22c5ab4753aff95ae257a0a575e62] Fix autorelease - stub channel and eventLoop

NEtwork MOdeling (NEMO)

	9bf2a1 [https://git.opendaylight.org/gerrit/#/q/9bf2a121b9b5f2f94809f06ca9635ba6e69a43fa] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

NetIDE

	4256d4 [https://git.opendaylight.org/gerrit/#/q/4256d4ce0ff44c70341bc7b8b8929deffc97c7c3] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Network Virtualization

	990076 [https://git.opendaylight.org/gerrit/#/q/990076136eb431ebf4009df8f5634be50e47a7e6] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	d6622e [https://git.opendaylight.org/gerrit/#/q/d6622e79c1767ad28ad8abc39ac7c1b76eb13a56] BUG-8046 [https://bugs.opendaylight.org/show_bug.cgi?id=8046] fix for mac movement issue

	a71e06 [https://git.opendaylight.org/gerrit/#/q/a71e06c8c9409213fa3c575f09e10dfc136939c1] BUG-7984 [https://bugs.opendaylight.org/show_bug.cgi?id=7984]: IDLE_TIMEOUT check required in onFlowRemoved.

	978717 [https://git.opendaylight.org/gerrit/#/q/97871769835114e4deee5a65ea5b387a138666d7] BUG-7387 [https://bugs.opendaylight.org/show_bug.cgi?id=7387] : Netvirt: qos policy applied on the network, not applied on newly created ports of same network

	f345d0 [https://git.opendaylight.org/gerrit/#/q/f345d08a623fcfadfbe6f889abfc121f6d5dd8c6] BUG-7966 [https://bugs.opendaylight.org/show_bug.cgi?id=7966]: Fix route origin for some vrfEntries after VM migration

	5729c6 [https://git.opendaylight.org/gerrit/#/q/5729c60b6f45e66cb84673f926a01227244ca0a6] BUG-7842 [https://bugs.opendaylight.org/show_bug.cgi?id=7842]: ACL: Arp flows missing in ACL tables for overlapping MAC address

	aa12b7 [https://git.opendaylight.org/gerrit/#/q/aa12b7829903049dc23d475e4f77e20db6fc59de] BUG-7826 [https://bugs.opendaylight.org/show_bug.cgi?id=7826]: proper elan djc job retries

	c804af [https://git.opendaylight.org/gerrit/#/q/c804affe0bff5b0cefd69b5920016b94fb2816d5] BUG-7896 [https://bugs.opendaylight.org/show_bug.cgi?id=7896] OptimisticLockFailedException

	e72a98 [https://git.opendaylight.org/gerrit/#/q/e72a989bd341221d5056a4991ebd87f2e68ed9e7] BUG-7863 [https://bugs.opendaylight.org/show_bug.cgi?id=7863] - Add Layer 4 Match for flow entries for TCP/UDP security group rule with no min/max

	1eb928 [https://git.opendaylight.org/gerrit/#/q/1eb928d9286a0ee1fbb3ea07cff407b3bba8cf22] BUG-7727 [https://bugs.opendaylight.org/show_bug.cgi?id=7727] : Local and Connected routes do not get imported

	e54df1 [https://git.opendaylight.org/gerrit/#/q/e54df13a58d70dd4bdb245184add3703c46682b1] Fix potential NPEs in ELAN tunnel handling

	603a74 [https://git.opendaylight.org/gerrit/#/q/603a74830133f1d838ead52e56d495210c8754f9] BUG-7418 [https://bugs.opendaylight.org/show_bug.cgi?id=7418] Run local group creation as async task with key equal to subsequent tasks.

	795d5d [https://git.opendaylight.org/gerrit/#/q/795d5d186edc2fdfad50ccb2797779a38a232e1b] BUG-7725 [https://bugs.opendaylight.org/show_bug.cgi?id=7725]: AAP with prefix 0.0.0.0/0 not supported in ACL

	0d0dd6 [https://git.opendaylight.org/gerrit/#/q/0d0dd6d24b1948b05761235db22c58ef5823dbc9] Fix for GwMac flow deletion during interface delete

	8b06f0 [https://git.opendaylight.org/gerrit/#/q/8b06f06f4d31edd4124a90d4637c488a61e11cac] BUG-7875 [https://bugs.opendaylight.org/show_bug.cgi?id=7875]: Separated out snmap create and update workflow

	416e01 [https://git.opendaylight.org/gerrit/#/q/416e01c400d4e5230cc9814c1f0fb22236bd28cd] Adding some more debug logs to elan module

	dbaaa3 [https://git.opendaylight.org/gerrit/#/q/dbaaa3de03b8597ebaafb39cfcf9ee146aeb9c4b] BUG-7817 [https://bugs.opendaylight.org/show_bug.cgi?id=7817] & BUG-7838 [https://bugs.opendaylight.org/show_bug.cgi?id=7838]: DHCP ARP flow is not added and irrelevant ARP flows are installed in compute node.

	47b3a7 [https://git.opendaylight.org/gerrit/#/q/47b3a729188fef328d9dcef8cf446e6d335855fa] BUG-7888 [https://bugs.opendaylight.org/show_bug.cgi?id=7888]: handle update of floating ip port

	d46817 [https://git.opendaylight.org/gerrit/#/q/d4681773266d9507444a792096b274214b949e91] BUG-7878 [https://bugs.opendaylight.org/show_bug.cgi?id=7878]: provider interface MACs are installed on remote DPNs

	1ed61e [https://git.opendaylight.org/gerrit/#/q/1ed61e81b0f6e477fb2e4b0c35d7101d3741d9e2] Rectified incorrect help usage displayed for BGP add-neighbor cli command

	b28049 [https://git.opendaylight.org/gerrit/#/q/b28049cff05f46725102e9f678cbf0ca8b7825b0] BUG-7787 [https://bugs.opendaylight.org/show_bug.cgi?id=7787] - missing flows in T21

	d26650 [https://git.opendaylight.org/gerrit/#/q/d26650886358e945a673b963aead58895f94de49] BUG-7931 [https://bugs.opendaylight.org/show_bug.cgi?id=7931]: SubnetRoue re-election to be triggered on disconnected nodes

	987db2 [https://git.opendaylight.org/gerrit/#/q/987db2384925c49681315146457ab9c10b2c690a] BUG-7876 [https://bugs.opendaylight.org/show_bug.cgi?id=7876] : After router association to L3vpn, one of the VM ip is not removed from router interface to BGPVPN

	a626bd [https://git.opendaylight.org/gerrit/#/q/a626bd9f7e0b209db988e3a143085351d72d58da] BUG-7885 [https://bugs.opendaylight.org/show_bug.cgi?id=7885] - CSIT Sporadic failures - tempest.scenario.test_port_security_macspoofing_port

	24ef0a [https://git.opendaylight.org/gerrit/#/q/24ef0a568980b609fad9f2ca6bf19674cb043eca] BUG-7839 [https://bugs.opendaylight.org/show_bug.cgi?id=7839]: ACL: ACL flows are not deleted from source host during VM migration

	085965 [https://git.opendaylight.org/gerrit/#/q/085965082529398e4f1dc6866c3c7c34de941a1d] Use the right service name when binding service

	8eadc9 [https://git.opendaylight.org/gerrit/#/q/8eadc96456ac554e971ccf7b519ac928b44c711a] corrected the population of BGP Total Prefixes counter

	6cacda [https://git.opendaylight.org/gerrit/#/q/6cacdafe2e9482de476a27e4ecc1f94472964f1f] BUG-7856 [https://bugs.opendaylight.org/show_bug.cgi?id=7856]: Reverse SNAT flows order to minimize race possibility

	cec17e [https://git.opendaylight.org/gerrit/#/q/cec17ee2ef9f64d24ddf3331af18e3ceb5a69bd2] BUG-7714 [https://bugs.opendaylight.org/show_bug.cgi?id=7714]: VPN Operational Interfaces not getting removed at all.

	11509a [https://git.opendaylight.org/gerrit/#/q/11509a60b7acbe907390a506255645574bdc1a5d] BUG-7831 [https://bugs.opendaylight.org/show_bug.cgi?id=7831] : BgpRouter receives unnecessary events

	19da79 [https://git.opendaylight.org/gerrit/#/q/19da798780887c7ac0379c5d35f742954b5f699b] BUG-7881 [https://bugs.opendaylight.org/show_bug.cgi?id=7881] - Traffic drops when not matching UL SC starting in a VPNPseudoPort

	c82cf8 [https://git.opendaylight.org/gerrit/#/q/c82cf8d5537aa0b32d9851b4f832221792c48b15] BUG-7861 [https://bugs.opendaylight.org/show_bug.cgi?id=7861]: No ping response from FIP on 1st router when adding 2nd FIP

	021f7c [https://git.opendaylight.org/gerrit/#/q/021f7c1c3f9787a7f6d3f15d8c7cf2c30bf6dd86] BUG-7824 [https://bugs.opendaylight.org/show_bug.cgi?id=7824] ModifiedNodeDoesNotExistException

	9352c7 [https://git.opendaylight.org/gerrit/#/q/9352c765f3944dbf1f80ea7d4eee8c50fa30cc5c] Cleanup errors for networks of unsupported type

	56d147 [https://git.opendaylight.org/gerrit/#/q/56d147035abd6cb351c598fd1789bf6565f59601] BUG-7775 [https://bugs.opendaylight.org/show_bug.cgi?id=7775]: Using DJC for NAT Interface-state Listeners

	87a7d7 [https://git.opendaylight.org/gerrit/#/q/87a7d70173a48628381b4c9be1160cc811a478dd] BUG-7824 [https://bugs.opendaylight.org/show_bug.cgi?id=7824] - ModifiedNodeDoesNotExistException

	bd0183 [https://git.opendaylight.org/gerrit/#/q/bd01838697561a81be7ca86145c3312d4d233dd5] releasing dcn thread once tunnel interface state dcn delivered

	25cdfd [https://git.opendaylight.org/gerrit/#/q/25cdfdb8332eb59225869facd52e7247869859a9] BUG-7780 [https://bugs.opendaylight.org/show_bug.cgi?id=7780] : NAT RPC’s for getting SNAT/DNAT translation information.

	520a8c [https://git.opendaylight.org/gerrit/#/q/520a8cd2454d1d3c414f39794634de155bf43533] BUG-7815 [https://bugs.opendaylight.org/show_bug.cgi?id=7815]: Using DJC for VpnManager Interface-state Listeners

	c60308 [https://git.opendaylight.org/gerrit/#/q/c60308141800bffcb4d457d8a849eae8fa305157] BUG-7843 [https://bugs.opendaylight.org/show_bug.cgi?id=7843] - Missing buckets in ELAN BC group installation during OVS restart

	36406c [https://git.opendaylight.org/gerrit/#/q/36406c667555f740997f58fbe8731227efbe7858] BUG-7786 [https://bugs.opendaylight.org/show_bug.cgi?id=7786] Delete and re add of access port handling

	8d36d5 [https://git.opendaylight.org/gerrit/#/q/8d36d5fc528360a5ceeef951988ae39d0e0bd297] BUG-7772 [https://bugs.opendaylight.org/show_bug.cgi?id=7772] - Service Chaining is not being applied to VMs in the L3VPN

	1079dc [https://git.opendaylight.org/gerrit/#/q/1079dc0b460b5da8e2fe11e59a0050c1ba17ab6b] Adding debug statements to track caching of Operational Vpn Instances

	5f4c62 [https://git.opendaylight.org/gerrit/#/q/5f4c62a3d021670e7229661171d16c7da98ec5f8] Fix priority in IntervpnLink flows installed in LFIB

	5e3b48 [https://git.opendaylight.org/gerrit/#/q/5e3b48f202a8d13220f59c1b22bbf6c9c6a7bdb9] adding lport tag for temporary mac learning

	e9b04d [https://git.opendaylight.org/gerrit/#/q/e9b04d7d54c1b2f478d03f40a3f89d306ca50f52] Fix several NPEs showing up in CSIT

	ff40ea [https://git.opendaylight.org/gerrit/#/q/ff40eae4a6eeb5be9321a0239b84a27035343254] Fix BFD regression

	c8cab0 [https://git.opendaylight.org/gerrit/#/q/c8cab09f29cf26ea151a9f39c0363767c1ba1c20] BUG7748: Subnet-op-data empty after cluster reboot

	cd4b0f [https://git.opendaylight.org/gerrit/#/q/cd4b0f6d5f54aa10765788b46499153028523522] BUG-7790 [https://bugs.opendaylight.org/show_bug.cgi?id=7790] - Attempting to install RNH on local DPN for FIB with custom instructions

	cd0b95 [https://git.opendaylight.org/gerrit/#/q/cd0b9568baf53e380bc3857e340e0ae19a82aa19] Use Objects equals instead of == where necessary

	479c6a [https://git.opendaylight.org/gerrit/#/q/479c6afb5fa53bd0e4de9bb55020b79be20a2e41] Update netvirt guide - correct DB DROP procedure

	826aa4 [https://git.opendaylight.org/gerrit/#/q/826aa42f9c8ebbd4136df31d8bce71561a99e914] BUG-7599 [https://bugs.opendaylight.org/show_bug.cgi?id=7599] added l2gw validate cli

	3dfb74 [https://git.opendaylight.org/gerrit/#/q/3dfb74fd00669575cb853d7b45cb259cb11e6c50] BUG-6589 [https://bugs.opendaylight.org/show_bug.cgi?id=6589] l2gw cluster reboot fixes

	7e6eb4 [https://git.opendaylight.org/gerrit/#/q/7e6eb44893e9416c70ef0df4e2cba93d6b7dea0e] BUG-7606 [https://bugs.opendaylight.org/show_bug.cgi?id=7606]: Fix for missed tunnel flows, after VM live migration

	9098a7 [https://git.opendaylight.org/gerrit/#/q/9098a712ef82e0e7df87ba115b952b5377646273] BUG-7773 [https://bugs.opendaylight.org/show_bug.cgi?id=7773]: Objects should be compared with “equals()”.

	209df4 [https://git.opendaylight.org/gerrit/#/q/209df47ae9f7fafb4017c3b78e01e03a1739838d] Improve log messages.

	afdb29 [https://git.opendaylight.org/gerrit/#/q/afdb2934eeea67006631cd313c6581772ed4230d] BUG-7392 [https://bugs.opendaylight.org/show_bug.cgi?id=7392]: L2 Forwarding Table=110 Flows Missing

	a3a91c [https://git.opendaylight.org/gerrit/#/q/a3a91c1c01d294a8e36662284c4cc82a2749c2e1] BUG-7729 [https://bugs.opendaylight.org/show_bug.cgi?id=7729]: Remove redundant tunnel drop flow in table 110

	079b07 [https://git.opendaylight.org/gerrit/#/q/079b071c122cc3918b419d0ac62e504a3d89030a] BUG7748: Subnet-op-data empty after cluster reboot

	f7137f [https://git.opendaylight.org/gerrit/#/q/f7137f52b4f5dca3f25ad061ebd42beaa1e45de6] BUG-7680 [https://bugs.opendaylight.org/show_bug.cgi?id=7680]: Fix Nexthop when advertising to DCGW

	59eb41 [https://git.opendaylight.org/gerrit/#/q/59eb41af829777313970c0fe3948b0ac1297664c] BUG-7680 [https://bugs.opendaylight.org/show_bug.cgi?id=7680]: leaked routes not advertised to DC-GW

	f89bce [https://git.opendaylight.org/gerrit/#/q/f89bce1740e0382795b8a69c5b31fca688ad683b] BUG-7372 [https://bugs.opendaylight.org/show_bug.cgi?id=7372] - Supress error of NAPT switch selection failure before router-dpn association

	9002f3 [https://git.opendaylight.org/gerrit/#/q/9002f34fe2998df19f82818650115afa21d9f73a] Setup SMAC on routed packets destined to virtual endpoints

	adb379 [https://git.opendaylight.org/gerrit/#/q/adb379614a2cafe0ca1b225e7b239dfd14a5c5c0] BUG-7445 [https://bugs.opendaylight.org/show_bug.cgi?id=7445]: Improve the performance on bulk create.

	62b919 [https://git.opendaylight.org/gerrit/#/q/62b919d30cf2db9ab19dc86b9399d86ab5026668] BUG-7733 [https://bugs.opendaylight.org/show_bug.cgi?id=7733]: NeutronVPN: Error out if VxLAN/VLAN network configured without seg-id

	cf78ad [https://git.opendaylight.org/gerrit/#/q/cf78ad57f64e1c94722ace7b8d556d9991ceadf4] BUG-7714 [https://bugs.opendaylight.org/show_bug.cgi?id=7714] - Vpn Interface not deleted from oper DS

	e5d465 [https://git.opendaylight.org/gerrit/#/q/e5d4650157c5c4c34b0e8fba750f48fb5fec4b1b] BUG-7720 [https://bugs.opendaylight.org/show_bug.cgi?id=7720]: create/delete VPN CLI handling addition/removal of subnets

	51f044 [https://git.opendaylight.org/gerrit/#/q/51f04417d1b85d2516bed1c368cce1b6304ef1d8] BUG-7601 [https://bugs.opendaylight.org/show_bug.cgi?id=7601]: Cleanup Elan instances when a network is deleted

	d42502 [https://git.opendaylight.org/gerrit/#/q/d4250272f0f814be66dabfa3f820ac3886ec4964] BUG-7717 [https://bugs.opendaylight.org/show_bug.cgi?id=7717] Fix OOM when defining large number of networks

	e2f333 [https://git.opendaylight.org/gerrit/#/q/e2f3335eb971f2d1a792e28db54139b8d0d69035] BUG-7488 [https://bugs.opendaylight.org/show_bug.cgi?id=7488] Add option to disable auto bridge creation

	3e8f3e [https://git.opendaylight.org/gerrit/#/q/3e8f3e50ea31ed72342681b474ca0775f4e636b2] BUG-7591 [https://bugs.opendaylight.org/show_bug.cgi?id=7591]: Allow configuration of inactivity_probe and max_backoff for OVS

	18628c [https://git.opendaylight.org/gerrit/#/q/18628cc267bf4a16e7fbdd22a78403a395a95d5a] BUG-7667 [https://bugs.opendaylight.org/show_bug.cgi?id=7667]: SNAT table 46&44 are not getting programmed when private BGPVPN

	b83b1c [https://git.opendaylight.org/gerrit/#/q/b83b1c54f1859ef78c1cc242a2bdfeec9cf79160] BUG-7489 [https://bugs.opendaylight.org/show_bug.cgi?id=7489]: Add startup config file for elanmanager-config

	95cd2c [https://git.opendaylight.org/gerrit/#/q/95cd2cd97ee967bc4604acf9ab3418d4e41ff1d1] BUG-7700 [https://bugs.opendaylight.org/show_bug.cgi?id=7700]: create-l3vpn (REST/CLI) should not allow another VPN to use the same VPNID

	ac59b7 [https://git.opendaylight.org/gerrit/#/q/ac59b72c8f1ceacd9ef88e0691d9b175119d4b3c] Fix ElanStatusMonitorJMX failing upon bundle reinitialization.

	b89e52 [https://git.opendaylight.org/gerrit/#/q/b89e527db18ec66bd1d5433079f21cbb4b4ffc02] SNAT tests failures

	36a01f [https://git.opendaylight.org/gerrit/#/q/36a01ff5fa64c26da8890634af2f2aca1652bef8] BUG7308: fix leaf to leaf traffic

	d7d621 [https://git.opendaylight.org/gerrit/#/q/d7d621ad732bb596cce5cb5aeb02e53bc53f0de1] BUG-7461 [https://bugs.opendaylight.org/show_bug.cgi?id=7461]

	d25478 [https://git.opendaylight.org/gerrit/#/q/d25478a241d7abaabf4c1edbcc79df4bed475209] BUG-7669 [https://bugs.opendaylight.org/show_bug.cgi?id=7669]: Add multi-provider network support to NetVirt for L2 Gateway.

	bfdc0f [https://git.opendaylight.org/gerrit/#/q/bfdc0fdf1c3a8fb463d4e8b5dc3a9c6c764a5c1b] Lower debug level when truncating provider port name

	cb9359 [https://git.opendaylight.org/gerrit/#/q/cb9359be9b78a0ac8eaf0bab94003df7f1eece3e] [BUG-7543 [https://bugs.opendaylight.org/show_bug.cgi?id=7543]] Replace the request function used by restangular

	0f1728 [https://git.opendaylight.org/gerrit/#/q/0f17280a67749e636991808e12ff53ec68efbdd8] BUG-7660 [https://bugs.opendaylight.org/show_bug.cgi?id=7660] Infinite loop while vpn instance removal

	0b8e3f [https://git.opendaylight.org/gerrit/#/q/0b8e3ffcfc745d73630e670ad45846990012932a] BUG-7384 [https://bugs.opendaylight.org/show_bug.cgi?id=7384]: CSIT Exception: NPE in deleteVpnInterface

	8aa1ee [https://git.opendaylight.org/gerrit/#/q/8aa1ee9de52f7845ea25a875b953e93a955c5c07] BUG-7532 [https://bugs.opendaylight.org/show_bug.cgi?id=7532] - arp responder rule sometimes missing after vm reboot

	908b42 [https://git.opendaylight.org/gerrit/#/q/908b4219ad6090c54e055c026565a34ea0b2560d] BUG-7601 [https://bugs.opendaylight.org/show_bug.cgi?id=7601] - Cleanup Elan instances when a network is deleted

	1599b4 [https://git.opendaylight.org/gerrit/#/q/1599b49658a2ef3106998af702042483bf176574] BUG-7436 [https://bugs.opendaylight.org/show_bug.cgi?id=7436]: Handle VpnInterfaces of VpnInstance

	fcef7b [https://git.opendaylight.org/gerrit/#/q/fcef7b674314cbfe154e5bf25decedb7c14e7de8] BUG-7536 [https://bugs.opendaylight.org/show_bug.cgi?id=7536]: Static routes not handled when ivpnlink becomes active

	b3afca [https://git.opendaylight.org/gerrit/#/q/b3afcaf173483536ab496a7bcfa7dbd3363a3b05] BUG-7530 [https://bugs.opendaylight.org/show_bug.cgi?id=7530] : ElanPacketInHandler mutexes are too coarse

	e04ffc [https://git.opendaylight.org/gerrit/#/q/e04ffc6091b3e3f020e8c76b961efbccca7da204] BUG-7533 [https://bugs.opendaylight.org/show_bug.cgi?id=7533] : Fix for bind/unbind in DHCP service

	d68ba3 [https://git.opendaylight.org/gerrit/#/q/d68ba30c0c233a4215806684185cd5104071becb] BUG-7567 [https://bugs.opendaylight.org/show_bug.cgi?id=7567]: External subnet group is not updated with external gwmac

	eb9509 [https://git.opendaylight.org/gerrit/#/q/eb95098699d00aab74a4b14013d3176847ef7ade] BUG-7528 [https://bugs.opendaylight.org/show_bug.cgi?id=7528] : Don’t learn the DMAC flows from other DPNs

	eeb431 [https://git.opendaylight.org/gerrit/#/q/eeb43100fc69728f69cefdf8dd32356fecc6d1c4] BUG-7525 [https://bugs.opendaylight.org/show_bug.cgi?id=7525] - Inter-VPN link static/connected routes leaking not working

	eb0618 [https://git.opendaylight.org/gerrit/#/q/eb06188f53caffc0f5beaa5d429c9197377e43e5] BUG-7547 [https://bugs.opendaylight.org/show_bug.cgi?id=7547] : Ping from DC-GW to invisible ip configured in VM is failing

	d96917 [https://git.opendaylight.org/gerrit/#/q/d96917352911d4e09f4148636d1cfacf02118d91] BUG-7497 [https://bugs.opendaylight.org/show_bug.cgi?id=7497] - NAPT rules missed for second DPN

	669678 [https://git.opendaylight.org/gerrit/#/q/669678ebc3112fa43c9049469000f307d32496d9] Fix links to openstack images

	1a03d6 [https://git.opendaylight.org/gerrit/#/q/1a03d63f823f31dd0646111303e9f49b03a178ba] BUG-7478 [https://bugs.opendaylight.org/show_bug.cgi?id=7478] : SNAT traffic to use router GW MAC

	4d6439 [https://git.opendaylight.org/gerrit/#/q/4d6439e569c5dd97ca79b194734e82cb3f9c35a7] Spec to setup SMAC on routed packets destined to virtual endpoints

	5e20e6 [https://git.opendaylight.org/gerrit/#/q/5e20e63ece2934bbc19eb8f9db25f78759a18e3e] Minor updates to openstack doc

	6dcb23 [https://git.opendaylight.org/gerrit/#/q/6dcb23673439646fb0f267787920ddf2fce9136c] BUG-7405 [https://bugs.opendaylight.org/show_bug.cgi?id=7405]: IVpnLink routes not removed from BGP on cascade

	f9473e [https://git.opendaylight.org/gerrit/#/q/f9473eae74ae7ca88bc1c92b6fdc9504ee622211] BUG7318: ETREE ODL learning leaf MACS on wrong tag

	edd071 [https://git.opendaylight.org/gerrit/#/q/edd07127a9ab150424e40a972f9cb4dc91142258] BUG-7520 [https://bugs.opendaylight.org/show_bug.cgi?id=7520]: Avoid creating auto-tunnels for VLAN tenant networks

	c83656 [https://git.opendaylight.org/gerrit/#/q/c83656339980e8817a42ea0fd52dd17a90a5f6aa] BUG-7488 [https://bugs.opendaylight.org/show_bug.cgi?id=7488]: Autobridge overwrites DpnId if bridge already exists

	55d659 [https://git.opendaylight.org/gerrit/#/q/55d659d2a63983540cdb3f59329ae21ba99c7e0c] BUG-7363 [https://bugs.opendaylight.org/show_bug.cgi?id=7363]: Fix for Flows are overlapped when we add custom SG along with ANY rule.

	beac12 [https://git.opendaylight.org/gerrit/#/q/beac122d2cb42626554143b56bc9bc0a350ca5fe] Use Developer Guide text in place of Documentation

	5badc1 [https://git.opendaylight.org/gerrit/#/q/5badc1fd137c1d9a369c8bb09bb6aad349889d61] Updates to NetVirt docs from some user feedback

	2d3c0b [https://git.opendaylight.org/gerrit/#/q/2d3c0b22dfe54a13ae3a37a2c0852a8568c2121b] Add basic initial docs for new layout

	8d3814 [https://git.opendaylight.org/gerrit/#/q/8d381431396402e712b814fb07feb4eb3bab80e6] Update specs template

	d19a3b [https://git.opendaylight.org/gerrit/#/q/d19a3bc6a0946a86692b81728f41e9a339c54d55] Initial layout for NetVirt docs migration

	368a0b [https://git.opendaylight.org/gerrit/#/q/368a0b001f1a4a61e7f25ab498f45bac442b4a8a] Added Creative Commons attribution

	18f52b [https://git.opendaylight.org/gerrit/#/q/18f52b747558a0430a40a4f0d4beb55a16dfb9a3] Update specs-template

	384e74 [https://git.opendaylight.org/gerrit/#/q/384e74290cc51c4539b931b8c8249b808908546b] Add link to specs

	927522 [https://git.opendaylight.org/gerrit/#/q/92752291bb66efe8655beb40c86731a7988a07f0] Add template for design spec documents

	c71d28 [https://git.opendaylight.org/gerrit/#/q/c71d28ecb1fc7a3548e9fe7b7bcb68b00c80b70c] BUG7339:EtreeLeafBG isn’t updated with new remotes

	f8be23 [https://git.opendaylight.org/gerrit/#/q/f8be238ac6dcf8b471492c22d604351f63d0a17a] BUG-7476 [https://bugs.opendaylight.org/show_bug.cgi?id=7476]: Configure Reachable Time in IPv6 Router Advt

	ab565a [https://git.opendaylight.org/gerrit/#/q/ab565a9533ee1bf7d742bb16cf1b264115244106] Remove unnecessary page headings

	968884 [https://git.opendaylight.org/gerrit/#/q/9688843038246340265eb6efe62cc4d7f0a8378b] Remove unneeded code from VpnUtil

	a2ef06 [https://git.opendaylight.org/gerrit/#/q/a2ef0679cf9dd2126d995120d423cb0afe3e2692] BUG-7403 [https://bugs.opendaylight.org/show_bug.cgi?id=7403] : getl3vpn RPC behavioural issues

	962e39 [https://git.opendaylight.org/gerrit/#/q/962e39ba824e3346b1018cd21c16d3de86367ff7] BUG-7355 [https://bugs.opendaylight.org/show_bug.cgi?id=7355]: Remove Vrf Entries in a single transaction

	186314 [https://git.opendaylight.org/gerrit/#/q/1863141a2cdd2355e50024a4730c677a3b049438] BUG-7406 [https://bugs.opendaylight.org/show_bug.cgi?id=7406]: The flows are overridden.

	35fdd5 [https://git.opendaylight.org/gerrit/#/q/35fdd5334f7bef890aec99f0ec6634a6a82995ea] BUG-7393 [https://bugs.opendaylight.org/show_bug.cgi?id=7393]: Flows are not getting removed from table:20 and table:90

	8aaf43 [https://git.opendaylight.org/gerrit/#/q/8aaf43d8502eb9d8b63dc7abfa3e9ca4fab795fb] Add Docs for netvirt

	de2eea [https://git.opendaylight.org/gerrit/#/q/de2eea8377175bfe6a855dcc0becfaa6b8aa989d] BUG-7496 [https://bugs.opendaylight.org/show_bug.cgi?id=7496]: Errors and exceptions handling

	d9ff04 [https://git.opendaylight.org/gerrit/#/q/d9ff04145fafcf9cc62695fedcfb8838c8c17f8f] Scalability of ServiceChainTag

	1d7fb1 [https://git.opendaylight.org/gerrit/#/q/1d7fb14b9ed91dd613cfa908b847787c3074bb24] BUG-7447 [https://bugs.opendaylight.org/show_bug.cgi?id=7447]: Unexpected flows from T21 to T44 for FIP

	4d1355 [https://git.opendaylight.org/gerrit/#/q/4d1355e9eedcc62193b72139e37d3680a080b069] BUG-7358 [https://bugs.opendaylight.org/show_bug.cgi?id=7358] - Inter-VPN traffic is drop when out_port == in_port

	a9471b [https://git.opendaylight.org/gerrit/#/q/a9471be997b786429a84c8e08330164626e62ba1] BUG-7382 [https://bugs.opendaylight.org/show_bug.cgi?id=7382]: NPE while getting the napt primary-switch-id

	2f759b [https://git.opendaylight.org/gerrit/#/q/2f759b5fac1511619b25033865b831eb4447da06] BUG-7229 [https://bugs.opendaylight.org/show_bug.cgi?id=7229]: Allow certain ICMPv6 NDP packets by default

	5ea13d [https://git.opendaylight.org/gerrit/#/q/5ea13decc4ba57bf8e4669a98f3ab18c2b3af760] BUG-7423 [https://bugs.opendaylight.org/show_bug.cgi?id=7423]: Clean unnecessary leaked flows and fibEntries

	0ed778 [https://git.opendaylight.org/gerrit/#/q/0ed778c036b478d27a3e9c4cdf6d820a9daa90f0] BUG-7448 [https://bugs.opendaylight.org/show_bug.cgi?id=7448] - External network recreation fails in newton nodl v2

	a5861d [https://git.opendaylight.org/gerrit/#/q/a5861d0b20ea0d1e5c2281059f2364d486857a00] BUG-7340 [https://bugs.opendaylight.org/show_bug.cgi?id=7340]: overwritten rule in T28 for multi-tenant

	46ae4a [https://git.opendaylight.org/gerrit/#/q/46ae4a9b225cc3e5596d5bd08692722fdbe2be95] BUG-7422 [https://bugs.opendaylight.org/show_bug.cgi?id=7422] Resolve checkstyle errors

	43a2ac [https://git.opendaylight.org/gerrit/#/q/43a2acfa4acc52edef55108a8e88aad0d0f55592] BUG-7426 [https://bugs.opendaylight.org/show_bug.cgi?id=7426] Adding elantag along with mac-address as key to synchronized block

	35904c [https://git.opendaylight.org/gerrit/#/q/35904c271aed3a46581399646bd50a7846c2717b] BUG-7444 [https://bugs.opendaylight.org/show_bug.cgi?id=7444] : External routes are not getting populated

	83c0d3 [https://git.opendaylight.org/gerrit/#/q/83c0d3e5f839cb738b75af513ce1c62624664bd4] BUG-7463 [https://bugs.opendaylight.org/show_bug.cgi?id=7463]: nexthop in leaked routes is wrongly set

	727b6f [https://git.opendaylight.org/gerrit/#/q/727b6f33a034d41d1937dc74671c563ca04587c1] BUG-6866 [https://bugs.opendaylight.org/show_bug.cgi?id=6866] - missed NAPT rules for second router

	4cd390 [https://git.opendaylight.org/gerrit/#/q/4cd39005195a623e31e19c4d0e2573c5846b1363] BUG-7142 [https://bugs.opendaylight.org/show_bug.cgi?id=7142] - all VpnPortIpToPort entries are lost from ODL cache after reboot.

	a1655c [https://git.opendaylight.org/gerrit/#/q/a1655c1156a2246bd9d384846e918d1f704ebd75] BUG-7321 [https://bugs.opendaylight.org/show_bug.cgi?id=7321]: ELAN Pseudo-port flows not installed on new DPNs

	d453e7 [https://git.opendaylight.org/gerrit/#/q/d453e7e0a7b2a3d1a8e66e9164d6182b7e868fdd] BUG-7439 [https://bugs.opendaylight.org/show_bug.cgi?id=7439]: Discard internal VPNs for InterVpnLink purposes

	18a85c [https://git.opendaylight.org/gerrit/#/q/18a85c6497fc3557a71605a835750a497351b62a] BUG-7409 [https://bugs.opendaylight.org/show_bug.cgi?id=7409] - Traffic Drop from NFip VM to FIP VM

	623731 [https://git.opendaylight.org/gerrit/#/q/6237311db2c8bae766b0265934818fc061573cf8] subnet-op-data and port-op-data is empty after cluster reboot

	8bbec1 [https://git.opendaylight.org/gerrit/#/q/8bbec13ccec5143d4c8fbe432fb6c726190e7719] BUG-7377 [https://bugs.opendaylight.org/show_bug.cgi?id=7377], BUG-7383 [https://bugs.opendaylight.org/show_bug.cgi?id=7383]: handling unnecessary error log

	d02fbe [https://git.opendaylight.org/gerrit/#/q/d02fbeff6f0e749dc79fe30e408c0569f2d2d5f2] BUG-7260 [https://bugs.opendaylight.org/show_bug.cgi?id=7260]: no rules in table 26 for default route

	bdeb09 [https://git.opendaylight.org/gerrit/#/q/bdeb097513bf32a5091640371f2c2c23a9079c0f] BUG-7359 [https://bugs.opendaylight.org/show_bug.cgi?id=7359]: duplicate local broadcast group backets

Neutron Northbound

	6ef259 [https://git.opendaylight.org/gerrit/#/q/6ef2598b6fde21eb8d97d6095ca9796559606363] BUG-7848 [https://bugs.opendaylight.org/show_bug.cgi?id=7848]: Allow neutron port create with security disabled.

ODL Root Parent

	c52629 [https://git.opendaylight.org/gerrit/#/q/c5262947fd4624f0fa85a00a7f7c14116d26890a] Bump bouncycastle dependencies from 1.54 to 1.56

	70436d [https://git.opendaylight.org/gerrit/#/q/70436d9528fef06bbe1c1c848bb4b8d24981b4e0] Bump netty to 4.0.44

	93acc9 [https://git.opendaylight.org/gerrit/#/q/93acc989469e0fc8c9ed13d08a10d7e1936b57c1] git-commit-id-plugin skipped on mvn -Pq, because it slows down a little

	6cc350 [https://git.opendaylight.org/gerrit/#/q/6cc350b4e62b4f2392d3f0990bc4916e25180627] [eclipse] git-commit-id-plugin ignored in M2E by lifecycle-mapping

	95d620 [https://git.opendaylight.org/gerrit/#/q/95d6205366e076aa329b2cc350e99e080e4cff19] git-commit-id-plugin cannot fail build for new projects w.o. .git/

	44163f [https://git.opendaylight.org/gerrit/#/q/44163fdb1c880a0883633697c020752a8cc01ffb] git-commit-id-plugin to put a META-INF/git.properties in all built JAR

	6fffad [https://git.opendaylight.org/gerrit/#/q/6fffad02b8ed26006c6cd6c798ff1922afea2fe5] Skip Jacoco in SingleFeatureTest

	7b8f97 [https://git.opendaylight.org/gerrit/#/q/7b8f973b3fcbba08fc8fc09e498dd3d1cbdfe6cb] Bump netty to 4.0.43

	c6391b [https://git.opendaylight.org/gerrit/#/q/c6391b9851bf1855bfb48bfbcca32dc53bac782f] BUG-6236 [https://bugs.opendaylight.org/show_bug.cgi?id=6236]: Add mdsal.skip.verbose to -Pq Quick profile

ORI C&M Protocol (OCP)

	3d6cd8 [https://git.opendaylight.org/gerrit/#/q/3d6cd88b5a9a360e685643f5b71bfb824ef90d1e] This patch remove ^ and $ signs due to https://git.opendaylight.org/gerrit/#/c/53224/.

OVSDB Integration

	d62858 [https://git.opendaylight.org/gerrit/#/q/d62858b9752f0a749259d96ef8a844299a388bbc] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	66f070 [https://git.opendaylight.org/gerrit/#/q/66f070b7f131a29ebaae4493bb67750bd4b7d1e3] BUG-7160 [https://bugs.opendaylight.org/show_bug.cgi?id=7160] - operational store still has node after ovs disconnects

	d06892 [https://git.opendaylight.org/gerrit/#/q/d068922c53ed6f4f17b210464aa2a1bd49adb7f1] BUG-5306 [https://bugs.opendaylight.org/show_bug.cgi?id=5306]: Enable the SSL connection for ovs manager

	ec389f [https://git.opendaylight.org/gerrit/#/q/ec389f845eae183d55c6682b4f2f3159e589013f] BUG-7836 [https://bugs.opendaylight.org/show_bug.cgi?id=7836] - Make OVSDB southbound plugin listener port configurable

	9b5598 [https://git.opendaylight.org/gerrit/#/q/9b5598c67f4eefe10cf2fb715d3b8cd29618e787] BUG-2487 [https://bugs.opendaylight.org/show_bug.cgi?id=2487] - Too large configuration file from OVS

	c880b5 [https://git.opendaylight.org/gerrit/#/q/c880b5972f0a3b2b27bf7060d389ae4803723cc3] Checkstyle: fix ParenPad violations

	05afaa [https://git.opendaylight.org/gerrit/#/q/05afaa315319b573b11516d7b04773b024e9546e] BUG-7023 [https://bugs.opendaylight.org/show_bug.cgi?id=7023] - NPE at org.opendaylight.ovsdb.southbound.OvsdbConnectionManager.getClient

	9af401 [https://git.opendaylight.org/gerrit/#/q/9af401d7f08a3c4916dd7dede9624d5b634a8817] BUG-7563 [https://bugs.opendaylight.org/show_bug.cgi?id=7563]: Add config for inactivity_probe and max_backoff

	da65cb [https://git.opendaylight.org/gerrit/#/q/da65cb6ace86207ddaa0e8310ce2c8d9d4d11000] BUG-7559 [https://bugs.opendaylight.org/show_bug.cgi?id=7559]: Add utilities to expose TP by ext-id, get dpnId from TP

	3c3451 [https://git.opendaylight.org/gerrit/#/q/3c34510c27a864899c9e530aafeaf81c48c71df9] BUG-6579 [https://bugs.opendaylight.org/show_bug.cgi?id=6579] removed boilerplate code

	5eb9b5 [https://git.opendaylight.org/gerrit/#/q/5eb9b508c54f302e4d204e3b228b41abfa1087d3] BUG-6579 [https://bugs.opendaylight.org/show_bug.cgi?id=6579] checking the depency before transaction

	d7306b [https://git.opendaylight.org/gerrit/#/q/d7306bd1b2a06291eb1946215906133c9cb38083] BUG-6579 [https://bugs.opendaylight.org/show_bug.cgi?id=6579] added dependency queue

	b1426c [https://git.opendaylight.org/gerrit/#/q/b1426c3bff15635c5f4b9c063a4a184af6cf4a58] BUG-6579 [https://bugs.opendaylight.org/show_bug.cgi?id=6579] handling back to back tx updates

	e96963 [https://git.opendaylight.org/gerrit/#/q/e969632ca138215526f1260294481cc5bab2f267] BUG-7310 [https://bugs.opendaylight.org/show_bug.cgi?id=7310]: Add configurable option to skip columns

	941b7e [https://git.opendaylight.org/gerrit/#/q/941b7edd3efc41688c652f97d84a21db95fe6e51] BUG-6579 [https://bugs.opendaylight.org/show_bug.cgi?id=6579] added basic unit tests

	2b9dca [https://git.opendaylight.org/gerrit/#/q/2b9dcab4ec4e79eae4a1badf164cee83d993b5e8] BUG-7373 [https://bugs.opendaylight.org/show_bug.cgi?id=7373] - ConflictingModificationAppliedException: Node was created by other transaction

	f83cd3 [https://git.opendaylight.org/gerrit/#/q/f83cd38008840cf96dbb14bfc6022433e8d04915] BUG-7414 [https://bugs.opendaylight.org/show_bug.cgi?id=7414]: Tunnel pushed to wrong OVS

OpenFlow Configuration Protocol (OF-CONFIG)

	eda88e [https://git.opendaylight.org/gerrit/#/q/eda88e01ff874665760524ad3624d271bb4578cc] fix UT error

OpenFlow Plugin

	501d4d [https://git.opendaylight.org/gerrit/#/q/501d4d64c806ad39e90b97def853fa043dda5f30] Fix statistics race condition on big flows

	86fd39 [https://git.opendaylight.org/gerrit/#/q/86fd396bd6142c58db119096f1badb4fd55719fa] BUG-7915 [https://bugs.opendaylight.org/show_bug.cgi?id=7915] - Zero flows populated in all switches when connected to Leader Node

	49b07d [https://git.opendaylight.org/gerrit/#/q/49b07d9d643504f2f8d596e207ef4cf4b9ab8946] Add arbitrary mask for nxm-reg

	308285 [https://git.opendaylight.org/gerrit/#/q/308285f1cdc36da1b5812d1db7e6e78f862eb14f] Fix connection closing on switch IDLE state

	9b95b1 [https://git.opendaylight.org/gerrit/#/q/9b95b127c39f6dd18ed3afbbaffaa42a0991aafe] BUG-7910 [https://bugs.opendaylight.org/show_bug.cgi?id=7910] - Flow with ethernet mask (ff:ff:ff:ff:ff:ff), get stored under alien-id in operational data store

	11f1b6 [https://git.opendaylight.org/gerrit/#/q/11f1b6ef32ccaaf54a21fa937fe91f8638090deb] Fix comparison between port numbers in match

	e0030a [https://git.opendaylight.org/gerrit/#/q/e0030a34c3d65a6777804265e724ec57c26817cf] BUG-7763 [https://bugs.opendaylight.org/show_bug.cgi?id=7763] - Openflow plugin deletes switch from topology while changing mastership from one controller to another

	5ea445 [https://git.opendaylight.org/gerrit/#/q/5ea4457df89af38b98553b5a9be824f25c545447] BUG-7736 [https://bugs.opendaylight.org/show_bug.cgi?id=7736] - Forwarding Rules application cluster singleton id should not use the same cluster singleton id as the openflow switch singleton connection handler

	d813c7 [https://git.opendaylight.org/gerrit/#/q/d813c7f656b4dd6f460b66a2fa303a448f6a4e07] BUG-7764 [https://bugs.opendaylight.org/show_bug.cgi?id=7764] - Do no throw warning on explicit task cancellation

	ed16f7 [https://git.opendaylight.org/gerrit/#/q/ed16f7523bac69cf6057b4cb2e16be5689b1df32] BUG-7501 [https://bugs.opendaylight.org/show_bug.cgi?id=7501] - Ensure delete old statistics and create new ones are executed sequentially to ensure stats are updated properly.

	4683e5 [https://git.opendaylight.org/gerrit/#/q/4683e5748682a4739139fd11d426bb193385f346] BUG-7500 [https://bugs.opendaylight.org/show_bug.cgi?id=7500] - TransactionChainManager: fix synchronization issues and error handling when mdsal throws an error.

	8cdd80 [https://git.opendaylight.org/gerrit/#/q/8cdd80470a2a1aee6b492ea879b845fbe7cd7926] Fix PacketInV10TranslatorTest

	adbc13 [https://git.opendaylight.org/gerrit/#/q/adbc1301b56bcef7fce70e1233b2e41abca958a3] BUG-7608 [https://bugs.opendaylight.org/show_bug.cgi?id=7608]: use blueprint action-provider/action-service

	32a99f [https://git.opendaylight.org/gerrit/#/q/32a99fdf314b35f62610b733b10fd25d5793e177] BUG-7499 [https://bugs.opendaylight.org/show_bug.cgi?id=7499] - ensure statistics scheduler does not die and keep trying while the controller keeps the ownership of the device

	371c65 [https://git.opendaylight.org/gerrit/#/q/371c65647d29712b92836dcc2b178d42aecbf9c7] BUG-7453 [https://bugs.opendaylight.org/show_bug.cgi?id=7453] - FlowRemoved doesn’t have Removed Reason Information

	5ea638 [https://git.opendaylight.org/gerrit/#/q/5ea63885f11c0b0a9af7f83ffa03f62ebc9c1b4f] BUG-6110 [https://bugs.opendaylight.org/show_bug.cgi?id=6110]: Fixed bugs in statistics manager due to race condition.

	de64a9 [https://git.opendaylight.org/gerrit/#/q/de64a9f6fb2da03236885800cc65a4fb10349511] Fix Direct statistics RPC - actions part

	747013 [https://git.opendaylight.org/gerrit/#/q/747013cb1ff4694645b243ab33af2b990f5a774e] RPC opendaylight-direct-statistics:get-flow-statistics not taking nicira extension match

	dd7f35 [https://git.opendaylight.org/gerrit/#/q/dd7f3513ffac6dc623f9baf16338213ce58e41c3] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	7d65e9 [https://git.opendaylight.org/gerrit/#/q/7d65e998390d6bc7d8885634e165502c5198f2ce] Bug7485 Make statistics poller parameters configurable.

	ffc6b3 [https://git.opendaylight.org/gerrit/#/q/ffc6b31b4ff2e620a350e4974048ac3380a89c0c] BUG-7071 [https://bugs.opendaylight.org/show_bug.cgi?id=7071]: adding support for fin-timeout

	8917aa [https://git.opendaylight.org/gerrit/#/q/8917aaa832af80f4a32071963dc6f0b7454fff1a] BUG-7481 [https://bugs.opendaylight.org/show_bug.cgi?id=7481] - Flows with nicira actions get corrupted after cluster failure

	32b316 [https://git.opendaylight.org/gerrit/#/q/32b316e33f931b6126f3fee5169221a4665e4d2f] BUG-6997 [https://bugs.opendaylight.org/show_bug.cgi?id=6997] supporting OXM_OF_MPLS_LABEL in nicira extensiona

	e059b1 [https://git.opendaylight.org/gerrit/#/q/e059b1b26590113f7e102c4b0e5127e9c4276dfc] BUG-7415 [https://bugs.opendaylight.org/show_bug.cgi?id=7415] Reducing the severity of the log message

	66c19f [https://git.opendaylight.org/gerrit/#/q/66c19f4bbb00399056dce40db7d3312375558bc1] BUG-7349 [https://bugs.opendaylight.org/show_bug.cgi?id=7349] - Flow ID not updated in operational after removing and adding a flow with same match

	f9f165 [https://git.opendaylight.org/gerrit/#/q/f9f16550a8c108c18a5024fb778078383161d81e] Add LOG.isDebugEnabled to add performance.

	3456c4 [https://git.opendaylight.org/gerrit/#/q/3456c4ce718df61277042189b1a2f0e113ee689c] Improve class with lambdas. Change wrong parameters and variables.

	d1ace0 [https://git.opendaylight.org/gerrit/#/q/d1ace018558f4573567178b12d03aecf8eac3e56] Split long lines (>120)

	41b15d [https://git.opendaylight.org/gerrit/#/q/41b15da9007b690a3f3e3f74b8af5a1e2bd3ecec] Remove unused imports, repair checkstyle first sentence.

	84a143 [https://git.opendaylight.org/gerrit/#/q/84a143bc9d5adee46250b8c2633abbd2c91c923b] BUG-7335 [https://bugs.opendaylight.org/show_bug.cgi?id=7335] - Flow update rejected by switch generates faulty flow entry in operational DS

SDN Interface Application (SDNi)

	267746 [https://git.opendaylight.org/gerrit/#/q/26774604697193529f8034a869611b863d49cb44] Do not pull in odl-mdsal-all

	b53576 [https://git.opendaylight.org/gerrit/#/q/b535761edff80b1afacd848c8a132d3ebe92734a] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	800459 [https://git.opendaylight.org/gerrit/#/q/800459eb1bd53b68b3ef44a588228385489382e3] Removed fixed (and ancient) version of maven-bundle-plugin

SNMP4SDN

	dbb4de [https://git.opendaylight.org/gerrit/#/q/dbb4de8c78845dab5b05137582e249f65926d554] Fix TopologyServices related internal interface binding failure, and TopologyServiceUtil is removed since no effect

Secure tag eXchange Protocol (SXP)

	103831 [https://git.opendaylight.org/gerrit/#/q/103831a39c2878f0676066c4a472631dcf4225b1] BUG-7347 [https://bugs.opendaylight.org/show_bug.cgi?id=7347] - NodeIdentity listener does not check security fields

	ecc595 [https://git.opendaylight.org/gerrit/#/q/ecc59522cdb37e206c6241f3ca5019dc8a0def5c] BUG-7517 [https://bugs.opendaylight.org/show_bug.cgi?id=7517] - Both mode does not send PurgeAll on close

Service Function Chaining

	b6646c [https://git.opendaylight.org/gerrit/#/q/b6646c9632484cdf52cc8c4bff86ffce3af4f17c] Support VxLAN-gpe in sfc103 demo setup

	a83a70 [https://git.opendaylight.org/gerrit/#/q/a83a7026d4d9687528dd12c64ccee4ce5b3a801f] BUG-7548 [https://bugs.opendaylight.org/show_bug.cgi?id=7548] : Delete SFF vxgpe port on SFF delete

Unified Secure Channel (USC)

	3f9677 [https://git.opendaylight.org/gerrit/#/q/3f96770e9682e6171894ea7d1c260de635753084] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

	e1a370 [https://git.opendaylight.org/gerrit/#/q/e1a3708abe46698e78b029f4634d344d62105a4a] Update to work with BouncyCastle 1.55

User Network Interface Manager (UNIMGR)

	a11ecd [https://git.opendaylight.org/gerrit/#/q/a11ecd28858856eb78f56c91ffde16fc8ac09942] BUG-5222 [https://bugs.opendaylight.org/show_bug.cgi?id=5222]: do not pull in odl-mdsal-xsql

Virtual Tenant Network (VTN)

	b1971f [https://git.opendaylight.org/gerrit/#/q/b1971f8c400e27724712a1ab5be8786bbfa596a3] Fix BUG-7969 [https://bugs.opendaylight.org/show_bug.cgi?id=7969], to avoid incompatible database queries contructed

	679f6d [https://git.opendaylight.org/gerrit/#/q/679f6dea38021aa44a25da41fff2f0607d361b0f] BUG-7402 [https://bugs.opendaylight.org/show_bug.cgi?id=7402]: Upgrade Apache Tomcat for VTN coordinator to 7.0.73.

	8a18c4 [https://git.opendaylight.org/gerrit/#/q/8a18c4c253bd187055a118a3a3d69a608f80be35] BUG-7360 [https://bugs.opendaylight.org/show_bug.cgi?id=7360]: Fixed VTN coordinator build error on Fedora 25.

YANG Tools

	a26d18 [https://git.opendaylight.org/gerrit/#/q/a26d183c4b9849b374d58ea180e5ad83c9a2932a] BUG-7759 [https://bugs.opendaylight.org/show_bug.cgi?id=7759]: return deserialized type

	5ff949 [https://git.opendaylight.org/gerrit/#/q/5ff9493871c2beb02cfb35434b0ce9847778f51c] BUG-6392 [https://bugs.opendaylight.org/show_bug.cgi?id=6392]: Fix lenient parsing of unkeyed list entries

	66a191 [https://git.opendaylight.org/gerrit/#/q/66a19187c088a07b22bdbca2a4e709071b4790c2] BUG-5410 [https://bugs.opendaylight.org/show_bug.cgi?id=5410] - XSD regular expressions are interpreted as Java regexes (2/2)

	63d9db [https://git.opendaylight.org/gerrit/#/q/63d9dbf1e0245901b8031b340daa55f173126eb2] BUG-5410 [https://bugs.opendaylight.org/show_bug.cgi?id=5410] - XSD regular expressions are interpreted as Java regexes (1/2)

	3cbea0 [https://git.opendaylight.org/gerrit/#/q/3cbea02072d6beb7a2fe04799a089a5bbb9929b1] BUG-6856 [https://bugs.opendaylight.org/show_bug.cgi?id=6856]: Rpc definition should implicitly define input/output

	0e755b [https://git.opendaylight.org/gerrit/#/q/0e755bdaad93f44337ce5e389724e4cf0713e464] BUG-7879 [https://bugs.opendaylight.org/show_bug.cgi?id=7879] - refine target node was not found

	62235f [https://git.opendaylight.org/gerrit/#/q/62235f7f137451e80a4e89ed062c7cd49c16d36b] BUG-7182 [https://bugs.opendaylight.org/show_bug.cgi?id=7182]: YangToSourcesProcessor deletes output directory

	2d4178 [https://git.opendaylight.org/gerrit/#/q/2d4178791a19e6f882b36cd8acf68241dd958d16] BUG-7182 [https://bugs.opendaylight.org/show_bug.cgi?id=7182]: add M2E lifecycle mapping

	f5080e [https://git.opendaylight.org/gerrit/#/q/f5080ebb2e33e0160ae3bfd7995b965b6671977c] BUG-7568 [https://bugs.opendaylight.org/show_bug.cgi?id=7568]: silence YangTextSchemaContextResolver

	c6bbca [https://git.opendaylight.org/gerrit/#/q/c6bbca468071df29cba43bb3a9f692ac4ed270fc] SourceIdentifier.create() method deprecation explained

	fc8713 [https://git.opendaylight.org/gerrit/#/q/fc8713f66b8ecef5336b4b07cb01b8bb8718143a] Do not confuse statement and argument names

	7d5cf4 [https://git.opendaylight.org/gerrit/#/q/7d5cf42b0fcc4bc9c26643a584c8895dfdee355d] Fix mandatory statement checking

	5c0d83 [https://git.opendaylight.org/gerrit/#/q/5c0d8324cb06dddec864b40e222813f63ad702d4] BUG-7440 [https://bugs.opendaylight.org/show_bug.cgi?id=7440]: Fix empty parent in deviate “replace”

	380048 [https://git.opendaylight.org/gerrit/#/q/380048b098e7366adf1662c6382b28a731873ece] BUG-7267 [https://bugs.opendaylight.org/show_bug.cgi?id=7267]: catch RuntimeExceptions when processing sources

	1a712d [https://git.opendaylight.org/gerrit/#/q/1a712d2a2ebf17d7b19818a36caa2e78f75219b3] BUG-7038 [https://bugs.opendaylight.org/show_bug.cgi?id=7038]: cleanup parser listener

	1fd63e [https://git.opendaylight.org/gerrit/#/q/1fd63e4e1c78822abbc105ed2b8f348e9651e10f] BUG-7161 [https://bugs.opendaylight.org/show_bug.cgi?id=7161]: Do not tolerate source-level exceptions

	cf0eb8 [https://git.opendaylight.org/gerrit/#/q/cf0eb84c185ebd032d41e453c21e6aa709c0776b] BUG-7267 [https://bugs.opendaylight.org/show_bug.cgi?id=7267]: catch null path offenders

Boron-SR4 Release Notes

This page details changes and bug fixes between the Boron Stability Release 3 (Boron-SR3) and the Boron Stability Release 4 (Boron-SR4) of OpenDaylight.

Projects with No Noteworthy Changes

The following projects had no noteworthy changes in the Boron-SR4 Release:

	Atrium Router

	Authentication, Authorization and Accounting (AAA)

	Cardinal

	Centinel

	Control And Provisioning of Wireless Access Points (CAPWAP)

	Controller Shield

	DLUX

	Device Identification and Driver Management (DIDM)

	Energy Management Plugin

	Fabric As A Service (FaaS)

	Group Based Policy (GBP)

	Honeycomb Virtual Bridge Domain

	Infrastructure Utilities

	Internet of Things Data Management (IoTDM)

	L2 Switch

	LISP Flow Mapping

	Link Aggregation Control Protocol (LACP)

	NAT Application Plugin

	NEtwork MOdeling (NEMO)

	NeXt UI Toolkit

	NetIDE

	Network Intent Composition (NIC)

	Neutron Northbound

	ORI C&M Protocol (OCP)

	OpenFlow Configuration Protocol (OF-CONFIG)

	OpenFlow Protocol Library

	Packet Cable/PCMM

	SDN Interface Application (SDNi)

	SNMP Plugin

	SNMP4SDN

	Secure Network Bootstrapping Infrastructure (SNBI)

	Service Function Chaining

	Table Type Patterns (TTP)

	Time Series Data Repository (TSDR)

	Topology Processing Framework

	Unified Secure Channel (USC)

	User Network Interface Manager (UNIMGR)

	YANG PUBSUB

ALTO

	4f45d0 [https://git.opendaylight.org/gerrit/#/q/4f45d078faaf4c9fb3508c019519e6d036e0b342] Fix yang model validity

BGP PCEP

	e5ec0b [https://git.opendaylight.org/gerrit/#/q/e5ec0b2550df1084588006d0e89d1b9164b21328] BUG-8292 [https://bugs.opendaylight.org/show_bug.cgi?id=8292] Fix BGP flowspec NLRI length read

	83214e [https://git.opendaylight.org/gerrit/#/q/83214ec093fa10b5b12157560ff994f85f874dda] BUG-8548 [https://bugs.opendaylight.org/show_bug.cgi?id=8548]: Pass missing parameter to

	2801f2 [https://git.opendaylight.org/gerrit/#/q/2801f2b71ca49dcee50b643ef5ed4f53938609fc] BUG-8156 [https://bugs.opendaylight.org/show_bug.cgi?id=8156] Fix PCEP topology registration

	4b1b55 [https://git.opendaylight.org/gerrit/#/q/4b1b55c3b2a28df1de05887e0e1abed7855bc95c] Fix RD pattern in RouteDistinguisherBuilder

	042b3e [https://git.opendaylight.org/gerrit/#/q/042b3e5ff2fd7371342693948a282546c2a6165a] BUG-4491 [https://bugs.opendaylight.org/show_bug.cgi?id=4491]: Race condition under PCEP Topology Provider

	859728 [https://git.opendaylight.org/gerrit/#/q/8597287b7fbffbe1b7eec154812f89509a397102] BUG-8306 [https://bugs.opendaylight.org/show_bug.cgi?id=8306]: Fix Pcep failing test

	c99daf [https://git.opendaylight.org/gerrit/#/q/c99dafd24386a2ed1d12b972c6e6229877176e24] BUG-8202 [https://bugs.opendaylight.org/show_bug.cgi?id=8202]: Fix Conflict Modification on odl-programming

	732599 [https://git.opendaylight.org/gerrit/#/q/7325992cf67b8190cd22f1aa3b3285754def18dc] BUG-8275 [https://bugs.opendaylight.org/show_bug.cgi?id=8275]: Close ReadOnly transaction

	c3c46c [https://git.opendaylight.org/gerrit/#/q/c3c46c780c191c0a93ab77e4b5cb2066085cd832] BUG-8198 [https://bugs.opendaylight.org/show_bug.cgi?id=8198]: Fix InferenceException

	66199e [https://git.opendaylight.org/gerrit/#/q/66199e71903bdec43d8753287a7c594bde59a19d] BUG-8252 [https://bugs.opendaylight.org/show_bug.cgi?id=8252] Fix IP prefix length util

	a41992 [https://git.opendaylight.org/gerrit/#/q/a419922b34fc1a1b1f896fd4bfcaacb1b39a8d08] BUG-6973 [https://bugs.opendaylight.org/show_bug.cgi?id=6973]: Implement test for InstructionDeployer

	85bc55 [https://git.opendaylight.org/gerrit/#/q/85bc555fe0329b8ff301ab9d317ee331406ccdf6] Rework CheckUtil Test

	24ecbf [https://git.opendaylight.org/gerrit/#/q/24ecbf1bc54c9f75a66d514b67bc3c22b34d998f] BUG-8007 [https://bugs.opendaylight.org/show_bug.cgi?id=8007]: Code Clean Up

	036b01 [https://git.opendaylight.org/gerrit/#/q/036b018b24c065f3e9cda42d53b5d8a63773f951] BUG-8007 [https://bugs.opendaylight.org/show_bug.cgi?id=8007]: Code clean Up

	560438 [https://git.opendaylight.org/gerrit/#/q/5604385a16f8b0080fd3c859d2268d45b816c3eb] BUG-8007 [https://bugs.opendaylight.org/show_bug.cgi?id=8007]: Code Clean Up

	7576c5 [https://git.opendaylight.org/gerrit/#/q/7576c5924cc21997ff456635659f5c7c162f2804] BUG-8007 [https://bugs.opendaylight.org/show_bug.cgi?id=8007]: Code clean up

	a58c6b [https://git.opendaylight.org/gerrit/#/q/a58c6bba601d090861dc3b79fd7f37e7b364441d] BUG-6975 [https://bugs.opendaylight.org/show_bug.cgi?id=6975]: Integrate Topology Provider with CS Service

	d53c03 [https://git.opendaylight.org/gerrit/#/q/d53c0309de375b68e9fa4ea9878fc6312c976c0b] BUG-6973 [https://bugs.opendaylight.org/show_bug.cgi?id=6973]: Wire topology-provider with BP

	feee36 [https://git.opendaylight.org/gerrit/#/q/feee36e9412f34d2e2c930d9e13bdc7eed6eacfe] BUG-8213 [https://bugs.opendaylight.org/show_bug.cgi?id=8213]: Add missing mandatory attribute on tests

	aa7617 [https://git.opendaylight.org/gerrit/#/q/aa76178904dc5435d9cfd6530d38ad235e8292a6] BUG-8007 [https://bugs.opendaylight.org/show_bug.cgi?id=8007]: Programming Clean up

	ac6687 [https://git.opendaylight.org/gerrit/#/q/ac6687e4092c7b27310896ae5b1b1f5d664175ec] BUG-6975 [https://bugs.opendaylight.org/show_bug.cgi?id=6975]: Integrate Programming with Cluster Singleton Service

	636a1b [https://git.opendaylight.org/gerrit/#/q/636a1b17601f5506f423286c779c84accee3a393] BUG-6973 [https://bugs.opendaylight.org/show_bug.cgi?id=6973]: Implement Programming config via DS

	fea98e [https://git.opendaylight.org/gerrit/#/q/fea98eb05cfc8d996eaca38b7fd121563b63331d] BUG-6973 [https://bugs.opendaylight.org/show_bug.cgi?id=6973]: Wire Programming with BP

	5f0f0e [https://git.opendaylight.org/gerrit/#/q/5f0f0e8fd6e12fccd621fbc8de7e8ec5bf7dd690] BUG-8203 [https://bugs.opendaylight.org/show_bug.cgi?id=8203]: update Netty isRoot method name

	6c16df [https://git.opendaylight.org/gerrit/#/q/6c16dff2e36c65b58bf0e67d3435e46bc4f6000c] Restrict powermock dependency scope to test

	aa71d4 [https://git.opendaylight.org/gerrit/#/q/aa71d43f58dc8b5242553ecc75a196fb5c0ca5e6] BUG-7976 [https://bugs.opendaylight.org/show_bug.cgi?id=7976]: Race between peer removal and routes update

Controller

	b11aa4 [https://git.opendaylight.org/gerrit/#/q/b11aa4da9a8a80025332c2f1da225e4b581176f3] BUG-8038 [https://bugs.opendaylight.org/show_bug.cgi?id=8038]: Ignore testLeadershipTransferOnShutdown

	ca7d83 [https://git.opendaylight.org/gerrit/#/q/ca7d831361dd318158b7737104a9a52d63e09944] BUG-8327 [https://bugs.opendaylight.org/show_bug.cgi?id=8327]: GlobalBundleScanningSchemaServiceImpl should be a proxy

	eff76f [https://git.opendaylight.org/gerrit/#/q/eff76fdd3d3ed3570aed964f8715312a01ef3a37] BUG-7927 [https://bugs.opendaylight.org/show_bug.cgi?id=7927]: stop scanning bundles on framework stop

	869a74 [https://git.opendaylight.org/gerrit/#/q/869a7497b9e7f6c765626848dbcc9a1f4db0a3d2] Turn off visibility of GlobalBundleScanningSchemaServiceImpl#start()

	09f442 [https://git.opendaylight.org/gerrit/#/q/09f44218611fb5a1439d1b2c7ffef401449c354b] Remove artifacts entries for long-gone RESTCONF

	5515ab [https://git.opendaylight.org/gerrit/#/q/5515abe04abc3913871c11b896c1c93699d9ce89] Move sal-remote to sal-rest-connector

	8edc82 [https://git.opendaylight.org/gerrit/#/q/8edc82760c423e16da02213251b5231de59e9dc8] BUG-8219 [https://bugs.opendaylight.org/show_bug.cgi?id=8219]: optimize empty CompositeDataTreeCohort case

	1374a9 [https://git.opendaylight.org/gerrit/#/q/1374a9e6f072862b5144b7af7a5cfd078f42e31a] BUG-7783 [https://bugs.opendaylight.org/show_bug.cgi?id=7783]: increase precision of execution times

	7b9477 [https://git.opendaylight.org/gerrit/#/q/7b94771d6216ebb5217e3412ecc7f496ff6cee52] BUG-7814 [https://bugs.opendaylight.org/show_bug.cgi?id=7814]: Add counter to make tx actor names unique

Genius

	5c7f36 [https://git.opendaylight.org/gerrit/#/q/5c7f36f8f2da6153f90fff0e82e9bf2ce2ebc87a] Workaround for BUG-7451 [https://bugs.opendaylight.org/show_bug.cgi?id=7451]

	dbfd73 [https://git.opendaylight.org/gerrit/#/q/dbfd73fc1abf517d25f3f16d54963aae9d5c6b01] Add getChildInterfaces to IInterfaceManager

	5d68e4 [https://git.opendaylight.org/gerrit/#/q/5d68e4338fd86b7008dba550ccb9ffd2d31a0225] BUG-8023 [https://bugs.opendaylight.org/show_bug.cgi?id=8023] CSIT failures with ELAN drop rule

Integration/Distribution

	18eade [https://git.opendaylight.org/gerrit/#/q/18eade956f7e6c9d6c0c7c784f81d6219f278238] BUG-8197 [https://bugs.opendaylight.org/show_bug.cgi?id=8197]: Remove CAPWAP from compatible

MD-SAL

	ba557d [https://git.opendaylight.org/gerrit/#/q/ba557dbadcac933b6be48e509299f5e899fd6f29] BUG-8449 [https://bugs.opendaylight.org/show_bug.cgi?id=8449] - BindingToNormalizedNodeCodec fails to deserialize union of leafrefs

	33f90b [https://git.opendaylight.org/gerrit/#/q/33f90b7b47a33eddae0df31437aa0070e5456901] BUG-8237 [https://bugs.opendaylight.org/show_bug.cgi?id=8237] - BI to BA conversion not resolving nested nodes

	14f049 [https://git.opendaylight.org/gerrit/#/q/14f04995729708e2ac192df2bdfce6fe6a5a9aaf] BUG-8327 [https://bugs.opendaylight.org/show_bug.cgi?id=8327]: Introduce DOMYangTextSourceProvider and implement it

	262d02 [https://git.opendaylight.org/gerrit/#/q/262d0237b17d4596b167f49a644c1dbe8f7505bc] BUG-7927 [https://bugs.opendaylight.org/show_bug.cgi?id=7927]: stop scanning bundles on framework stop

	98bc46 [https://git.opendaylight.org/gerrit/#/q/98bc46847cda68e350c3d498e2bd718f7f82cafa] Lazily create schema context in GlobalBundleScanning*

	c2c61d [https://git.opendaylight.org/gerrit/#/q/c2c61de266b41416a11f381d3dba79d5866d7e76] Turn off visibility of OsgiBundleScanningSchemaService#start()

	45dfd0 [https://git.opendaylight.org/gerrit/#/q/45dfd0c8f23a157ea64a9acd5b88b6f62e324776] Speed up OsgiBundleScanningSchemaService close

	eba650 [https://git.opendaylight.org/gerrit/#/q/eba6505fa7ca734ff895fcf753664f3d73f1324b] BUG-8004 [https://bugs.opendaylight.org/show_bug.cgi?id=8004]: handle implicit RPC input

NETCONF

	8dfd6a [https://git.opendaylight.org/gerrit/#/q/8dfd6ad2518483494941b90da43c87da19213336] BUG-8085 [https://bugs.opendaylight.org/show_bug.cgi?id=8085]: create missing parent augmentation node

	5fc76d [https://git.opendaylight.org/gerrit/#/q/5fc76d99368f3b1c0c9aeba0512992819123eff3] BUG-8566 [https://bugs.opendaylight.org/show_bug.cgi?id=8566] direct writes to ordered list fail

	6fdf99 [https://git.opendaylight.org/gerrit/#/q/6fdf99175b9327f84feb8b32313087e5f4b56aa6] BUG-8455 [https://bugs.opendaylight.org/show_bug.cgi?id=8455]: Yang Patch response is not having the error details

	e76019 [https://git.opendaylight.org/gerrit/#/q/e76019dc20112db9c60a403b12647d84299c95ea] BUG-8289 [https://bugs.opendaylight.org/show_bug.cgi?id=8289] - 409 in cluster restperfclient test

	e98774 [https://git.opendaylight.org/gerrit/#/q/e9877415e15d5c5098b20aa7f96cbb31837c3e9c] BUG-8405 [https://bugs.opendaylight.org/show_bug.cgi?id=8405]: Add close check to NetconfDevice

	09a3b0 [https://git.opendaylight.org/gerrit/#/q/09a3b011ff481d384766126159eefc16a4c9c014] BUG-8311 [https://bugs.opendaylight.org/show_bug.cgi?id=8311] - Apidoc: Incomprehensible 500 id model is wrong BUG-8266 [https://bugs.opendaylight.org/show_bug.cgi?id=8266] - Apidoc explorer is broken after installing Boron SR3

	cfa555 [https://git.opendaylight.org/gerrit/#/q/cfa555d8286e24291eac986dada2e89084964bdf] BUG-8197 [https://bugs.opendaylight.org/show_bug.cgi?id=8197]: Deregister schema sources on actor stop

	0569f0 [https://git.opendaylight.org/gerrit/#/q/0569f044b41bc19ffc61c6448a41a3ae5e75dd0c] Remove references to controller’s sal-remote

	da2126 [https://git.opendaylight.org/gerrit/#/q/da2126ecf60a994578c2ef654f4ff73ae727f6b5] Refactor netconf clustered topology tests

	46bc71 [https://git.opendaylight.org/gerrit/#/q/46bc71d8f6dd54db48abb0f6365910d337f3eab0] BUG-8152 [https://bugs.opendaylight.org/show_bug.cgi?id=8152]: Add way to configure idle timeout

	3cf390 [https://git.opendaylight.org/gerrit/#/q/3cf390bc42cd5df19408387ba2a93d30752fb9d3] Do not include duplicate models

	d57368 [https://git.opendaylight.org/gerrit/#/q/d573686ff91c5bb92486287e3e95207972bbcfb7] BUG-8152 [https://bugs.opendaylight.org/show_bug.cgi?id=8152]: Transaction is already opened

	c27b52 [https://git.opendaylight.org/gerrit/#/q/c27b52008dcfe785b0aad79e0900d829ec7bf3d4] Change handling of netconf cluster transactions

	a4199d [https://git.opendaylight.org/gerrit/#/q/a4199d37ca3d4a8c81d4e3cfd3bc0b4488ed60dd] Close read-only transactions

	7f898e [https://git.opendaylight.org/gerrit/#/q/7f898edbc352f41c212146994f8409c89d855ef5] BUG-7868 [https://bugs.opendaylight.org/show_bug.cgi?id=7868]: perform checks before starting modifications

	574d8b [https://git.opendaylight.org/gerrit/#/q/574d8beb3e081cf6da0d7306cbc3ec5eaa9ca2bd] BUG-8115 [https://bugs.opendaylight.org/show_bug.cgi?id=8115]: Change URI decoding from ISO-8859-1 to UTF-8

	b936ff [https://git.opendaylight.org/gerrit/#/q/b936ffc1e85ab2c9365f36ba30620a5af4e8199d] BUG-8084 [https://bugs.opendaylight.org/show_bug.cgi?id=8084] - FilterContentValidator.getKeyValues creates invalid YII key values

	a728c0 [https://git.opendaylight.org/gerrit/#/q/a728c028309ef356c4179f3c510b8e0a66a6a62f] BUG-5581 [https://bugs.opendaylight.org/show_bug.cgi?id=5581]: Optimize subtree filtering

	614388 [https://git.opendaylight.org/gerrit/#/q/6143889e3ac88c0b19e4da61a2ddf41b42389268] BUG-8072 [https://bugs.opendaylight.org/show_bug.cgi?id=8072]: Fix decoding of URLs with external identityref

	751b3f [https://git.opendaylight.org/gerrit/#/q/751b3f739cb75bef573f0c9390a84800f5e4dcce] Fix LibraryModulesSchemasTest failure

	d44c83 [https://git.opendaylight.org/gerrit/#/q/d44c83d26c063caf97fdda6160188e02a7f651fd] BUG-7812 [https://bugs.opendaylight.org/show_bug.cgi?id=7812]: NPE when NetconfDeviceSalProvider.close

	c52b7e [https://git.opendaylight.org/gerrit/#/q/c52b7e26101d1a141818299d86c69f46408e6362] BUG-8037 [https://bugs.opendaylight.org/show_bug.cgi?id=8037] YANG Patch using “replace” instead of “merge”

Network Virtualization

	3ddaa2 [https://git.opendaylight.org/gerrit/#/q/3ddaa2d2d020c34b615e74feb13b5a118610e887] BUG-8696 [https://bugs.opendaylight.org/show_bug.cgi?id=8696] fix elan blueprint xml

	72e3e2 [https://git.opendaylight.org/gerrit/#/q/72e3e247636fa9ea0ec6fbd5598e974f9f68ecbc] BUG-7988 [https://bugs.opendaylight.org/show_bug.cgi?id=7988] - Cluster reboot fix

	995d2d [https://git.opendaylight.org/gerrit/#/q/995d2d3db6e2c5f4362afa41f8daa85d8b68938a] BUG-7809 [https://bugs.opendaylight.org/show_bug.cgi?id=7809] - NAT snatGroupIdPool is overlapping with Elan Groups

	34fae9 [https://git.opendaylight.org/gerrit/#/q/34fae92facefdf3c3276b42a8780d5c0f72b56b2] Bug8484: Non-NAPT Group action is drop for router associated with BGP-VPN

	32175d [https://git.opendaylight.org/gerrit/#/q/32175d56bbfa9538fab587d33d4ee2af5907cf70] BUG-8376 [https://bugs.opendaylight.org/show_bug.cgi?id=8376]: Fix DHCP for external tunnels

	a9945a [https://git.opendaylight.org/gerrit/#/q/a9945a7e9f0f1ce5251fcebcff7b5ffd24509e76] BUG-7866 [https://bugs.opendaylight.org/show_bug.cgi?id=7866] fixing remote bc group for vlan provider network

	022afb [https://git.opendaylight.org/gerrit/#/q/022afb3a8e60d63ff97e50e0180319ce996a96d9] BUG-7599 [https://bugs.opendaylight.org/show_bug.cgi?id=7599] hwvtep ucast mac add performance improv

	55da67 [https://git.opendaylight.org/gerrit/#/q/55da67182f0298c56ad63094e8279572bc2dd137] BUG-7866 [https://bugs.opendaylight.org/show_bug.cgi?id=7866] adding retries for remote dmac programming during tunnel up event

	7c94c9 [https://git.opendaylight.org/gerrit/#/q/7c94c96ef068646cc5a3c7ac2ac04c13622ddaea] BUG-7758 [https://bugs.opendaylight.org/show_bug.cgi?id=7758]: Use Trunk instead of Transparent port for Flat networks

	f3b171 [https://git.opendaylight.org/gerrit/#/q/f3b171c984c9e4b51c26d1fb8409b95ba49ca6de] BUG-8142 [https://bugs.opendaylight.org/show_bug.cgi?id=8142] : DHCP timeout issue.

	348193 [https://git.opendaylight.org/gerrit/#/q/34819334b9ef66593df81853cc9f95857161856d] BUG-8229 [https://bugs.opendaylight.org/show_bug.cgi?id=8229]: fix bad git merge of handleFloatingIpPortUpdated

	1e3242 [https://git.opendaylight.org/gerrit/#/q/1e3242f767b5631c531ca1eea5b709081594ae5f] BUG-8023 [https://bugs.opendaylight.org/show_bug.cgi?id=8023] Handling ELAN remote DMAC programming correctly

	a6d99b [https://git.opendaylight.org/gerrit/#/q/a6d99b0a698e79e59cb5faeda6f721088f5cce12] BUG-7606 [https://bugs.opendaylight.org/show_bug.cgi?id=7606]: Fix for missing table 110 flow in OVS 2.4 after VM live migration

	8e23ff [https://git.opendaylight.org/gerrit/#/q/8e23ffcb123b95252893444faac2ab7b11050852] BUG-7778 [https://bugs.opendaylight.org/show_bug.cgi?id=7778]: VM’s FIP are not able communicate to each other in external network provider

	a3a54f [https://git.opendaylight.org/gerrit/#/q/a3a54f227737f1b542bce6811faea7d9487cd1a7] BUG-8165 [https://bugs.opendaylight.org/show_bug.cgi?id=8165] - Learnt IP route does not reappear on DC-GW after OVSRestart

	31f21b [https://git.opendaylight.org/gerrit/#/q/31f21ba76b7223acaca57b9d5acb09de2c4fb306] BUG-7922 [https://bugs.opendaylight.org/show_bug.cgi?id=7922] - Use counter to keep track of duplicate flow entries

	99a36e [https://git.opendaylight.org/gerrit/#/q/99a36e584168ac8bbf9e2b05925a16809a6bd82e] BUG-7939 [https://bugs.opendaylight.org/show_bug.cgi?id=7939] - Remote flows missing in Table 21

	4ed33a [https://git.opendaylight.org/gerrit/#/q/4ed33ac63f597a999af34b95f20ce483a40ae0b6] BUG-7939 [https://bugs.opendaylight.org/show_bug.cgi?id=7939], 7938, 7968, 7997: Potential fix for the four L3VPN bugs

	770c08 [https://git.opendaylight.org/gerrit/#/q/770c08d6d48e59d9a2a4da3fc2b2407d36f4fbab] BUG-7939 [https://bugs.opendaylight.org/show_bug.cgi?id=7939]: VpnService Suite and Tempest failures

	9521be [https://git.opendaylight.org/gerrit/#/q/9521be701bab521e742e1d26d5ebed194b0639f5] BUG-8019 [https://bugs.opendaylight.org/show_bug.cgi?id=8019]: when the neutron port acting as gateway is deleted, invisible ip is not removed from FIB

	b7d79b [https://git.opendaylight.org/gerrit/#/q/b7d79b3650489979d0fc75726efa453b3c2f212a] BUG-7816 [https://bugs.opendaylight.org/show_bug.cgi?id=7816]: NullPointerException while create a router in external network provider

	d6b892 [https://git.opendaylight.org/gerrit/#/q/d6b89205460ee9bf2c7bad9e6fbc80a05708e615] Fix ACL IPv6 flows to match on ipv6_src/ipv6_dst for remote SG

	72359b [https://git.opendaylight.org/gerrit/#/q/72359b80a0c2010872f80779691f20744cba8c65] BUG-7952 [https://bugs.opendaylight.org/show_bug.cgi?id=7952]: ACLService to treat Ethertype=IPv6 and Protocol=icmp as a request for ICMPv6

	96117b [https://git.opendaylight.org/gerrit/#/q/96117b5185cac34c166afed2383c264dfcc20a2c] BUG-7979 [https://bugs.opendaylight.org/show_bug.cgi?id=7979]: Fix issue where VM is unable to acquire address during IPv6 tests

	261ad3 [https://git.opendaylight.org/gerrit/#/q/261ad33a4c51e9e6f371db878173b45341b863f2] BUG-7913 [https://bugs.opendaylight.org/show_bug.cgi?id=7913]: QosInterfaceStateChangeListener IllegalArgumentException

	c74e6c [https://git.opendaylight.org/gerrit/#/q/c74e6c4e411f4274d406003216a53482788e8e20] Migrate l3vpn service docs to netvirt

	4c2608 [https://git.opendaylight.org/gerrit/#/q/4c26089391036631cd7ecdbd7282e2636851beb5] BUG-8023 [https://bugs.opendaylight.org/show_bug.cgi?id=8023]: Making ELAN to use StateTunnelList listener

	d0c2e1 [https://git.opendaylight.org/gerrit/#/q/d0c2e142a2082eafc85c263c0a80ec4c02b0a969] Correct several equals() bugs

ODL Root Parent

	195c5b [https://git.opendaylight.org/gerrit/#/q/195c5be2b917364ae4b33ff2e70ec55a73a7eb37] Bump netty to 4.0.45

	0bb105 [https://git.opendaylight.org/gerrit/#/q/0bb105904f2f882e1a739aa1240732ec96186788] Add cli property to un-skip git-commit-id skip flag

OVSDB Integration

	d55457 [https://git.opendaylight.org/gerrit/#/q/d554578cf11073c314ebd0e22f7092b0b490583e] BUG-8280 [https://bugs.opendaylight.org/show_bug.cgi?id=8280]: TerminationPoint reconciliation fails

	5145a7 [https://git.opendaylight.org/gerrit/#/q/5145a76b3600913bd171047408239b5a78b4ba50] BUG-6692 [https://bugs.opendaylight.org/show_bug.cgi?id=6692] - Fix checkstyle problems not detected by the current version

	25f0d0 [https://git.opendaylight.org/gerrit/#/q/25f0d037873174ed83ab618ce35ed7ebea6954b7] BUG-7781 [https://bugs.opendaylight.org/show_bug.cgi?id=7781] update vlan bindings and tunnel ips

	c4b95f [https://git.opendaylight.org/gerrit/#/q/c4b95fc389c99e3e4a2187898902439644713360] Don’t ignore .gitignore

	20613e [https://git.opendaylight.org/gerrit/#/q/20613e570aca1d66e61031eed545453c19211454] BUG-7599 [https://bugs.opendaylight.org/show_bug.cgi?id=7599] rename opData method as operData

	018c31 [https://git.opendaylight.org/gerrit/#/q/018c316db61228536ab1db395ecc3b177bf85d12] BUG-7599 [https://bugs.opendaylight.org/show_bug.cgi?id=7599] improve perf of ucast mcas

	3db9fe [https://git.opendaylight.org/gerrit/#/q/3db9fe3ace592d7f2b12351077b886af313dc639] BUG-7599 [https://bugs.opendaylight.org/show_bug.cgi?id=7599] avoid mdsal read

	602d82 [https://git.opendaylight.org/gerrit/#/q/602d82a44cc2dd32859b82054ca88836556c9159] BUG-7599 [https://bugs.opendaylight.org/show_bug.cgi?id=7599] performance improvement for ucast macs

	d02b70 [https://git.opendaylight.org/gerrit/#/q/d02b700d51144cac9af0bed1b97e68f2f36a41a2] BUG-7781 [https://bugs.opendaylight.org/show_bug.cgi?id=7781] update vlan bindings and tunnel ips

	c23fdc [https://git.opendaylight.org/gerrit/#/q/c23fdccdaa7e95a57cc6072bf0ca4d2df4a6c274] BUG-7779 [https://bugs.opendaylight.org/show_bug.cgi?id=7779]: Adding try-catch in hwvtep transactions.

	2d7190 [https://git.opendaylight.org/gerrit/#/q/2d7190af186557ab6d8bd03338497fcdfa056674] Fix Checkstyle “Redundant Modifier: Redundant ‘final’ modifier.”

	672607 [https://git.opendaylight.org/gerrit/#/q/6726074e646b7a102007544ade6a565a3b1303f4] Fix NPE in OvsdbConnectionService updateConfigParameter

	8c8e25 [https://git.opendaylight.org/gerrit/#/q/8c8e2512d1c74de91894b5d7323126ee7382cbb4] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: remove unnecessary type parameters

	2399d5 [https://git.opendaylight.org/gerrit/#/q/2399d57fbd0cc92bf2de0df44f26cfb67b5cc82d] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: remove all unused imports

	8b259d [https://git.opendaylight.org/gerrit/#/q/8b259dccc319ba3b0be1f708e90ce971ef809faf] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: various performance issues

	752044 [https://git.opendaylight.org/gerrit/#/q/7520449b84e80e2708d366b841932c5fdd2c96ae] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: remove unnecessary type arguments

	a2dc83 [https://git.opendaylight.org/gerrit/#/q/a2dc83e2f71270a0e4751ca8f5d587cd352cb22b] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: remove redundant array creation

	cf13e3 [https://git.opendaylight.org/gerrit/#/q/cf13e304e501347cd635a70cec39f0ff62ae0e2d] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: remove unnecessary type casts

	45e38d [https://git.opendaylight.org/gerrit/#/q/45e38dad23239a319e837d4c8c8eac3d44c71984] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: simplify a couple of streams

	c8a4f9 [https://git.opendaylight.org/gerrit/#/q/c8a4f9ca61faeef5028f32ae747c0cb8ad35cc70] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: use method references instead of lambdas

	7acf2d [https://git.opendaylight.org/gerrit/#/q/7acf2ddcae2d380cec58d2e1bd6860d608a9eccf] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: use Java 8 predicates instead of Guava

	3e88dc [https://git.opendaylight.org/gerrit/#/q/3e88dc24d535541b418498d7fe45b65e0a35ecdf] BUG-8055 [https://bugs.opendaylight.org/show_bug.cgi?id=8055]: use lambdas instead of anonymous classes

OpenFlow Plugin

	c4fe3d [https://git.opendaylight.org/gerrit/#/q/c4fe3dd3371abc597bd28ef04d6099c85d297011] Optimize port status and hello message handling

	b25cf4 [https://git.opendaylight.org/gerrit/#/q/b25cf49f7e7b7918845df710f5188099a952464e] BUG-8497 [https://bugs.opendaylight.org/show_bug.cgi?id=8497] - Provide config knob to disable the Forwarding Rule Manager reconciliation

	62dc27 [https://git.opendaylight.org/gerrit/#/q/62dc27ce6a90435febe4744309a4c040cd07fe39] Fix logging of exception in HandshakeListenerImpl

	c94d17 [https://git.opendaylight.org/gerrit/#/q/c94d17e938e1577e25f0743eb3d31f8ffc49529d] Improve property-based configuration

	438465 [https://git.opendaylight.org/gerrit/#/q/438465fbd0748e1b6d76a18facb38912774412bd] Fix masked NXM reg length

	53428e [https://git.opendaylight.org/gerrit/#/q/53428e6279ede1bb6b01d45389c56335ef5c60ed] Fix checkstyle api.openflow.md.util

	a1adc8 [https://git.opendaylight.org/gerrit/#/q/a1adc80dd2ac1c5fe50f15b777ca67a5de2a28a4] Fix checkstyle - api.openflow.md.queue

	53d724 [https://git.opendaylight.org/gerrit/#/q/53d7246c283845a76d1ea48807f1ee69c534fba4] Fix checkstyle warnings.

	c1e1ce [https://git.opendaylight.org/gerrit/#/q/c1e1ce0808419c67ffcba5b18c93ee4fa6af59bf] Fix checkstyle warnings

	88445a [https://git.opendaylight.org/gerrit/#/q/88445a3f880e07dc462737c4fbc94d38ce10127b] Fix modifiers order to comply with Java coding guidelines

	4d9a32 [https://git.opendaylight.org/gerrit/#/q/4d9a3256580180a769a2abcb38fcdd2b3c2ef20a] Fix minor issues regarding checkstyle

	f10e19 [https://git.opendaylight.org/gerrit/#/q/f10e19e003d2b769c1626f610acc65afb3fab0c6] BUG-8217 [https://bugs.opendaylight.org/show_bug.cgi?id=8217]: Set error information into direct statistics RPC result.

	c7c10d [https://git.opendaylight.org/gerrit/#/q/c7c10dfc36437fdf724f3ae6515cfe9478b7408d] BUG-7901 [https://bugs.opendaylight.org/show_bug.cgi?id=7901]: fix unsynchronized transaction access

	55623d [https://git.opendaylight.org/gerrit/#/q/55623dbd3effdbb92784a312524518f2414094ef] Fix DeviceFlowRegistry performance regression

	36aaf6 [https://git.opendaylight.org/gerrit/#/q/36aaf674a8d3033e2b7462866bf3536ba2606ff3] Fix table miss flow push

Secure tag eXchange Protocol (SXP)

	b7a538 [https://git.opendaylight.org/gerrit/#/q/b7a5384c511a3afe0519f58fd06a71d571a822e2] BUG-8368 [https://bugs.opendaylight.org/show_bug.cgi?id=8368] - UT - ThreadsWorker tests consist of race conditions

Virtual Tenant Network (VTN)

	826e06 [https://git.opendaylight.org/gerrit/#/q/826e06b5a17c0a43b970614a91965feef4763a1a] BUG-8211 [https://bugs.opendaylight.org/show_bug.cgi?id=8211]: Fixed bug that failed to associate MD-SAL flow with VTN flow.

	ab723c [https://git.opendaylight.org/gerrit/#/q/ab723cf5bbdc925fcda35790af22198ca7833817] BUG-8212 [https://bugs.opendaylight.org/show_bug.cgi?id=8212]: Accept data-flow-source that contains no vlan-id.

	83e8b1 [https://git.opendaylight.org/gerrit/#/q/83e8b1020fbec41032e5202b498e2c0edc0ce6de] BUG-8184 [https://bugs.opendaylight.org/show_bug.cgi?id=8184]: Suppress unnecessary send-barrier RPC error logs.

	fadf81 [https://git.opendaylight.org/gerrit/#/q/fadf8163eea4b8df79739bd09f317e364c5ca494] BUG-8191 [https://bugs.opendaylight.org/show_bug.cgi?id=8191]: Suppress warning detected by FindBugs.

YANG Tools

	848b1f [https://git.opendaylight.org/gerrit/#/q/848b1fc4212f5cb60553c4625def992074a58e0b] Do not create temporary array for module sorting

	bd168f [https://git.opendaylight.org/gerrit/#/q/bd168fb05c425bbf1992157b2ec0981c5a6b73c7] BUG-8566 [https://bugs.opendaylight.org/show_bug.cgi?id=8566] Introduce a fallback for ChoiceSchemaNode lookup

	b70220 [https://git.opendaylight.org/gerrit/#/q/b702209198f4b13651b1bf4021a727ad7c6c737e] BUG-7844 [https://bugs.opendaylight.org/show_bug.cgi?id=7844] - Unable to create LeafRefContext for leafref

	83d0e1 [https://git.opendaylight.org/gerrit/#/q/83d0e11dbf26fc492789f4b38fb25b7577230e11] BUG-8123 [https://bugs.opendaylight.org/show_bug.cgi?id=8123]: fix URL naming mixup

	5fdb34 [https://git.opendaylight.org/gerrit/#/q/5fdb3481e6fcc916a20377639e606129003106cd] BUG-7954 [https://bugs.opendaylight.org/show_bug.cgi?id=7954]: Throw an exception when parsing duplicate (sub)modules

	9f3901 [https://git.opendaylight.org/gerrit/#/q/9f390185b2869fd215a7cb1ee86b1760506d8662] BUG-8123 [https://bugs.opendaylight.org/show_bug.cgi?id=8123]: be better at guessing identifiers

	c36433 [https://git.opendaylight.org/gerrit/#/q/c364332ceeb3c60ac43f9869f1f74537e728e3e0] BUG-7062 [https://bugs.opendaylight.org/show_bug.cgi?id=7062]: add revision awareness to Yin/YangTextSchemaSource

	83fe83 [https://git.opendaylight.org/gerrit/#/q/83fe839b6429be95230ac07750dc4b451d517cb1] BUG-8039 [https://bugs.opendaylight.org/show_bug.cgi?id=8039]: Enforce binary/string type length

Project-Specific Installation Guides

	Centinel Installation Guide

	NetVirt Installation Guide

	OpFlex agent-ovs Install Guide

	TSDR Installation Guide

	VTN Installation Guide

	YANG IDE Installation Guide

Centinel Installation Guide

This document is for the user to install the artifacts that are needed
for using Centinel functionality in the OpenDaylight by enabling the
default Centinel feature. Centinel is a distributed reliable framework
for collection, aggregation and analysis of streaming data which is
added in this OpenDaylight release.

Overview

The Centinel project aims at providing a distributed, reliable framework
for efficiently collecting, aggregating and sinking streaming data across
Persistence DB and stream analyzers (e.g., Graylog, Elasticsearch,
Spark, Hive). This framework enables SDN applications/services to
receive events from multiple streaming sources
(e.g., Syslog, Thrift, Avro, AMQP, Log4j, HTTP/REST).

In this release, we develop a “Log Service” and plug-in for log analyzer (e.g., Graylog).
The Log service process real time events coming from log analyzer.
Additionally, we provide stream collector (Flume- and Sqoop-based) that collects logs
from OpenDaylight and sinks them to persistence service (integrated with TSDR).
Centinel also includes a RESTCONF interface to inject events to north bound applications
for real-time analytic/network configuration. Further, a Centinel User Interface (web interface)
will be available to operators to enable rules/alerts/dashboard etc.

Pre Requisites for Installing Centinel

	Recent Linux distribution - 64bit/16GB RAM

	Java Virtual Machine 1.7 or above

	Apache Maven 3.1.1 or above

Preparing for Installation

There are some additional pre-requisites for Centinel, which can be done by integrate
Graylog server, Apache Drill, Apache Flume and HBase.

Graylog server2 Installation

	Install MongoDB

	import the MongoDB public GPG key into apt:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

	Create the MongoDB source list:

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

	Update your apt package database:

sudo apt-get update

	Install the latest stable version of MongoDB with this command:

sudo apt-get install mongodb-org

	Install Elasticsearch

	Graylog2 v0.20.2 requires Elasticsearch v.0.90.10. Download and install it with these commands:

cd ~; wget https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-0.90.10.deb
sudo dpkg -i elasticsearch-0.90.10.deb

	We need to change the Elasticsearch cluster.name setting. Open the Elasticsearch configuration file:

sudo vi /etc/elasticsearch/elasticsearch.yml

	Find the section that specifies cluster.name. Uncomment it, and replace the default value with graylog2:

cluster.name: graylog2

	Find the line that specifies network.bind_host and uncomment it so it looks like this:

network.bind_host: localhost
script.disable_dynamic: true

	Save and quit. Next, restart Elasticsearch to put our changes into effect:

sudo service elasticsearch restart

	After a few seconds, run the following to test that Elasticsearch is running properly:

curl -XGET 'http://localhost:9200/_cluster/health?pretty=true'

	Install Graylog2 server

	Download the Graylog2 archive to /opt with this command:

cd /opt; sudo wget https://github.com/Graylog2/graylog2-server/releases/download/0.20.2/graylog2-server-0.20.2.tgz

	Then extract the archive:

sudo tar xvf graylog2-server-0.20.2.tgz

	Let’s create a symbolic link to the newly created directory, to simplify the directory name:

sudo ln -s graylog2-server-0.20.2 graylog2-server

	Copy the example configuration file to the proper location, in /etc:

sudo cp /opt/graylog2-server/graylog2.conf.example /etc/graylog2.conf

	Install pwgen, which we will use to generate password secret keys:

sudo apt-get install pwgen

	Now must configure the admin password and secret key. The password secret key is configured in graylog2.conf, by the password_secret parameter. Generate a random key and insert it into the Graylog2 configuration with the following two commands:

SECRET=$(pwgen -s 96 1)
sudo -E sed -i -e 's/password_secret =.*/password_secret = '$SECRET'/' /etc/graylog2.conf

PASSWORD=$(echo -n password | shasum -a 256 | awk '{print $1}')
sudo -E sed -i -e 's/root_password_sha2 =.*/root_password_sha2 = '$PASSWORD'/' /etc/graylog2.conf

	Open the Graylog2 configuration to make a few changes: (sudo vi /etc/graylog2.conf):

rest_transport_uri = http://127.0.0.1:12900/
elasticsearch_shards = 1

	Now let’s install the Graylog2 init script. Copy graylog2ctl to /etc/init.d:

sudo cp /opt/graylog2-server/bin/graylog2ctl /etc/init.d/graylog2

	Update the startup script to put the Graylog2 logs in /var/log and to look for the Graylog2 server JAR file in /opt/graylog2-server by running the two following sed commands:

sudo sed -i -e 's/GRAYLOG2_SERVER_JAR=\${GRAYLOG2_SERVER_JAR:=graylog2-server.jar}/GRAYLOG2_SERVER_JAR=\${GRAYLOG2_SERVER_JAR:=\/opt\/graylog2-server\/graylog2-server.jar}/' /etc/init.d/graylog2
sudo sed -i -e 's/LOG_FILE=\${LOG_FILE:=log\/graylog2-server.log}/LOG_FILE=\${LOG_FILE:=\/var\/log\/graylog2-server.log}/' /etc/init.d/graylog2

	Install the startup script:

sudo update-rc.d graylog2 defaults

	Start the Graylog2 server with the service command:

sudo service graylog2 start

Install Graylog Server using Virtual Machine

	Download the OVA image from link given below and save it to your disk locally:
https://github.com/Graylog2/graylog2-images/tree/master/ova

	Run the OVA in many systems like VMware or VirtualBox.

HBase Installation

	Download hbase-0.98.15-hadoop2.tar.gz

	Unzip the tar file using below command:

tar -xvf hbase-0.98.15-hadoop2.tar.gz

	Create directory using below command:

sudo mkdir /usr/lib/hbase

	Move hbase-0.98.15-hadoop2 to hbase using below command:

mv hbase-0.98.15-hadoop2/usr/lib/hbase/hbase-0.98.15-hadoop2 hbase

	Configuring HBase with java

	Open your hbase/conf/hbase-env.sh and set the path to the java installed in your system:

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_25

	Set the HBASE_HOME path in bashrc file

	Open bashrc file using this command:

gedit ~/.bashrc

	In bashrc file append the below 2 statements:

export HBASE_HOME=/usr/lib/hbase/hbase-0.98.15-hadoop2

export PATH=$PATH:$HBASE_HOME/bin

	To start HBase issue following commands:

HBASE_PATH$ bin/start-hbase.sh

HBASE_PATH$ bin/hbase shell

	Create centinel table in HBase with stream,alert,dashboard and stringdata as column families using below command:

create 'centinel','stream','alert','dashboard','stringdata'

	To stop HBase issue following command:

HBASE_PATH$ bin/stop-hbase.sh

Apache Flume Installation

	Download apache-flume-1.6.0.tar.gz

	Copy the downloaded file to the directory where you want to install Flume.

	Extract the contents of the apache-flume-1.6.0.tar.gz file using below command. Use sudo if necessary:

tar -xvzf apache-flume-1.6.0.tar.gz

	Starting flume

	Navigate to the Flume installation directory.

	Issue the following command to start flume-ng agent:

./flume-ng agent --conf conf --conf-file multiplecolumn.conf --name a1 -Dflume.root.logger=INFO,console

Apache Drill Installation

	Download apache-drill-1.1.0.tar.gz

	Copy the downloaded file to the directory where you want to install Drill.

	Extract the contents of the apache-drill-1.1.0.tar.gz file using below command:

tar -xvzf apache-drill-1.1.0.tar.gz

	Starting Drill:

	Navigate to the Drill installation directory.

	Issue the following command to launch Drill in embedded mode:

bin/drill-embedded

	Access the Apache Drill UI on link: http://localhost:8047/

	Go to “Storage” tab and enable “HBase” storage plugin.

Deploying plugins

	Use the following command to download git repository of Centinel:

git clone https://git.opendaylight.org/gerrit/p/centinel

	Navigate to the installation directory and build the code using maven by running below command:

mvn clean install

	After building the maven project, a jar file named centinel-SplittingSerializer-0.0.1-SNAPSHOT.jar
will be created in centinel/plugins/centinel-SplittingSerializer/target inside the workspace directory.
Copy and rename this jar file to centinel-SplittingSerializer.jar (as mentioned in configuration file of flume)
and save at location apache-flume-1.6.0-bin/lib inside flume directory.

	After successful build, copy the jar files present at below locations to /opt/graylog/plugin in graylog server(VM):

centinel/plugins/centinel-alertcallback/target/centinel-alertcallback-0.1.0-SNAPSHOT.jar

centinel/plugins/centinel-output/target/centinel-output-0.1.0-SNAPSHOT.jar

	Restart the server after adding plugin using below command:

sudo graylog-ctl restart graylog-server

Configure rsyslog

Make changes to following file:

/etc/rsyslog.conf

	Uncomment $InputTCPServerRun 1514

	Add the following lines:

module(load="imfile" PollingInterval="10") #needs to be done just once
input(type="imfile"
File="<karaf.log>" #location of log file
StateFile="statefile1"
Tag="tag1")
. @@127.0.0.1:1514 # @@used for TCP

	Use the following format and comment the previous one:

$ActionFileDefaultTemplate RSYSLOG_SyslogProtocol23Format

	Use the below command to send Centinel logs to a port:

tail -f <location of log file>/karaf.log|logger

	Restart rsyslog service after making above changes in configuration file:

sudo service rsyslog restart

Install the following feature

Finally, from the Karaf console install the Centinel feature with this command:

feature:install odl-centinel-all

Verifying your Installation

If the feature install was successful you should be able to see the following Centinel commands added:

centinel:list

centinel:purgeAll

Troubleshooting

Check the ../data/log/karaf.log for any exception related to Centinel related features

Upgrading From a Previous Release

Only fresh installation is supported.

Uninstalling Centinel

To uninstall the Centinel functionality, you need to do the following from Karaf console:

feature:uninstall centinel-all

Its recommended to restart the Karaf container after uninstallation of the Centinel functionality.

NetVirt Installation Guide

	NetVirt Design Specifications
	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

Table of Contents

	Title of the feature
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

	Primary assignee:

	<developer-a>

	Other contributors:

	<developer-b>
<developer-c>

Work Items

Break up work into individual items. This should be a checklist on
Trello card for this feature. Give link to trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc.] This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is impact on documentation for this change? If documentation
change is needed call out one of the <contributors> who will work with
Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :
	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

OpFlex agent-ovs Install Guide

Required Packages

You’ll need to install the following packages and their dependencies:

	libuv

	openvswitch-gbp

	openvswitch-gbp-lib

	openvswitch-gbp-kmod

	libopflex

	libmodelgbp

	agent-ovs

Packages are available for Red Hat Enterprise Linux 7 and Ubuntu 14.04
LTS. Some of the examples below are specific to RHEL7 but you can run
the equivalent commands for upstart instead of systemd.

Note that many of these steps may be performed automatically if you’re
deploying this along with a larger orchestration system.

Host Networking Configuration

You’ll need to set up your VM host uplink interface. You should
ensure that the MTU of the underlying network is sufficient to handle
tunneled traffic. We will use an example of setting up eth0 as your
uplink interface with a vlan of 4093 used for the networking control
infrastructure and tunnel data plane.

We just need to set the MTU and disable IPv4 and IPv6
autoconfiguration. The MTU needs to be large enough to allow both the
VXLAN header and VLAN tags to pass through without fragmenting for
best performance. We’ll use 1600 bytes which should be sufficient
assuming you are using a default 1500 byte MTU on your virtual machine
traffic. If you already have any NetworkManager connections configured
for your uplink interface find the connection name and proceed to the
next step. Otherwise, create a connection with (be sure to update the
variable UPLINK_IFACE as needed):

UPLINK_IFACE=eth0
nmcli c add type ethernet ifname $UPLINK_IFACE

Now, configure your interface as follows:

CONNECTION_NAME="ethernet-$UPLINK_IFACE"
nmcli connection mod "$CONNECTION_NAME" connection.autoconnect yes \
 ipv4.method link-local \
 ipv6.method ignore \
 802-3-ethernet.mtu 9000 \
 ipv4.routes '224.0.0.0/4 0.0.0.0 2000'

Then bring up the interface with:

nmcli connection up "$CONNECTION_NAME"

Next, create the infrastructure interface using the infrastructure
VLAN (4093 by default). We’ll need to create a vlan subinterface of
your uplink interface, the configure DHCP on that interface. Run the
following commands. Be sure to replace the variable values if needed. If
you’re not using NIC teaming, replace the variable team0 below:

UPLINK_IFACE=team0
INFRA_VLAN=4093
nmcli connection add type vlan ifname $UPLINK_IFACE.$INFRA_VLAN dev $UPLINK_IFACE id $INFRA_VLAN
nmcli connection mod vlan-$UPLINK_IFACE.$INFRA_VLAN \
 ethernet.mtu 1600 ipv4.routes '224.0.0.0/4 0.0.0.0 1000'
sed "s/CLIENT_ID/01:$(ip link show $UPLINK_IFACE | awk '/ether/ {print $2}')/" \
 > /etc/dhcp/dhclient-$UPLINK_IFACE.$INFRA_VLAN.conf <<EOF
send dhcp-client-identifier CLIENT_ID;
request subnet-mask, domain-name, domain-name-servers, host-name;
EOF

Now bring up the new interface with:

nmcli connection up vlan-$UPLINK_IFACE.$INFRA_VLAN

If you were successful, you should be able to see an IP address when you run:

ip addr show dev $UPLINK_IFACE.$INFRA_VLAN

OVS Bridge Configuration

We’ll need to configure an OVS bridge which will handle the traffic
for any virtual machines or containers that are hosted on the VM
host. First, enable the openvswitch service and start it:

systemctl enable openvswitch
ln -s '/usr/lib/systemd/system/openvswitch.service' '/etc/systemd/system/multi-user.target.wants/openvswitch.service'
systemctl start openvswitch
systemctl status openvswitch
openvswitch.service - Open vSwitch
 Loaded: loaded (/usr/lib/systemd/system/openvswitch.service; enabled)
 Active: active (exited) since Fri 2014-12-12 17:20:13 PST; 3s ago
 Process: 3053 ExecStart=/bin/true (code=exited, status=0/SUCCESS)
 Main PID: 3053 (code=exited, status=0/SUCCESS)
Dec 12 17:20:13 ovs-server.cisco.com systemd[1]: Started Open vSwitch.

Next, we can create an OVS bridge (you may wish to use a different
bridge name):

ovs-vsctl add-br br0
ovs-vsctl show
34aa83d7-b918-4e49-bcec-1b521acd1962
 Bridge "br0"
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.3.90"

Next, we configure a tunnel interface on our new bridge as follows:

ovs-vsctl add-port br0 br0_vxlan0 -- \
 set Interface br0_vxlan0 type=vxlan \
 options:remote_ip=flow options:key=flow options:dst_port=8472
ovs-vsctl show
34aa83d7-b918-4e49-bcec-1b521acd1962
 Bridge "br0"
 Port "br0_vxlan0"
 Interface "br0_vxlan0"
 type: vxlan
 options: {dst_port="8472", key=flow, remote_ip=flow}
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.3.90"

Open vSwitch is now configured and ready.

Agent Configuration

Before enabling the agent, we’ll need to edit its configuration file,
which is located at “/etc/opflex-agent-ovs/opflex-agent-ovs.conf”.

First, we’ll configure the Opflex protocol parameters. If you’re using
an ACI fabric, you’ll need the OpFlex domain from the ACI
configuration, which is the name of the VMM domain you mapped to the
interface for this hypervisor. Set the “domain” field to this
value. Next, set the “name” field to a hostname or other unique
identifier for the VM host. Finally, set the “peers” list to contain
the fixed static anycast peer address of 10.0.0.30 and port 8009. Here
is an example of a completed section (bold text shows areas you’ll
need to modify):

"opflex": {
 // The globally unique policy domain for this agent.
 "domain": "[CHANGE ME]",

 // The unique name in the policy domain for this agent.
 "name": "[CHANGE ME]",

 // a list of peers to connect to, by hostname and port. One
 // peer, or an anycast pseudo-peer, is sufficient to bootstrap
 // the connection without needing an exhaustive list of all
 // peers.
 "peers": [
 {"hostname": "10.0.0.30", "port": 8009}
],

 "ssl": {
 // SSL mode. Possible values:
 // disabled: communicate without encryption
 // encrypted: encrypt but do not verify peers
 // secure: encrypt and verify peer certificates
 "mode": "encrypted",

 // The path to a directory containing trusted certificate
 // authority public certificates, or a file containing a
 // specific CA certificate.
 "ca-store": "/etc/ssl/certs/"
 }
},

Next, configure the appropriate policy renderer for the ACI
fabric. You’ll want to use a stitched-mode renderer. You’ll need to
configure the bridge name and the uplink interface name. The remote
anycast IP address will need to be obtained from the ACI configuration
console, but unless the configuration is unusual, it will be
10.0.0.32:

// Renderers enforce policy obtained via OpFlex.
"renderers": {
 // Stitched-mode renderer for interoperating with a
 // hardware fabric such as ACI
 "stitched-mode": {
 "ovs-bridge-name": "br0",

 // Set encapsulation type. Must set either vxlan or vlan.
 "encap": {
 // Encapsulate traffic with VXLAN.
 "vxlan" : {
 // The name of the tunnel interface in OVS
 "encap-iface": "br0_vxlan0",

 // The name of the interface whose IP should be used
 // as the source IP in encapsulated traffic.
 "uplink-iface": "eth0.4093",

 // The vlan tag, if any, used on the uplink interface.
 // Set to zero or omit if the uplink is untagged.
 "uplink-vlan": 4093,

 // The IP address used for the destination IP in
 // the encapsulated traffic. This should be an
 // anycast IP address understood by the upstream
 // stitched-mode fabric.
 "remote-ip": "10.0.0.32"
 }
 },
 // Configure forwarding policy
 "forwarding": {
 // Configure the virtual distributed router
 "virtual-router": {
 // Enable virtual distributed router. Set to true
 // to enable or false to disable. Default true.
 "enabled": true,

 // Override MAC address for virtual router.
 // Default is "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff",

 // Configure IPv6-related settings for the virtual
 // router
 "ipv6" : {
 // Send router advertisement messages in
 // response to router solicitation requests as
 // well as unsolicited advertisements.
 "router-advertisement": true
 }
 },

 // Configure virtual distributed DHCP server
 "virtual-dhcp": {
 // Enable virtual distributed DHCP server. Set to
 // true to enable or false to disable. Default
 // true.
 "enabled": true,

 // Override MAC address for virtual dhcp server.
 // Default is "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff"
 }
 },

 // Location to store cached IDs for managing flow state
 "flowid-cache-dir": "DEFAULT_FLOWID_CACHE_DIR"
 }
}

Finally, enable the agent service:

systemctl enable agent-ovs
ln -s '/usr/lib/systemd/system/agent-ovs.service' '/etc/systemd/system/multi-user.target.wants/agent-ovs.service'
systemctl start agent-ovs
systemctl status agent-ovs
agent-ovs.service - Opflex OVS Agent
 Loaded: loaded (/usr/lib/systemd/system/agent-ovs.service; enabled)
 Active: active (running) since Mon 2014-12-15 10:03:42 PST; 5min ago
 Main PID: 6062 (agent_ovs)
 CGroup: /system.slice/agent-ovs.service
 └─6062 /usr/bin/agent_ovs

The agent is now running and ready to enforce policy. You can add
endpoints to the local VM hosts using the OpFlex Group-based policy
plugin from OpenStack, or manually.

TSDR Installation Guide

This document is for the user to install the artifacts that are needed
for using Time Series Data Repository (TSDR) functionality in the ODL
Controller by enabling either an HSQLDB, HBase, or Cassandra Data Store.

Overview

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL) creates a framework for collecting, storing, querying, and maintaining time series data in the OpenDaylight SDN controller. Please refer to the User Guide for the detailed description of the functionality of the project and how to use the corresponding features provided in TSDR.

Pre Requisites for Installing TSDR

The software requirements for TSDR HBase Data Store are as follows:

	In the case when the user chooses HBase or Cassandra data store, besides the software that ODL requires, we also require HBase and Cassandra database running in single node deployment scenario.

No additional software is required for the HSQLDB Data Stores.

Preparing for Installation

	When using HBase data store, download HBase from the following website:

http://archive.apache.org/dist/hbase/hbase-0.94.15/

	When using Cassandra data store, download Cassandra from the following website:

http://www.eu.apache.org/dist/cassandra/2.1.10/

	No additional steps are required to install the TSDR HSQL Data Store.

Installing TSDR Data Stores

Installing HSQLDB Data Store

Once OpenDaylight distribution is up, from karaf console install the HSQLDB data store using the following command:

feature:install odl-tsdr-hsqldb-all

This will install hsqldb related dependency features (and can take sometime) as well as OpenFlow statistics collector before returning control to the console.

Installing HBase Data Store

Installing TSDR HBase Data Store contains two steps:

	Installing HBase server, and

	Installing TSDR HBase Data Store features from ODL Karaf console.

In this release, we only support HBase single node running together on the same machine as OpenDaylight. Therefore, follow the steps to download and install HBase server onto the same machine as where OpenDaylight is running:

	Create a folder in Linux operating system for the HBase server. For example, create an hbase directory under /usr/lib:

mkdir /usr/lib/hbase

	Unzip the downloaded HBase server tar file.

Run the following command to unzip the installation package:

tar xvf <hbase-installer-name> /usr/lib/hbase

	Make proper changes in hbase-site.xml

	Under <hbase-install-directory>/conf/, there is a hbase-site.xml. Although it is not recommended, an experienced user with HBase can modify the data directory for hbase server to store the data.

	Modify the value of the property with name “hbase.rootdir” in the file to reflect the desired file directory for storing hbase data.

The following is an example of the file:

<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>file:///usr/lib/hbase/data</value>
 </property>
 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/usr/lib/hbase/zookeeper</value>
 </property>
</configuration>

	start hbase server:

cd <hbase-installation-directory>
./start-hbase.sh

	start hbase shell:

cd <hbase-insatllation-directory>
./hbase shell

	start Karaf console

	install hbase data store feature from Karaf console:

feature:install odl-tsdr-hbase

Installing Cassandra Data Store

Installing TSDR Cassandra Data Store contains two steps:

	Installing Cassandra server, and

	Installing TSDR Cassandra Data Store features from ODL Karaf console.

In this release, we only support Cassadra single node running together on the same machine as OpenDaylight. Therefore, follow these steps to download and install Cassandra server onto the same machine as where OpenDaylight is running:

	Install Cassandra (latest stable version) by downloading the zip file and untar the tar ball to cassandra/ directory on the testing machine:

mkdir cassandra
wget http://www.eu.apache.org/dist/cassandra/2.1.10/apache-cassandra-2.1.10-bin.tar.gz[2.1.10 is current stable version, it can vary]
mv apache-cassandra-2.1.10-bin.tar.gz cassandra/
cd cassandra
tar -xvzf apache-cassandra-2.1.10-bin.tar.gz

	Start Cassandra from cassandra directory by running:

./apache-cassandra-2.1.10/bin/cassandra

	Start cassandra shell by running:

./apache-cassandra-2.1.10/bin/cqlsh

	Start Karaf according to the instructions above.

	Install Cassandra data store feature from Karaf console:

feature:install odl-tsdr-cassandra

Verifying your Installation

After the TSDR data store is installed, no matter whether it is HBase data store, Cassandra data store, or HSQLDB data store, the user can verify the installation with the following steps.

	Verify if the following two TSDR commands are available from Karaf console:

tsdr:list
tsdr:purgeAll

	Verify if OpenFlow statistics data can be received successfully:

	Run “feature:install odl-tsdr-openflow-statistics-collector” from Karaf.

	Run mininet to connect to ODL controller. For example, use the following command to start a three node topology:

mn --topo single,3 --controller 'remote,ip=172.17.252.210,port=6653' --switch ovsk,protocols=OpenFlow13

	From Karaf console, the user should be able to retrieve the statistics data of OpenFlow statistics data from the console:

tsdr:list FLOWSTATS

Troubleshooting

Check the ../data/log/karaf.log for any exception related to TSDR features.

Post Installation Configuration

Post Installation Configuration for HSQLDB Data Store

The feature installation takes care of automated configuration of the datasource by installing a file in <install folder>/etc named org.ops4j.datasource-metric.cfg. This contains the default location of <install folder>/tsdr where the HSQLDB datastore files are stored. If you want to change the default location of the datastore files to some other location update the last portion of the url property in the org.ops4j.datasource-metric.cfg and then restart the Karaf container.

Post Installation Configuration for HBase Data Store

Please refer to HBase Data Store User Guide.

Post Installation Configuration for Cassandra Data Store

There is no post configuration for TSDR Cassandra data store.

Upgrading From a Previous Release

The HBase data store was supported in the previous release as well as in this release. However, we do not support data store upgrade for HBase data store.
The user needs to reinstall TSDR and start to collect data in TSDR HBase datastore after the installation.

HSQLDB and Cassandra are new data stores introduced in this release. Therefore, upgrading from previous release does not apply in these two data store scenarios.

Uninstalling TSDR Data Stores

To uninstall TSDR HSQLDB data store

To uninstall the TSDR functionality with the default store, you need to do the following from karaf console:

feature:uninstall odl-tsdr-hsqldb-all
feature:uninstall odl-tsdr-core
feature:uninstall odl-tsdr-hsqldb
feature:uninstall odl-tsdr-openflow-statistics-collector

It is recommended to restart the Karaf container after the uninstallation of the TSDR functionality with the default store.

To uninstall TSDR HBase Data Store

To uninstall the TSDR functionality with the HBase data store,

	Uninstall HBase data store related features from karaf console:

feature:uninstall odl-tsdr-hbase
feature:uninstall odl-tsdr-core

	stop hbase server:

cd <hbase-installation-directory>
./stop-hbase.sh

	remove the file directory that contains the HBase server installation:

rm -r <hbase-installation-directory>

It is recommended to restart the Karaf container after the uninstallation of the TSDR data store.

To uninstall TSDR Cassandra Data Store

To uninstall the TSDR functionality with the Cassandra store,

	uninstall cassandra data store related features following from karaf console:

feature:uninstall odl-tsdr-cassandra
feature:uninstall odl-tsdr-core

	stop cassandra database:

ps auwx | grep cassandra
sudo kill pid

	remove the cassandra installation files:

rm <cassandra-installation-directory>

It is recommended to restart the Karaf container after uninstallation of the TSDR data store.

VTN Installation Guide

Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating expenses are needed because the network is configured as a silo for each department and system. Therefore various network appliances must be installed for each tenant and those boxes cannot be shared with others. It is a heavy work to design, implement and operate the entire complex network.

The uniqueness of VTN is a logical abstraction plane. This enables the complete separation of logical plane from physical plane. Users can design and deploy any desired network without knowing the physical network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of conventional L2/L3 network. Once the network is designed on VTN, it will automatically be mapped into underlying physical network, and then configured on the individual switch leverage SDN control protocol. The definition of logical plane makes it possible not only to hide the complexity of the underlying network but also to better manage network resources. It achieves reducing reconfiguration time of network services and minimizing network configuration errors. OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN controller. It provides API for creating a common virtual network irrespective of the physical network.

It is implemented as two major components

	VTN Manager

	VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement the components of the VTN model. It also provides a REST interface to configure VTN components in OpenDaylight. VTN Manager is implemented as one plugin to the OpenDaylight. This provides a REST interface to create/update/delete VTN components. The user command in VTN Coordinator is translated as REST API to VTN Manager by the OpenDaylight Driver component. In addition to the above mentioned role, it also provides an implementation to the OpenStack L2 Network Functions API.

VTN Coordinator

The VTN Coordinator is an external application that provides a REST interface for an user to use OpenDaylight VTN Virtualization. It interacts with VTN Manager plugin to implement the user configuration. It is also capable of multiple OpenDaylight orchestration. It realizes VTN provisioning in OpenDaylight instances. In the OpenDaylight architecture VTN Coordinator is part of the network application, orchestration and services layer. VTN Coordinator will use the REST interface exposed by the VTN Manger to realize the virtual network using OpenDaylight. It uses OpenDaylight APIs (REST) to construct the virtual network in OpenDaylight instances. It provides REST APIs for northbound VTN applications and supports virtual networks spanning across multiple OpenDaylight by coordinating across OpenDaylight.

Preparing for Installation

VTN Manager

Follow the instructions in Installing OpenDaylight.

VTN Coordinator

	Arrange a physical/virtual server with any one of the supported 64-bit OS environment.

	RHEL 7

	CentOS 7

	Fedora 20 / 21 / 22

	Install these packages:

yum install perl-Digest-SHA uuid libxslt libcurl unixODBC json-c bzip2
rpm -ivh http://yum.postgresql.org/9.3/redhat/rhel-6-x86_64/pgdg-redhat93-9.3-3.noarch.rpm
yum install postgresql93-libs postgresql93 postgresql93-server postgresql93-contrib postgresql93-odbc

Installing VTN

VTN Manager

Install Feature:

feature:install odl-vtn-manager-neutron odl-vtn-manager-rest

Note

The above command will install all features of VTN Manager.
You can install only REST or Neutron also.

VTN Coordinator

	To get the Boron distribution for VTN coordinator download the latest “tar.bz2” file from the below link:

https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/vtn/distribution.vtn-coordinator/6.3.0-Boron/

	Run the below command to extract VTN Coordinator from the tar.bz2 file:

tar –C/ -jxvf distribution.vtn-coordinator-6.3.0-Boron-bin.tar.bz2

This will install VTN Coordinator to /usr/local/vtn directory.
The name of the tar.bz2 file name varies depending on the version. Please give the same tar.bz2 file name which is there in your directory.

	Configuring database for VTN Coordinator:

/usr/local/vtn/sbin/db_setup

	To start the Coordinator:

/usr/local/vtn/bin/vtn_start

Using VTN REST API:

Get the version of VTN REST API using the below command, and make sure the setup is working:

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://<VTN_COORDINATOR_IP_ADDRESS>:8083/vtn-webapi/api_version.json

The response should be like this, but version might differ:

{"api_version":{"version":"V1.2"}}

Verifying your Installation

VTN Manager

	In the karaf prompt, type the below command to ensure that vtn packages are installed:

feature:list | grep vtn

	Run any VTN Manager REST API:

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

VTN Coordinator

ps –ef | grep unc will list all the vtn apps
Run any REST API for VTN Coordinator version

Uninstalling VTN

VTN Manager

feature:uninstall odl-vtnmanager-all

VTN Coordinator

	Stop VTN:

/usr/local/vtn/bin/vtn_stop

	Remove the usr/local/vtn folder

YANG IDE Installation Guide

Overview

The YANG IDE project provides an Eclipse plugin for viewing and editing
Yang model files. When you create a “Yang Project” using the plugin,
it creates a small Maven project with a POM file (pom.xml) that
references the appropriate OpenDaylight dependencies, along with a
sample Yang model file (acme-system.yang).

Pre Requisites for Installing YANG IDE

	YANG IDE has the same hardware requirements as the Eclipse IDE, which
is about the same as the hardware requirements for Java 7.

	At least Java 7 is required to run Eclipse (also an obvious
requirement), but Java 8 will be required if you are building an
application using OpenDaylight, and Java 8 is recommended anyway.

Preparing for Installation

As soon as at least Java 7 (Java 8 preferred) and Eclipse are
installed, and Eclipse is running, you can install YANG IDE.

You can find the Oracle Java installer at
http://www.oracle.com/technetwork/java/javase/downloads/index.html .

The Eclipse installer can be found at
http://www.eclipse.org/downloads/ . You should select the “Eclipse
IDE for Java Developers”, and make sure you select the installer for
the correct platform (for instance, 32-bit or 64-bit).

Installing YANG IDE

The YANG IDE plugin can be installed by using the public update site URL
provided, which is https://nexus.opendaylight.org/content/sites/p2repos/org.opendaylight.yangide/release/ .

While in Eclipse, select “Help” from the menu bar and select “Install
New Software ...”. On the resulting “Install” dialog, click the
“Add...” button. In that dialog, enter the update site URL as
specified above and give it a name of “YANG IDE”. Select the provided
plugin and approve the license.

Eclipse will prompt you to restart Eclipse. Do that.

Installation is complete at this point.

Network Connections

If the installation failed with an indication that it could not reach
the internet, then your work computer may be behind a firewall.
You will need to go to the “Network Connections” section of the Eclipse
preferences (Menubar: “Window”->”Preferences”->”General”->”Network
Connections”).

Before you make these changes, you will need to know the host and port
of your outbound proxy server.

On the “Network Connections” page, you should select “Manual” in the
“Active Provider” dropdown, then edit the “HTTP” and “HTTPS” rows in
the table, setting the host and port of the outbound proxy server.

If the proxy server requires authentication, turn on the “Requires
Authentication” checkbox and enter the required userid and password
fields. If you do not know whether your proxy server requires
authentication, it probably does not.

Verifying your Installation

This is not really a “usage guide”, but following these steps will
verify that the plugin was properly installed.

When installation is complete, you can select “File” from the menu
bar, then “New”, then “Other” (you may have a keyboard shortcut for
“Ctrl+n” for this).

In the “New” dialog, you can enter “yang” in the field under the
“Wizards” label, which starts out with the content of “type filter
text”. That will limit the list to the “YANG” folder and the two
choices of “YANG File” and “YANG Project”. Select the “YANG Project”
option and click “Next”.

On the “New Yang Project” dialog, you may see a wizard page titled
“Specify YANG Code Generators Parameters”. Do not change anything on
that page and click “Next”.

On the next wizard page, with the title “Select project name and
location”, check the “Create a simple project” checkbox and click
“Next”.

On that dialog, enter anything you want in the “Group Id” field.
Enter a project name (again, whatever you want for now) in the
“Artifact Id” field and click “Finish”. No other fields on the page
need to be changed.

The dialog will now go away and Eclipse will create the project, which
you should see in either the “Package Explorer” or “Project Explorer”
view, on the left side.

Click the arrow just left of the project name to expand the contents
of the project.

In that resulting list, there are only two entries that you will ever
care about. One is “src/main/yang”, which is where you will store the
Yang model files, and the “pom.xml” file, which is where you will enter
dependencies for Yang model files to import. If you will not be
importing any Yang model files, or you will only be importing other Yang
model files in your own project, then you will never have to do anything
with the “pom.xml” file.

Click the arrow to the left of the “src/main/yang” entry to expand that.

You should see a “acme-system.yang” file, which the plugin created by
default. Double-click on that entry to open the file in the editor.

Troubleshooting

If Eclipse fails to start up initially, then there is something wrong
with either the Java installation or the Eclipse installation.

You can determine whether Java is installed correctly by opening a
shell or command window and entering “java -version” and verifying
whether the output corresponds to the version of Java that you
installed.

If the Java installation seems fine, but Eclipse still fails to start
up, you can ask questions on the #eclipse IRC channel, or post
questions on the “Newcomers” forum at http://www.eclipse.org/forums/ .

If Java and Eclipse seem to be fine, but the YANG IDE is having
problems, ask questions on the “yangide-dev” mailing list.

Post Installation Configuration

Setting Proxy Used For Maven

If your work computer sits behind a firewall, you will have had to put
information about your firewall in the “Network Connections” section
of the Eclipse preferences. That would have allowed you to at least
obtain the plugin and install it into Eclipse.

Much of the functionality of YANG IDE uses Maven internally. You do
not need to be a Maven expert to use this functionality, but you will
need to add a few more lines of configuration so that Maven can get
through the firewall. Maven, even when running inside Eclipse, as it
is when you are using YANG IDE, does not use the Eclipse “Network
Connection” settings to reach the internet. You have to set the proxy
server information in a different place for Maven.

Maven looks for a file at $HOME/.m2/settings.xml (Linux) or
%HOME%\.m2\settings.xml (Windows). If the .m2 folder does not
exist, you will need to create it. If the “settings.xml” file does not
exist, you should create it with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <proxies>
 <proxy>
 <id>proxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>FULLY QUALIFIED NAME OF PROXY HOST</host>
 <port>PROXY PORT</port>
 </proxy>
 <proxy>
 <id>proxy2</id>
 <active>true</active>
 <protocol>https</protocol>
 <host>FULLY QUALIFIED NAME OF PROXY HOST</host>
 <port>PROXY PORT</port>
 </proxy>
 </proxies>
</settings>

Replace “FULLY QUALIFIED NAME OF PROXY HOST” and “PROXY PORT” with the
host and port of your proxy server.

If the “settings.xml” file already existed, then you will need to edit
it, inserting the “proxies” element from the above sample at an
appropriate place.

Upgrading From a Previous Release

If you already had the “YANG IDE” plugin from “Xored”, you will need to
uninstall that plugin before you install this one.

Uninstalling YANG IDE

Uninstalling the YANG IDE plugin is the same as uninstalling any other Eclipse plugin.

Click on the “Help” menu item and select “Installation Details”. That
list will have all the plugins you have installed (or that came with
the distribution). To uninstall YANG IDE, you will need to select four
entries from that list:

	“m2e connector for YANG”

	“m2e connector for YANG Developer Resources”

	“YANG IDE”

	“YANG IDE Developer Resources”

Use the Control key to select multiple entries in this list. When all
four entries are selected, click the “Uninstall” button. The next
dialog shows what you selected and asks you to confirm with the
“Finish” button.

It will then uninstall the plugin and prompt you to restart Eclipse.
When Eclipse restarts, the uninstall process is complete.

Common OpenDaylight Features

	OpenDaylight User Interface (DLUX)

	Setting Up Clustering

	Persistence and Backup

	Running XSQL Console Commands and Queries

	OpenDaylight Version

OpenDaylight User Interface (DLUX)

This section introduces you to the OpenDaylight User Experience (DLUX) application.

Getting Started with DLUX

DLUX provides a number of different Karaf features, which you can enable and disable separately. In Boron they are:

	odl-dlux-core

	odl-dlux-node

	odl-dlux-yangui

	odl-dlux-yangvisualizer

Logging In

To log in to DLUX, after installing the application:

	Open a browser and enter the login URL http://<your-karaf-ip>:8181/index.html in your browser (Chrome is recommended).

	Login to the application with your username and password credentials.

Note

OpenDaylight’s default credentials are admin for both the username and password.

Working with DLUX

After you login to DLUX, if you enable only odl-dlux-core feature, you will see only topology application available in the left pane.

Note

To make sure topology displays all the details, enable the odl-l2switch-switch feature in Karaf.

DLUX has other applications such as node, yang UI and those apps won’t show up, until you enable their features odl-dlux-node and odl-dlux-yangui respectively in the Karaf distribution.

[image: ../../_images/dlux-login.png]
DLUX Modules

Note

If you install your application in dlux, they will also show up on the left hand navigation after browser page refresh.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network statistics and port information for the switches in the network.

To use the Nodes module:

	Select Nodes on the left pane. The right pane displays atable that lists all the nodes, node connectors and the statistics.

	Enter a node ID in the Search Nodes tab to search by node connectors.

	Click on the Node Connector number to view details such as port ID, port name, number of ports per switch, MAC Address, and so on.

	Click Flows in the Statistics column to view Flow Table Statistics for the particular node like table ID, packet match, active flows and so on.

	Click Node Connectors to view Node Connector Statistics for the particular node ID.

Viewing Network Topology

The Topology tab displays a graphical representation of network topology created.

Note

DLUX does not allow for editing or adding topology information. The topology is generated and edited in other modules, e.g., the OpenFlow plugin. OpenDaylight stores this information in the MD-SAL datastore where DLUX can read and display it.

To view network topology:

	Select Topology on the left pane. You will view the graphical representation on the right pane. In the diagram blue boxes represent the switches, the black represents the hosts available, and lines represents how the switches and hosts are connected.

	Hover your mouse on hosts, links, or switches to view source and destination ports.

	Zoom in and zoom out using mouse scroll to verify topology for larger topologies.

[image: ../../_images/dlux-topology.png]
Topology Module

Interacting with the YANG-based MD-SAL datastore

The Yang UI module enables you to interact with the YANG-based MD-SAL datastore. For more information about YANG and how it interacts with the MD-SAL datastore, see the Controller and YANG Tools section of the OpenDaylight Developer Guide.

[image: ../../_images/dlux-yang-ui-screen.png]
Yang UI

To use Yang UI:

	Select Yang UI on the left pane. The right pane is divided in two parts.

	The top part displays a tree of APIs, subAPIs, and buttons to call possible functions (GET, POST, PUT, and DELETE).

Note

Not every subAPI can call every function. For example, subAPIs in the operational store have GET functionality only.

Inputs can be filled from OpenDaylight when existing data from OpenDaylight is displayed or can be filled by user on the page and sent to OpenDaylight.

Buttons under the API tree are variable. It depends on subAPI specifications. Common buttons are:

	GET to get data from OpenDaylight,

	PUT and POST for sending data to OpenDaylight for saving

	DELETE for sending data to OpenDaylight for deleting.

You must specify the xpath for all these operations. This path is displayed in the same row before buttons and it may include text inputs for specific path element identifiers.

[image: ../../_images/dlux-yang-api-specification.png]
Yang API Specification

	The bottom part of the right pane displays inputs according to the chosen subAPI.

	Lists are handled as a special case. For example, a device can store multiple flows. In this case “flow” is name of the list and every list element is identified by a unique key value. Elements of a list can, in turn, contain other lists.

	In Yang UI, each list element is rendered with the name of the list it belongs to, its key, its value, and a button for removing it from the list.

[image: ../../_images/dlux-yang-sub-api-screen.png]
Yang UI API Specification

	After filling in the relevant inputs, click the Show Preview button under the API tree to display request that will be sent to OpenDaylight.
A pane is displayed on the right side with text of request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

	Select subAPI network-topology <topology revision number> == > operational == > network-topology.

	Get data from OpenDaylight by clicking on the “GET” button.

	Click Display Topology.

[image: ../../_images/dlux-yang-topology.png]
DLUX Yang Topology

Configuring List Elements on the Yang UI

Lists in Yang UI are displayed as trees. To expand or collapse a list, click the arrow before name of the list. To configure list elements in Yang UI:

	To add a new list element with empty inputs use the plus icon-button + that is provided after list name.

	To remove several list elements, use the X button that is provided after every list element.

[image: ../../_images/dlux-yang-list-elements.png]
DLUX List Elements

	In the YANG-based data store all elements of a list must have a unique key. If you try to assign two or more elements the same key, a warning icon ! is displayed near their name buttons.

[image: ../../_images/dlux-yang-list-warning.png]
DLUX List Warnings

	When the list contains at least one list element, after the + icon, there are buttons to select each individual list element. You can choose one of them by clicking on it. In addition, to the right of the list name, there is a button which will display a vertically scrollable pane with all the list elements.

[image: ../../_images/dlux-yang-list-button1.png]
DLUX List Button

Setting Up Clustering

Clustering Overview

Clustering is a mechanism that enables multiple processes and programs to work
together as one entity. For example, when you search for something on
google.com, it may seem like your search request is processed by only one web
server. In reality, your search request is processed by may web servers
connected in a cluster. Similarly, you can have multiple instances of
OpenDaylight working together as one entity.

Advantages of clustering are:

	Scaling: If you have multiple instances of OpenDaylight running, you can
potentially do more work and store more data than you could with only one
instance. You can also break up your data into smaller chunks (shards) and
either distribute that data across the cluster or perform certain operations
on certain members of the cluster.

	High Availability: If you have multiple instances of OpenDaylight running and
one of them crashes, you will still have the other instances working and
available.

	Data Persistence: You will not lose any data stored in OpenDaylight after a
manual restart or a crash.

The following sections describe how to set up clustering on both individual and
multiple OpenDaylight instances.

Multiple Node Clustering

The following sections describe how to set up multiple node clusters in OpenDaylight.

Deployment Considerations

To implement clustering, the deployment considerations are as follows:

	To set up a cluster with multiple nodes, we recommend that you use a minimum
of three machines. You can set up a cluster with just two nodes. However, if
one of the two nodes fail, the cluster will not be operational.

Note

This is because clustering in OpenDaylight requires a majority of the
nodes to be up and one node cannot be a majority of two nodes.

	Every device that belongs to a cluster needs to have an identifier.
OpenDaylight uses the node’s role for this purpose. After you define the
first node’s role as member-1 in the akka.conf file, OpenDaylight uses
member-1 to identify that node.

	Data shards are used to contain all or a certain segment of a OpenDaylight’s
MD-SAL datastore. For example, one shard can contain all the inventory data
while another shard contains all of the topology data.

If you do not specify a module in the modules.conf file and do not specify
a shard in module-shards.conf, then (by default) all the data is placed in
the default shard (which must also be defined in module-shards.conf file).
Each shard has replicas configured. You can specify the details of where the
replicas reside in module-shards.conf file.

	If you have a three node cluster and would like to be able to tolerate any
single node crashing, a replica of every defined data shard must be running
on all three cluster nodes.

Note

This is because OpenDaylight’s clustering implementation requires a
majority of the defined shard replicas to be running in order to
function. If you define data shard replicas on two of the cluster nodes
and one of those nodes goes down, the corresponding data shards will not
function.

	If you have a three node cluster and have defined replicas for a data shard
on each of those nodes, that shard will still function even if only two of
the cluster nodes are running. Note that if one of those remaining two nodes
goes down, the shard will not be operational.

	It is recommended that you have multiple seed nodes configured. After a
cluster member is started, it sends a message to all of its seed nodes.
The cluster member then sends a join command to the first seed node that
responds. If none of its seed nodes reply, the cluster member repeats this
process until it successfully establishes a connection or it is shut down.

	After a node is unreachable, it remains down for configurable period of time
(10 seconds, by default). Once a node goes down, you need to restart it so
that it can rejoin the cluster. Once a restarted node joins a cluster, it
will synchronize with the lead node automatically.

Clustering Scripts

OpenDaylight includes some scripts to help with the clustering configuration.

Note

Scripts are stored in the OpenDaylight distribution/bin folder, and
maintained in the distribution project
repository [https://git.opendaylight.org/gerrit/p/integration/distribution]
in the folder distribution-karaf/src/main/assembly/bin/.

Configure Cluster Script

This script is used to configure the cluster parameters (e.g. akka.conf,
module-shards.conf) on a member of the controller cluster. The user should
restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/configure_cluster.sh <index> <seed_nodes_list>

	index: Integer within 1..N, where N is the number of seed nodes. This indicates
which controller node (1..N) is configured by the script.

	seed_nodes_list: List of seed nodes (IP address), separated by comma or space.

The IP address at the provided index should belong to the member executing
the script. When running this script on multiple seed nodes, keep the
seed_node_list the same, and vary the index from 1 through N.

Optionally, shards can be configured in a more granular way by modifying the
file “custom_shard_configs.txt” in the same folder as this tool. Please see
that file for more details.

Example:

bin/configure_cluster.sh 2 192.168.0.1 192.168.0.2 192.168.0.3

The above command will configure the member 2 (IP address 192.168.0.2) of a
cluster made of 192.168.0.1 192.168.0.2 192.168.0.3.

Setting Up a Multiple Node Cluster

To run OpenDaylight in a three node cluster, perform the following:

First, determine the three machines that will make up the cluster. After that,
do the following on each machine:

	Copy the OpenDaylight distribution zip file to the machine.

	Unzip the distribution.

	Open the following .conf files:

	configuration/initial/akka.conf

	configuration/initial/module-shards.conf

	In each configuration file, make the following changes:

Find every instance of the following lines and replace _127.0.0.1_ with the
hostname or IP address of the machine on which this file resides and
OpenDaylight will run:

netty.tcp {
 hostname = "127.0.0.1"

Note

The value you need to specify will be different for each node in the
cluster.

	Find the following lines and replace _127.0.0.1_ with the hostname or IP
address of any of the machines that will be part of the cluster:

cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@${IP_OF_MEMBER1}:2550",
 <url-to-cluster-member-2>,
 <url-to-cluster-member-3>]

	Find the following section and specify the role for each member node. Here
we assign the first node with the member-1 role, the second node with the
member-2 role, and the third node with the member-3 role:

roles = [
 "member-1"
]

Note

This step should use a different role on each node.

	Open the configuration/initial/module-shards.conf file and update the
replicas so that each shard is replicated to all three nodes:

replicas = [
 "member-1",
 "member-2",
 "member-3"
]

For reference, view a sample config files <<_sample_config_files,below>>.

	Move into the +<karaf-distribution-directory>/bin+ directory.

	Run the following command:

JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

	Enable clustering by running the following command at the Karaf command line:

feature:install odl-mdsal-clustering

OpenDaylight should now be running in a three node cluster. You can use any of
the three member nodes to access the data residing in the datastore.

Sample Config Files

Sample akka.conf file:

odl-cluster-data {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "DEBUG"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {

 provider = "akka.cluster.ClusterActorRefProvider"
 serializers {
 java = "akka.serialization.JavaSerializer"
 proto = "akka.remote.serialization.ProtobufSerializer"
 }

 serialization-bindings {
 "com.google.protobuf.Message" = proto

 }
 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2550
 maximum-frame-size = 419430400
 send-buffer-size = 52428800
 receive-buffer-size = 52428800
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@10.194.189.96:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.98:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.101:2550"]

 auto-down-unreachable-after = 10s

 roles = [
 "member-2"
]

 }
 }
}

odl-cluster-rpc {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "INFO"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {
 provider = "akka.cluster.ClusterActorRefProvider"

 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2551
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-rpc@10.194.189.96:2551"]

 auto-down-unreachable-after = 10s
 }
 }
}

Sample module-shards.conf file:

module-shards = [
 {
 name = "default"
 shards = [
 {
 name="default"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "topology"
 shards = [
 {
 name="topology"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "inventory"
 shards = [
 {
 name="inventory"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "toaster"
 shards = [
 {
 name="toaster"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 }
]

Cluster Monitoring

OpenDaylight exposes shard information via MBeans, which can be explored with
JConsole, VisualVM, or other JMX clients, or exposed via a REST API using
Jolokia [https://jolokia.org/features-nb.html], provided by the
odl-jolokia Karaf feature. This is convenient, due to a significant focus
on REST in OpenDaylight.

The basic URI that lists a schema of all available MBeans, but not their
content itself is:

GET /jolokia/list

To read the information about the shards local to the queried OpenDaylight
instance use the following REST calls. For the config datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedConfigDatastore,Category=ShardManager,name=shard-manager-config

For the operational datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedOperationalDatastore,Category=ShardManager,name=shard-manager-operational

The output contains information on shards present on the node:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=ShardManager,name=shard-manager-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "LocalShards": [
 "member-1-shard-default-operational",
 "member-1-shard-entity-ownership-operational",
 "member-1-shard-topology-operational",
 "member-1-shard-inventory-operational",
 "member-1-shard-toaster-operational"
],
 "SyncStatus": true,
 "MemberName": "member-1"
 },
 "timestamp": 1483738005,
 "status": 200
}

The exact names from the “LocalShards” lists are needed for further
exploration, as they will be used as part of the URI to look up detailed info
on a particular shard. An example output for the
member-1-shard-default-operational looks like this:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-default-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "ReadWriteTransactionCount": 0,
 "SnapshotIndex": 4,
 "InMemoryJournalLogSize": 1,
 "ReplicatedToAllIndex": 4,
 "Leader": "member-1-shard-default-operational",
 "LastIndex": 5,
 "RaftState": "Leader",
 "LastCommittedTransactionTime": "2017-01-06 13:19:00.135",
 "LastApplied": 5,
 "LastLeadershipChangeTime": "2017-01-06 13:18:37.605",
 "LastLogIndex": 5,
 "PeerAddresses": "member-3-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.3:2550/user/shardmanager-operational/member-3-shard-default-operational, member-2-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.2:2550/user/shardmanager-operational/member-2-shard-default-operational",
 "WriteOnlyTransactionCount": 0,
 "FollowerInitialSyncStatus": false,
 "FollowerInfo": [
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-3-shard-default-operational",
 "nextIndex": 6
 },
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-2-shard-default-operational",
 "nextIndex": 6
 }
],
 "FailedReadTransactionsCount": 0,
 "StatRetrievalTime": "810.5 μs",
 "Voting": true,
 "CurrentTerm": 1,
 "LastTerm": 1,
 "FailedTransactionsCount": 0,
 "PendingTxCommitQueueSize": 0,
 "VotedFor": "member-1-shard-default-operational",
 "SnapshotCaptureInitiated": false,
 "CommittedTransactionsCount": 6,
 "TxCohortCacheSize": 0,
 "PeerVotingStates": "member-3-shard-default-operational: true, member-2-shard-default-operational: true",
 "LastLogTerm": 1,
 "StatRetrievalError": null,
 "CommitIndex": 5,
 "SnapshotTerm": 1,
 "AbortTransactionsCount": 0,
 "ReadOnlyTransactionCount": 0,
 "ShardName": "member-1-shard-default-operational",
 "LeadershipChangeCount": 1,
 "InMemoryJournalDataSize": 450
 },
 "timestamp": 1483740350,
 "status": 200
}

The output helps identifying shard state (leader/follower, voting/non-voting),
peers, follower details if the shard is a leader, and other
statistics/counters.

The Integration team is maintaining a Python based tool [https://github.com/opendaylight/integration-test/tree/master/tools/clustering/cluster-monitor],
that takes advantage of the above MBeans exposed via Jolokia, and the
systemmetrics project offers a DLUX based UI to display the same
information.

Geo-distributed Active/Backup Setup

An OpenDaylight cluster works best when the latency between the nodes is very
small, which practically means they should be in the same datacenter. It is
however desirable to have the possibility to fail over to a different
datacenter, in case all nodes become unreachable. To achieve that, the cluster
can be expanded with nodes in a different datacenter, but in a way that
doesn’t affect latency of the primary nodes. To do that, shards in the backup
nodes must be in “non-voting” state.

The API to manipulate voting states on shards is defined as RPCs in the
cluster-admin.yang [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-cluster-admin-api/src/main/yang/cluster-admin.yang]
file in the controller project, which is well documented. A summary is
provided below.

Note

Unless otherwise indicated, the below POST requests are to be sent to any
single cluster node.

To create an active/backup setup with a 6 node cluster (3 active and 3 backup
nodes in two locations) there is an RPC to set voting states of all shards on
a list of nodes to a given state:

POST /restconf/operations/cluster-admin:change-member-voting-states-for-all-shards

This RPC needs the list of nodes and the desired voting state as input. For
creating the backup nodes, this example input can be used:

{
 "input": {
 "member-voting-state": [
 {
 "member-name": "member-4",
 "voting": false
 },
 {
 "member-name": "member-5",
 "voting": false
 },
 {
 "member-name": "member-6",
 "voting": false
 }
]
 }
}

When an active/backup deployment already exists, with shards on the backup
nodes in non-voting state, all that is needed for a fail-over from the active
“sub-cluster” to backup “sub-cluster” is to flip the voting state of each
shard (on each node, active AND backup). That can be easily achieved with the
following RPC call (no parameters needed):

POST /restconf/operations/cluster-admin:flip-member-voting-states-for-all-shards

If it’s an unplanned outage where the primary voting nodes are down, the
“flip” RPC must be sent to a backup non-voting node. In this case there are no
shard leaders to carry out the voting changes. However there is a special case
whereby if the node that receives the RPC is non-voting and is to be changed
to voting and there’s no leader, it will apply the voting changes locally and
attempt to become the leader. If successful, it persists the voting changes
and replicates them to the remaining nodes.

When the primary site is fixed and you want to fail back to it, care must be
taken when bringing the site back up. Because it was down when the voting
states were flipped on the secondary, its persisted database won’t contain
those changes. If brought back up in that state, the nodes will think they’re
still voting. If the nodes have connectivity to the secondary site, they
should follow the leader in the secondary site and sync with it. However if
this does not happen then the primary site may elect its own leader thereby
partitioning the 2 clusters, which can lead to undesirable results. Therefore
it is recommended to either clean the databases (i.e., journal and
snapshots directory) on the primary nodes before bringing them back up or
restore them from a recent backup of the secondary site (see section
Backing Up and Restoring the Datastore).

If is also possible to gracefully remove a node from a cluster, with the
following RPC:

POST /restconf/operations/cluster-admin:remove-all-shard-replicas

and example input:

{
 "input": {
 "member-name": "member-1"
 }
}

or just one particular shard:

POST /restconf/operations/cluster-admin:remove-shard-replica

with example input:

{
 "input": {
 "shard-name": "default",
 "member-name": "member-2",
 "data-store-type": "config"
 }
}

Now that a (potentially dead/unrecoverable) node was removed, another one can
be added at runtime, without changing the configuration files of the healthy
nodes (requiring reboot):

POST /restconf/operations/cluster-admin:add-replicas-for-all-shards

No input required, but this RPC needs to be sent to the new node, to instruct
it to replicate all shards from the cluster.

Note

While the cluster admin API allows adding and removing shards dynamically,
the module-shard.conf and modules.conf files are still used on
startup to define the initial configuration of shards. Modifications from
the use of the API are not stored to those static files, but to the journal.

Persistence and Backup

Set Persistence Script

This script is used to enable or disable the config datastore persistence. The
default state is enabled but there are cases where persistence may not be
required or even desired. The user should restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/set_persistence.sh <on/off>

Example:

bin/set_persistence.sh off

The above command will disable the config datastore persistence.

Backing Up and Restoring the Datastore

The same cluster-admin API that is used above for managing shard voting states
has an RPC allowing backup of the datastore in a single node, taking only the
file name as a parameter:

POST /restconf/operations/cluster-admin:backup-datastore

RPC input JSON:

{
 "input": {
 "file-path": "/tmp/datastore_backup"
 }
}

Note

This backup can only be restored if the YANG models of the backed-up data
are identical in the backup OpenDaylight instance and restore target
instance.

To restore the backup on the target node the file needs to be placed into the
$KARAF_HOME/clustered-datastore-restore directory, and then the node
restarted. If the directory does not exist (which is quite likely if this is a
first-time restore) it needs to be created. On startup, ODL checks if the
journal and snapshots directories in $KARAF_HOME are empty, and
only then tries to read the contents of the clustered-datastore-restore
directory, if it exists. So for a successful restore, those two directories
should be empty. The backup file name itself does not matter, and the startup
process will delete it after a successful restore.

The backup is node independent, so when restoring a 3 node cluster, it is best
to restore it on each node for consistency. For example, if restoring on one
node only, it can happen that the other two empty nodes form a majority and
the cluster comes up with no data.

Running XSQL Console Commands and Queries

XSQL Overview

XSQL is an XML-based query language that describes simple stored procedures
which parse XML data, query or update database tables, and compose XML output.
XSQL allows you to query tree models like a sequential database. For example,
you could run a query that lists all of the ports configured on a particular
module and their attributes.

The following sections cover the XSQL installation process, supported XSQL
commands, and the way to structure queries.

Installing XSQL

To run commands from the XSQL console, you must first install XSQL on your
system:

	Navigate to the directory in which you unzipped OpenDaylight

	Start Karaf:

./bin/karaf

	Install XSQL:

feature:install odl-mdsal-xsql

XSQL Console Commands

To enter a command in the XSQL console, structure the command as follows:

odl:xsql _<XSQL command>_

The following table describes the commands supported in this OpenDaylight
release.

Supported XSQL Console Commands

	Command
	Description

	r
	Repeats the last command you executed.

	list vtables
	Lists the schema node containers that are currently installed. Whenever an
OpenDaylight module is installed, its YANG model is placed in the schema
context. At that point, the XSQL receives a notification, confirms that the
module’s YANG model resides in the schema context and then maps the model to
XSQL by setting up the necessary vtables and vfields. This command is useful
when you need to determine vtable information for a query.

	list vfields
<vtable name>
	Lists the vfields present in a specific vtable. This command is useful when
you need to determine vfields information for a query.

	jdbc
<ip address>
	When the ODL server is behind a firewall, and the JDBC client cannot connect
to the JDBC server, run this command to start the client as a server and
establish a connection.

	exit
	Closes the console.

	tocsv
	Enables or disables the forwarding of query output as a .csv file.

	filename
<filename>
	Specifies the .tocsv file to which the query data is exported. If you do not
specify a value for this option when the toccsv option is enabled, the
filename for the query data file is generated automatically.

XSQL Queries

You can run a query to extract information that meets the criteria you specify
using the information provided by the list vtables and list vfields
<vtable name> commands. Any query you run should be structured as follows:

select _<vfields you want to search for, separated by a comma and a space>_
from _<vtables you want to search in, separated by a comma and a space>_
where _<criteria>_ ‘*_<criteria operator>_‘;*

For example, if you want to search the nodes/node ID field in the
nodes/node-connector table and find every instance of the Hardware-Address
object that contains _BA_ in its text string, enter the following query:

select nodes/node.ID from nodes/node-connector where Hardware-Address like '%BA%';

The following criteria operators are supported:

Supported XSQL Query Criteria Operators

	Criteria Operators
	Description

	=
	Lists results that equal the value you specify.

	!=
	Lists results that do not equal the value you specify.

	like
	Lists results that contain the substring you specify. For
example, if you specify like %BC%, every string that contains
that particular substring is displayed.

	<
	Lists results that are less than the value you specify.

	>
	Lists results that are more than the value you specify.

	and
	Lists results that match both values you specify.

	or
	Lists results that match either of the two values you specify.

	>=
	Lists results that are more than or equal to the value you specify.

	<=
	Lists results that are less than or equal to the value you specify.

	is null
	Lists results for which no value is assigned.

	not null
	Lists results for which any value is assigned.

	skip
	Use this operator to list matching results from a child node,
even if its parent node does not meet the specified criteria.
See the following example for more information.

Example: Skip Criteria Operator

If you are looking at the following structure and want to determine all of the
ports that belong to a YY type module:

	Network Element 1
	Module 1, Type XX
	Module 1.1, Type YY
	Port 1

	Port 2

	Module 2, Type YY
	Port 1

	Port 2

If you specify Module.Type=’YY’ in your query criteria, the ports associated
with module 1.1 will not be returned since its parent module is type XX.
Instead, enter Module.Type=’YY’ or skip Module!=’YY’. This tells XSQL to
disregard any parent module data that does not meet the type YY criteria and
collect results for any matching child modules. In this example, you are
instructing the query to skip module 1 and collect the relevant data from
module 1.1.

OpenDaylight Version

Overview

This feature allows NETCONF/RESTCONF users to determine the version of
OpenDaylight they are communicating with.

Install the Version Feature

Follow these steps to install the version feature:

	Navigate to the directory in which you installed OpenDaylight

	Start Karaf:

./bin/karaf

	Install Version feature:

feature:install odl-distribution-version

Note

For RESTCONF access, it is recommended to install odl-restconf
and odl-netconf-connector-ssh.

Version Feature Usage

Example of RESTCONF request using curl from bash:

$ curl -u 'admin:admin' localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-distribution-version:odl-version/odl-distribution-version

Example response (formatted):

{
 "module": [
 {
 "type": "odl-distribution-version:odl-version",
 "name": "odl-distribution-version",
 "odl-distribution-version:version": "0.5.0-SNAPSHOT"
 }
]
}

Security Considerations

This document discusses the various security issues that might affect
OpenDaylight. The document also lists specific recommendations to
mitigate security risks.

This document also contains information about the corrective steps
you can take if you discover a security issue with
OpenDaylight, and if necessary, contact the Security Response Team,
which is tasked with identifying and resolving security threats.

Overview of OpenDaylight Security

There are many different kinds of security vulnerabilities that could affect
an OpenDaylight deployment, but this guide focuses on those where (a) the
servers, virtual machines or other devices running OpenDaylight have been
properly physically (or virtually in the case of VMs) secured against untrusted
individuals and (b) individuals who have access, either via remote logins or
physically, will not attempt to attack or subvert the deployment intentionally
or otherwise.

While those attack vectors are real, they are out of the scope of this
document.

What remains in scope is attacks launched from a server, virtual machine, or
device other than the one running OpenDaylight where the attack does not have
valid credentials to access the OpenDaylight deployment.

The rest of this document gives specific recommendations for deploying
OpenDaylight in a secure manner, but first we highlight some high-level
security advantages of OpenDaylight.

	Separating the control and management planes from the data plane (both
logically and, in many cases, physically) allows possible security threats to
be forced into a smaller attack surface.

	Having centralized information and network control gives network
administrators more visibility and control over the entire network, enabling
them to make better decisions faster. At the same time,
centralization of network control can be an advantage only if access to that
control is secure.

Note

While both previous advantages improve security, they also make
an OpenDaylight deployment an attractive target for attack making
understanding these security considerations even more important.

	The ability to more rapidly evolve southbound protocols and how they are used
provides more and faster mechanisms to enact appropriate security mitigations
and remediations.

	OpenDaylight is built from OSGi bundles and the Karaf Java container. Both
Karaf and OSGi provide some level of isolation with explicit code boundaries,
package imports, package exports, and other security-related features.

	OpenDaylight has a history of rapidly addressing known vulnerabilities and
a well-defined process for reporting and dealing with them.

OpenDaylight Security Resources

	If you have any security issues, you can send a mail to
security@lists.opendaylight.org.

	For the list of current OpenDaylight security issues that are either being
fixed or resolved, refer to
https://wiki.opendaylight.org/view/Security:Advisories.

	To learn more about the OpenDaylight security issues policies and procedure,
refer to https://wiki.opendaylight.org/view/Security:Main

Deployment Recommendations

We recommend that you follow the deployment guidelines in setting up
OpenDaylight to minimize security threats.

	The default credentials should be changed before deploying OpenDaylight.

	OpenDaylight should be deployed in a private network that cannot be accessed
from the internet.

	Separate the data network (that connects devices using the network) from the
management network (that connects the network devices to OpenDaylight).

Note

Deploying OpenDaylight on a separate, private management network does not
eliminate threats, but only mitigates them. By construction, some
messages must flow from the data network to the management network, e.g.,
OpenFlow packet_in messages, and these create an attack surface even if
it is a small one.

	Implement an authentication policy for devices that connect to both the data
and management network. These are the devices which bridge, likely untrusted,
traffic from the data network to the management network.

Securing OSGi bundles

OSGi is a Java-specific framework that improves the way that Java classes
interact within a single JVM. It provides an enhanced version of the
java.lang.SecurityManager (ConditionalPermissionAdmin) in terms of security.

Java provides a security framework that allows a security policy to grant
permissions, such as reading a file or opening a network connection, to
specific code. The code maybe classes from the jarfile loaded from a specific
URL, or a class signed by a specific key. OSGi builds on the standard Java
security model to add the following features:

	A set of OSGi-specific permission types, such as one that grants the right
to register an OSGi service or get an OSGi service from the service registry.

	The ability to dynamically modify permissions at runtime. This includes the
ability to specify permissions by using code rather than a text configuration
file.

	A flexible predicate-based approach to determining which rules are
applicable to which ProtectionDomain. This approach is much more powerful
than the standard Java security policy which can only grant rights based on a
jarfile URL or class signature. A few standard predicates are provided,
including selecting rules based upon bundle symbolic-name.

	Support for bundle local permissions policies with optional further
constraints such as DENY operations. Most of this functionality is accessed
by using the OSGi ConditionalPermissionAdmin service which is part of the
OSGi core and can be obtained from the OSGi service registry. The
ConditionalPermissionAdmin API replaces the earlier PermissionAdmin API.

For more information, refer to http://www.osgi.org/Main/HomePage.

Securing the Karaf container

Apache Karaf is a OSGi-based runtime platform which provides a lightweight
container for OpenDaylight and applications. Apache Karaf uses
either Apache Felix Framework or Eclipse Equinox OSGi frameworks, and provide
additional features on top of the framework.

Apache Karaf provides a security framework based on Java Authentication and
Authorization Service (JAAS) in compliance with OSGi recommendations,
while providing RBAC (Role-Based Access Control) mechanism for the console and
Java Management Extensions (JMX).

The Apache Karaf security framework is used internally to control the access
to the following components:

	OSGi services

	console commands

	JMX layer

	WebConsole

The remote management capabilities are present in Apache Karaf by default,
however they can be disabled by using various configuration alterations. These
configuration options may be applied to the OpenDaylight Karaf distribution.

Note

Refer to the following list of publications for more information on
implementing security for the Karaf container.

	For role-based JMX administration, refer to
http://karaf.apache.org/manual/latest/users-guide/monitoring.html.

	For remote SSH access configuration, refer to
http://karaf.apache.org/manual/latest/users-guide/remote.html.

	For WebConsole access, refer to
http://karaf.apache.org/manual/latest/users-guide/webconsole.html.

	For Karaf security features, refer to
http://karaf.apache.org/manual/latest/developers-guide/security-framework.html.

Disabling the remote shutdown port

You can lock down your deployment post installation. Set
karaf.shutdown.port=-1 in etc/custom.properties or etc/config.properties to
disable the remote shutdown port.

Securing Southbound Plugins

Many individual southbound plugins provide mechanisms to secure their
communication with network devices. For example, the OpenFlow plugin supports
TLS connections with bi-directional authentication and the NETCONF plugin
supports connecting over SSH. Meanwhile, the Unified Secure Channel plugin
provides a way to form secure, remote connections for supported devices.

When deploying OpenDaylight, you should carefully investigate the secure
mechanisms to connect to devices using the relevant plugins.

Securing OpenDaylight using AAA

AAA stands for Authentication, Authorization, and Accounting. All three of
can help improve the security posture of and OpenDaylight deployment. In this
release, only authentication is fully supported, while authorization is an
experimental feature and accounting remains a work in progress.

The vast majority of OpenDaylight’s northbound APIs (and all RESTCONF APIs) are
protected by AAA by default when installing the +odl-restconf+ feature. In the
cases that APIs are not protected by AAA, this will be noted in the
per-project release notes.

By default, OpenDaylight has only one user account with the username and
password admin. This should be changed before deploying OpenDaylight.

Security Considerations for Clustering

While OpenDaylight clustering provides many benefits including high
availability, scale-out performance, and data durability, it also opens a new
attack surface in the form of the messages exchanged between the various
instances of OpenDaylight in the cluster. In the current OpenDaylight release,
these messages are neither encrypted nor authenticated meaning that anyone with
access to the management network where OpenDaylight exchanges these clustering
messages can forge and/or read the messages. This means that if clustering is
enabled, it is even more important that the management network be kept secure
from any untrusted entities.

OpenDaylight User Guide

Overview

This first part of the user guide covers the basic user operations of
the OpenDaylight Release using the generic base functionality.

	OpenDaylight Controller Overview

	Using the OpenDaylight User Interface (DLUX)

	Running XSQL Console Commands and Queries

	Setting Up Clustering

Project-specific User Guides

	ALTO User Guide

	Authentication, Authorization and Accounting (AAA) Services

	Atrium User Guide

	BGP User Guide

	BGP Monitoring Protocol User Guide

	CAPWAP User Guide

	Cardinal: OpenDaylight Monitoring as a Service

	Centinel User Guide

	DIDM User Guide

	Fabric As A Service

	Genius User Guide

	Group Based Policy User Guide

	L2 Switch User Guide

	Link Aggregation Control Protocol User Guide

	LISP Flow Mapping User Guide

	NATApp User Guide

	NEtwork MOdeling (NEMO)

	NETCONF User Guide

	NetIDE User Guide

	NetVirt User Guide

	Neutron Service User Guide

	Network Intent Composition (NIC) User Guide

	OCP Plugin User Guide

	ODL-SDNi User Guide

	OF-CONFIG User Guide

	OpenFlow Plugin Project User Guide

	OpFlex agent-ovs User Guide

	OVSDB User Guide

	PCEP User Guide

	PacketCable User Guide

	Service Function Chaining

	SNBI User Guide

	SNMP Plugin User Guide

	SNMP4SDN User Guide

	SXP User Guide

	TSDR User Guide

	TTP CLI Tools User Guide

	User Network Interface Manager Plug-in (Unimgr)

	Unified Secure Channel

	Usecplugin-AAA User Guide

	Usecplugin-OpenFlow User Guide

	Virtual Tenant Network (VTN)

	YANG IDE User Guide

	YANG-PUSH

OpenDaylight Controller Overview

The OpenDaylight controller is JVM software and can be run from any
operating system and hardware as long as it supports Java. The
controller is an implementation of the Software Defined Network (SDN)
concept and makes use of the following tools:

	Maven: OpenDaylight uses Maven for easier build automation. Maven
uses pom.xml (Project Object Model) to script the dependencies
between bundle and also to describe what bundles to load and start.

	OSGi: This framework is the back-end of OpenDaylight as it allows
dynamically loading bundles and packages JAR files, and binding
bundles together for exchanging information.

	JAVA interfaces: Java interfaces are used for event listening,
specifications, and forming patterns. This is the main way in which
specific bundles implement call-back functions for events and also to
indicate awareness of specific state.

	REST APIs: These are northbound APIs such as topology manager,
host tracker, flow programmer, static routing, and so on.

The controller exposes open northbound APIs which are used by
applications. The OSGi framework and bidirectional REST are supported
for the northbound APIs. The OSGi framework is used for applications
that run in the same address space as the controller while the REST
(web-based) API is used for applications that do not run in the same
address space (or even the same system) as the controller. The business
logic and algorithms reside in the applications. These applications use
the controller to gather network intelligence, run its algorithm to do
analytics, and then orchestrate the new rules throughout the network. On
the southbound, multiple protocols are supported as plugins, e.g.
OpenFlow 1.0, OpenFlow 1.3, BGP-LS, and so on. The OpenDaylight
controller starts with an OpenFlow 1.0 southbound plugin. Other
OpenDaylight contributors begin adding to the controller code. These
modules are linked dynamically into a Service Abstraction Layer
(SAL).

The SAL exposes services to which the modules north of it are written.
The SAL figures out how to fulfill the requested service irrespective of
the underlying protocol used between the controller and the network
devices. This provides investment protection to the applications as
OpenFlow and other protocols evolve over time. For the controller to
control devices in its domain, it needs to know about the devices, their
capabilities, reachability, and so on. This information is stored and
managed by the Topology Manager. The other components like ARP
handler, Host Tracker, Device Manager, and Switch Manager help in
generating the topology database for the Topology Manager.

For a more detailed overview of the OpenDaylight controller, see the
OpenDaylight Developer Guide.

Using the OpenDaylight User Interface (DLUX)

This section introduces you to the OpenDaylight User Experience (DLUX)
application.

Getting Started with DLUX

DLUX provides a number of different Karaf features, which you can enable
and disable separately. In Beryllum they are: . odl-dlux-core .
odl-dlux-node . odl-dlux-yangui . odl-dlux-yangvisualizer

Logging In

To log in to DLUX, after installing the application:

	Open a browser and enter the login URL
http://<your-karaf-ip>:8181/index.html
in your browser (Chrome is recommended).

	Login to the application with your username and password credentials.

Note

OpenDaylight’s default credentials are admin for both the username
and password.

Working with DLUX

After you login to DLUX, if you enable only odl-dlux-core feature, you
will see only topology application available in the left pane.

Note

To make sure topology displays all the details, enable the
odl-l2switch-switch feature in Karaf.

DLUX has other applications such as node, yang UI and those apps won’t
show up, until you enable their features odl-dlux-node and
odl-dlux-yangui respectively in the Karaf distribution.

[image: DLUX Modules]
DLUX Modules

Note

If you install your application in dlux, they will also show up on
the left hand navigation after browser page refresh.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network
statistics and port information for the switches in the network.

To use the Nodes module:

	Select Nodes on the left pane. The right pane displays atable
that lists all the nodes, node connectors and the statistics.

	Enter a node ID in the Search Nodes tab to search by node
connectors.

	Click on the Node Connector number to view details such as port
ID, port name, number of ports per switch, MAC Address, and so on.

	Click Flows in the Statistics column to view Flow Table
Statistics for the particular node like table ID, packet match,
active flows and so on.

	Click Node Connectors to view Node Connector Statistics for the
particular node ID.

Viewing Network Topology

The Topology tab displays a graphical representation of network topology
created.

Note

DLUX does not allow for editing or adding topology information. The
topology is generated and edited in other modules, e.g., the
OpenFlow plugin. OpenDaylight stores this information in the MD-SAL
datastore where DLUX can read and display it.

To view network topology:

	Select Topology on the left pane. You will view the graphical
representation on the right pane. In the diagram blue boxes represent
the switches, the black represents the hosts available, and lines
represents how the switches and hosts are connected.

	Hover your mouse on hosts, links, or switches to view source and
destination ports.

	Zoom in and zoom out using mouse scroll to verify topology for larger
topologies.

[image: Topology Module]
Topology Module

Interacting with the YANG-based MD-SAL datastore

The Yang UI module enables you to interact with the YANG-based
MD-SAL datastore. For more information about YANG and how it interacts
with the MD-SAL datastore, see the Controller and YANG Tools section
of the OpenDaylight Developer Guide.

[image: Yang UI]
Yang UI

To use Yang UI:

	Select Yang UI on the left pane. The right pane is divided in two
parts.

	The top part displays a tree of APIs, subAPIs, and buttons to call
possible functions (GET, POST, PUT, and DELETE).

Note

every subAPI can call every function. For example, subAPIs in
the operational store have GET functionality only.

Inputs can be filled from OpenDaylight when existing data from
OpenDaylight is displayed or can be filled by user on the page and
sent to OpenDaylight.

Buttons under the API tree are variable. It depends on subAPI
specifications. Common buttons are:

	GET to get data from OpenDaylight,

	PUT and POST for sending data to OpenDaylight for saving

	DELETE for sending data to OpenDaylight for deleting.

You must specify the xpath for all these operations. This path is
displayed in the same row before buttons and it may include text
inputs for specific path element identifiers.

[image: Yang API Specification]
Yang API Specification

	The bottom part of the right pane displays inputs according to the
chosen subAPI.

	Lists are handled as a special case. For example, a device can
store multiple flows. In this case “flow” is name of the list and
every list element is identified by a unique key value. Elements
of a list can, in turn, contain other lists.

	In Yang UI, each list element is rendered with the name of the
list it belongs to, its key, its value, and a button for removing
it from the list.

[image: Yang UI API Specification]
Yang UI API Specification

	After filling in the relevant inputs, click the Show Preview
button under the API tree to display request that will be sent to
OpenDaylight. A pane is displayed on the right side with text of
request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

	Select subAPI network-topology <topology revision number> == >
operational == > network-topology.

	Get data from OpenDaylight by clicking on the “GET” button.

	Click Display Topology.

[image: DLUX Yang Topology]
DLUX Yang Topology

Configuring List Elements on the Yang UI

Lists in Yang UI are displayed as trees. To expand or collapse a list,
click the arrow before name of the list. To configure list elements in
Yang UI:

	To add a new list element with empty inputs use the plus icon-button
+ that is provided after list name.

	To remove several list elements, use the X button that is
provided after every list element.

[image: DLUX List Elements]
DLUX List Elements

	In the YANG-based data store all elements of a list must have a
unique key. If you try to assign two or more elements the same key, a
warning icon ! is displayed near their name buttons.

[image: DLUX List Warnings]
DLUX List Warnings

	When the list contains at least one list element, after the +
icon, there are buttons to select each individual list element. You
can choose one of them by clicking on it. In addition, to the right
of the list name, there is a button which will display a vertically
scrollable pane with all the list elements.

[image: DLUX List Button1]
DLUX List Button1

Running XSQL Console Commands and Queries

XSQL Overview

XSQL is an XML-based query language that describes simple stored
procedures which parse XML data, query or update database tables, and
compose XML output. XSQL allows you to query tree models like a
sequential database. For example, you could run a query that lists all
of the ports configured on a particular module and their attributes.

The following sections cover the XSQL installation process, supported
XSQL commands, and the way to structure queries.

Installing XSQL

To run commands from the XSQL console, you must first install XSQL on
your system:

	Navigate to the directory in which you unzipped OpenDaylight

	Start Karaf:

./bin/karaf

	Install XSQL:

feature:install odl-mdsal-xsql

XSQL Console Commands

To enter a command in the XSQL console, structure the command as
follows: odl:xsql <XSQL command>

The following table describes the commands supported in this
OpenDaylight release.

	Command
	Description

	r
	Repeats the last command you executed.

	list vtables
	Lists the schema node containers that are
currently installed. Whenever an OpenDaylight
module is installed, its YANG model is placed in
the schema context. At that point, the XSQL
receives a notification, confirms that the
module’s YANG model resides in the schema context
and then maps the model to XSQL by setting up the
necessary vtables and vfields. This command is
useful when you need to determine vtable
information for a query.

	list vfields
<vtable name>
	Lists the vfields present in a specific vtable.
This command is useful when you need to determine
vfields information for a query.

	jdbc <ip
address>
	When the ODL server is behind a firewall, and the
JDBC client cannot connect to the JDBC server, run
this command to start the client as a server and
establish a connection.

	exit
	Closes the console.

	tocsv
	Enables or disables the forwarding of query output
as a .csv file.

	filename
<filename>
	Specifies the .tocsv file to which the query data
is exported. If you do not specify a value for
this option when the toccsv option is enabled, the
filename for the query data file is generated
automatically.

Table: Supported XSQL Console Commands

XSQL Queries

You can run a query to extract information that meets the criteria you
specify using the information provided by the list vtables and
list vfields <vtable name> commands. Any query you run should be
structured as follows:

select <vfields you want to search for, separated by a comma and a
space> from <vtables you want to search in, separated by a comma
and a space> where <criteria> ***<criteria operator>**;*

For example, if you want to search the nodes/node ID field in the
nodes/node-connector table and find every instance of the
Hardware-Address object that contains BA in its text string, enter the
following query:

select nodes/node.ID from nodes/node-connector where Hardware-Address like '%BA%';

The following criteria operators are supported:

	Criteria
Operators
	Description

	=
	Lists results that equal the value you specify.

	!=
	Lists results that do not equal the value you specify.

	like
	Lists results that contain the substring you specify. For
example, if you specify like %BC%, every string that
contains that particular substring is displayed.

	<
	Lists results that are less than the value you specify.

	>
	Lists results that are more than the value you specify.

	and
	Lists results that match both values you specify.

	or
	Lists results that match either of the two values you
specify.

	>=
	Lists results that are more than or equal to the value
you specify.

	⇐
	Lists results that are less than or equal to the value
you specify.

	is null
	Lists results for which no value is assigned.

	not null
	Lists results for which any value is assigned.

	skip
	Use this operator to list matching results from a child
node, even if its parent node does not meet the specified
criteria. See the following example for more information.

Table: Supported XSQL Query Criteria Operators

Example: Skip Criteria Operator

If you are looking at the following structure and want to determine all
of the ports that belong to a YY type module:

	Network Element 1
	Module 1, Type XX
	Module 1.1, Type YY
	Port 1

	Port 2

	Module 2, Type YY
	Port 1

	Port 2

If you specify Module.Type=*YY* in your query criteria, the ports
associated with module 1.1 will not be returned since its parent module
is type XX. Instead, enter Module.Type=*YY* or skip
Module!=*YY*. This tells XSQL to disregard any parent module data
that does not meet the type YY criteria and collect results for any
matching child modules. In this example, you are instructing the query
to skip module 1 and collect the relevant data from module 1.1.

Setting Up Clustering

Clustering Overview

Clustering is a mechanism that enables multiple processes and programs to work
together as one entity. For example, when you search for something on
google.com, it may seem like your search request is processed by only one web
server. In reality, your search request is processed by may web servers
connected in a cluster. Similarly, you can have multiple instances of
OpenDaylight working together as one entity.

Advantages of clustering are:

	Scaling: If you have multiple instances of OpenDaylight running, you can
potentially do more work and store more data than you could with only one
instance. You can also break up your data into smaller chunks (shards) and
either distribute that data across the cluster or perform certain operations
on certain members of the cluster.

	High Availability: If you have multiple instances of OpenDaylight running and
one of them crashes, you will still have the other instances working and
available.

	Data Persistence: You will not lose any data stored in OpenDaylight after a
manual restart or a crash.

The following sections describe how to set up clustering on both individual and
multiple OpenDaylight instances.

Multiple Node Clustering

The following sections describe how to set up multiple node clusters in OpenDaylight.

Deployment Considerations

To implement clustering, the deployment considerations are as follows:

	To set up a cluster with multiple nodes, we recommend that you use a minimum
of three machines. You can set up a cluster with just two nodes. However, if
one of the two nodes fail, the cluster will not be operational.

Note

This is because clustering in OpenDaylight requires a majority of the
nodes to be up and one node cannot be a majority of two nodes.

	Every device that belongs to a cluster needs to have an identifier.
OpenDaylight uses the node’s role for this purpose. After you define the
first node’s role as member-1 in the akka.conf file, OpenDaylight uses
member-1 to identify that node.

	Data shards are used to contain all or a certain segment of a OpenDaylight’s
MD-SAL datastore. For example, one shard can contain all the inventory data
while another shard contains all of the topology data.

If you do not specify a module in the modules.conf file and do not specify
a shard in module-shards.conf, then (by default) all the data is placed in
the default shard (which must also be defined in module-shards.conf file).
Each shard has replicas configured. You can specify the details of where the
replicas reside in module-shards.conf file.

	If you have a three node cluster and would like to be able to tolerate any
single node crashing, a replica of every defined data shard must be running
on all three cluster nodes.

Note

This is because OpenDaylight’s clustering implementation requires a
majority of the defined shard replicas to be running in order to
function. If you define data shard replicas on two of the cluster nodes
and one of those nodes goes down, the corresponding data shards will not
function.

	If you have a three node cluster and have defined replicas for a data shard
on each of those nodes, that shard will still function even if only two of
the cluster nodes are running. Note that if one of those remaining two nodes
goes down, the shard will not be operational.

	It is recommended that you have multiple seed nodes configured. After a
cluster member is started, it sends a message to all of its seed nodes.
The cluster member then sends a join command to the first seed node that
responds. If none of its seed nodes reply, the cluster member repeats this
process until it successfully establishes a connection or it is shut down.

	After a node is unreachable, it remains down for configurable period of time
(10 seconds, by default). Once a node goes down, you need to restart it so
that it can rejoin the cluster. Once a restarted node joins a cluster, it
will synchronize with the lead node automatically.

Clustering Scripts

OpenDaylight includes some scripts to help with the clustering configuration.

Note

Scripts are stored in the OpenDaylight distribution/bin folder, and
maintained in the distribution project
repository [https://git.opendaylight.org/gerrit/p/integration/distribution]
in the folder distribution-karaf/src/main/assembly/bin/.

Configure Cluster Script

This script is used to configure the cluster parameters (e.g. akka.conf,
module-shards.conf) on a member of the controller cluster. The user should
restart the node to apply the changes.

Note

The script can be used at any time, even before the controller is started
for the first time.

Usage:

bin/configure_cluster.sh <index> <seed_nodes_list>

	index: Integer within 1..N, where N is the number of seed nodes. This indicates
which controller node (1..N) is configured by the script.

	seed_nodes_list: List of seed nodes (IP address), separated by comma or space.

The IP address at the provided index should belong to the member executing
the script. When running this script on multiple seed nodes, keep the
seed_node_list the same, and vary the index from 1 through N.

Optionally, shards can be configured in a more granular way by modifying the
file “custom_shard_configs.txt” in the same folder as this tool. Please see
that file for more details.

Example:

bin/configure_cluster.sh 2 192.168.0.1 192.168.0.2 192.168.0.3

The above command will configure the member 2 (IP address 192.168.0.2) of a
cluster made of 192.168.0.1 192.168.0.2 192.168.0.3.

Setting Up a Multiple Node Cluster

To run OpenDaylight in a three node cluster, perform the following:

First, determine the three machines that will make up the cluster. After that,
do the following on each machine:

	Copy the OpenDaylight distribution zip file to the machine.

	Unzip the distribution.

	Open the following .conf files:

	configuration/initial/akka.conf

	configuration/initial/module-shards.conf

	In each configuration file, make the following changes:

Find every instance of the following lines and replace _127.0.0.1_ with the
hostname or IP address of the machine on which this file resides and
OpenDaylight will run:

netty.tcp {
 hostname = "127.0.0.1"

Note

The value you need to specify will be different for each node in the
cluster.

	Find the following lines and replace _127.0.0.1_ with the hostname or IP
address of any of the machines that will be part of the cluster:

cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@${IP_OF_MEMBER1}:2550",
 <url-to-cluster-member-2>,
 <url-to-cluster-member-3>]

	Find the following section and specify the role for each member node. Here
we assign the first node with the member-1 role, the second node with the
member-2 role, and the third node with the member-3 role:

roles = [
 "member-1"
]

Note

This step should use a different role on each node.

	Open the configuration/initial/module-shards.conf file and update the
replicas so that each shard is replicated to all three nodes:

replicas = [
 "member-1",
 "member-2",
 "member-3"
]

For reference, view a sample config files <<_sample_config_files,below>>.

	Move into the +<karaf-distribution-directory>/bin+ directory.

	Run the following command:

JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

	Enable clustering by running the following command at the Karaf command line:

feature:install odl-mdsal-clustering

OpenDaylight should now be running in a three node cluster. You can use any of
the three member nodes to access the data residing in the datastore.

Sample Config Files

Sample akka.conf file:

odl-cluster-data {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "DEBUG"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {

 provider = "akka.cluster.ClusterActorRefProvider"
 serializers {
 java = "akka.serialization.JavaSerializer"
 proto = "akka.remote.serialization.ProtobufSerializer"
 }

 serialization-bindings {
 "com.google.protobuf.Message" = proto

 }
 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2550
 maximum-frame-size = 419430400
 send-buffer-size = 52428800
 receive-buffer-size = 52428800
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@10.194.189.96:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.98:2550",
 "akka.tcp://opendaylight-cluster-data@10.194.189.101:2550"]

 auto-down-unreachable-after = 10s

 roles = [
 "member-2"
]

 }
 }
}

odl-cluster-rpc {
 bounded-mailbox {
 mailbox-type = "org.opendaylight.controller.cluster.common.actor.MeteredBoundedMailbox"
 mailbox-capacity = 1000
 mailbox-push-timeout-time = 100ms
 }

 metric-capture-enabled = true

 akka {
 loglevel = "INFO"
 loggers = ["akka.event.slf4j.Slf4jLogger"]

 actor {
 provider = "akka.cluster.ClusterActorRefProvider"

 }
 remote {
 log-remote-lifecycle-events = off
 netty.tcp {
 hostname = "10.194.189.96"
 port = 2551
 }
 }

 cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-rpc@10.194.189.96:2551"]

 auto-down-unreachable-after = 10s
 }
 }
}

Sample module-shards.conf file:

module-shards = [
 {
 name = "default"
 shards = [
 {
 name="default"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "topology"
 shards = [
 {
 name="topology"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "inventory"
 shards = [
 {
 name="inventory"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "toaster"
 shards = [
 {
 name="toaster"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 }
]

Cluster Monitoring

OpenDaylight exposes shard information via MBeans, which can be explored with
JConsole, VisualVM, or other JMX clients, or exposed via a REST API using
Jolokia [https://jolokia.org/features-nb.html], provided by the
odl-jolokia Karaf feature. This is convenient, due to a significant focus
on REST in OpenDaylight.

The basic URI that lists a schema of all available MBeans, but not their
content itself is:

GET /jolokia/list

To read the information about the shards local to the queried OpenDaylight
instance use the following REST calls. For the config datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedConfigDatastore,Category=ShardManager,name=shard-manager-config

For the operational datastore:

GET /jolokia/read/org.opendaylight.controller:type=DistributedOperationalDatastore,Category=ShardManager,name=shard-manager-operational

The output contains information on shards present on the node:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=ShardManager,name=shard-manager-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "LocalShards": [
 "member-1-shard-default-operational",
 "member-1-shard-entity-ownership-operational",
 "member-1-shard-topology-operational",
 "member-1-shard-inventory-operational",
 "member-1-shard-toaster-operational"
],
 "SyncStatus": true,
 "MemberName": "member-1"
 },
 "timestamp": 1483738005,
 "status": 200
}

The exact names from the “LocalShards” lists are needed for further
exploration, as they will be used as part of the URI to look up detailed info
on a particular shard. An example output for the
member-1-shard-default-operational looks like this:

{
 "request": {
 "mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-default-operational,type=DistributedOperationalDatastore",
 "type": "read"
 },
 "value": {
 "ReadWriteTransactionCount": 0,
 "SnapshotIndex": 4,
 "InMemoryJournalLogSize": 1,
 "ReplicatedToAllIndex": 4,
 "Leader": "member-1-shard-default-operational",
 "LastIndex": 5,
 "RaftState": "Leader",
 "LastCommittedTransactionTime": "2017-01-06 13:19:00.135",
 "LastApplied": 5,
 "LastLeadershipChangeTime": "2017-01-06 13:18:37.605",
 "LastLogIndex": 5,
 "PeerAddresses": "member-3-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.3:2550/user/shardmanager-operational/member-3-shard-default-operational, member-2-shard-default-operational: akka.tcp://opendaylight-cluster-data@192.168.16.2:2550/user/shardmanager-operational/member-2-shard-default-operational",
 "WriteOnlyTransactionCount": 0,
 "FollowerInitialSyncStatus": false,
 "FollowerInfo": [
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-3-shard-default-operational",
 "nextIndex": 6
 },
 {
 "timeSinceLastActivity": "00:00:00.320",
 "active": true,
 "matchIndex": 5,
 "voting": true,
 "id": "member-2-shard-default-operational",
 "nextIndex": 6
 }
],
 "FailedReadTransactionsCount": 0,
 "StatRetrievalTime": "810.5 μs",
 "Voting": true,
 "CurrentTerm": 1,
 "LastTerm": 1,
 "FailedTransactionsCount": 0,
 "PendingTxCommitQueueSize": 0,
 "VotedFor": "member-1-shard-default-operational",
 "SnapshotCaptureInitiated": false,
 "CommittedTransactionsCount": 6,
 "TxCohortCacheSize": 0,
 "PeerVotingStates": "member-3-shard-default-operational: true, member-2-shard-default-operational: true",
 "LastLogTerm": 1,
 "StatRetrievalError": null,
 "CommitIndex": 5,
 "SnapshotTerm": 1,
 "AbortTransactionsCount": 0,
 "ReadOnlyTransactionCount": 0,
 "ShardName": "member-1-shard-default-operational",
 "LeadershipChangeCount": 1,
 "InMemoryJournalDataSize": 450
 },
 "timestamp": 1483740350,
 "status": 200
}

The output helps identifying shard state (leader/follower, voting/non-voting),
peers, follower details if the shard is a leader, and other
statistics/counters.

The Integration team is maintaining a Python based tool [https://github.com/opendaylight/integration-test/tree/master/tools/clustering/cluster-monitor],
that takes advantage of the above MBeans exposed via Jolokia, and the
systemmetrics project offers a DLUX based UI to display the same
information.

Geo-distributed Active/Backup Setup

An OpenDaylight cluster works best when the latency between the nodes is very
small, which practically means they should be in the same datacenter. It is
however desirable to have the possibility to fail over to a different
datacenter, in case all nodes become unreachable. To achieve that, the cluster
can be expanded with nodes in a different datacenter, but in a way that
doesn’t affect latency of the primary nodes. To do that, shards in the backup
nodes must be in “non-voting” state.

The API to manipulate voting states on shards is defined as RPCs in the
cluster-admin.yang [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-cluster-admin-api/src/main/yang/cluster-admin.yang]
file in the controller project, which is well documented. A summary is
provided below.

Note

Unless otherwise indicated, the below POST requests are to be sent to any
single cluster node.

To create an active/backup setup with a 6 node cluster (3 active and 3 backup
nodes in two locations) there is an RPC to set voting states of all shards on
a list of nodes to a given state:

POST /restconf/operations/cluster-admin:change-member-voting-states-for-all-shards

This RPC needs the list of nodes and the desired voting state as input. For
creating the backup nodes, this example input can be used:

{
 "input": {
 "member-voting-state": [
 {
 "member-name": "member-4",
 "voting": false
 },
 {
 "member-name": "member-5",
 "voting": false
 },
 {
 "member-name": "member-6",
 "voting": false
 }
]
 }
}

When an active/backup deployment already exists, with shards on the backup
nodes in non-voting state, all that is needed for a fail-over from the active
“sub-cluster” to backup “sub-cluster” is to flip the voting state of each
shard (on each node, active AND backup). That can be easily achieved with the
following RPC call (no parameters needed):

POST /restconf/operations/cluster-admin:flip-member-voting-states-for-all-shards

If it’s an unplanned outage where the primary voting nodes are down, the
“flip” RPC must be sent to a backup non-voting node. In this case there are no
shard leaders to carry out the voting changes. However there is a special case
whereby if the node that receives the RPC is non-voting and is to be changed
to voting and there’s no leader, it will apply the voting changes locally and
attempt to become the leader. If successful, it persists the voting changes
and replicates them to the remaining nodes.

When the primary site is fixed and you want to fail back to it, care must be
taken when bringing the site back up. Because it was down when the voting
states were flipped on the secondary, its persisted database won’t contain
those changes. If brought back up in that state, the nodes will think they’re
still voting. If the nodes have connectivity to the secondary site, they
should follow the leader in the secondary site and sync with it. However if
this does not happen then the primary site may elect its own leader thereby
partitioning the 2 clusters, which can lead to undesirable results. Therefore
it is recommended to either clean the databases (i.e., journal and
snapshots directory) on the primary nodes before bringing them back up or
restore them from a recent backup of the secondary site (see section
Backing Up and Restoring the Datastore).

If is also possible to gracefully remove a node from a cluster, with the
following RPC:

POST /restconf/operations/cluster-admin:remove-all-shard-replicas

and example input:

{
 "input": {
 "member-name": "member-1"
 }
}

or just one particular shard:

POST /restconf/operations/cluster-admin:remove-shard-replica

with example input:

{
 "input": {
 "shard-name": "default",
 "member-name": "member-2",
 "data-store-type": "config"
 }
}

Now that a (potentially dead/unrecoverable) node was removed, another one can
be added at runtime, without changing the configuration files of the healthy
nodes (requiring reboot):

POST /restconf/operations/cluster-admin:add-replicas-for-all-shards

No input required, but this RPC needs to be sent to the new node, to instruct
it to replicate all shards from the cluster.

Note

While the cluster admin API allows adding and removing shards dynamically,
the module-shard.conf and modules.conf files are still used on
startup to define the initial configuration of shards. Modifications from
the use of the API are not stored to those static files, but to the journal.

ALTO User Guide

Overview

The ALTO project is aimed to provide support for Application Layer
Traffic Optimization services defined in RFC
7285 [https://tools.ietf.org/html/rfc7285] in OpenDaylight.

This user guide will introduce the three basic services (namely
simple-ird, manual-maps and host-tracker) which are
implemented since the Beryllium release, and give instructions on how to
configure them to provide corresponding ALTO services.

A new feature named simple-pce (Simple Path Computation Engine)
is added into Boron release as an ALTO extension service.

How to Identify ALTO Resources

Each ALTO resource can be uniquely identified by a tuple . For each
resource, a version-tag is used to support historical look-ups.

The formats of resource-id and version-tag are defined in section
10.2 [https://tools.ietf.org/html/rfc7285#section-10.2] and section
10.3 [https://tools.ietf.org/html/rfc7285#section-10.3] respectively.
The context-id is not part of the protocol and we choose the same
format as a universal unique identifier (UUID) which is defined in
RFC 4122 [http://tools.ietf.org/html/rfc4122].

A context is like a namespace for ALTO resources, which eliminates
resource-id collisions. For simplicity, we also provide a default
context with the id 000000000000-0000-0000-0000-00000000.

How to Use Simple IRD

The simple IRD feature provides a simple information resource
directory (IRD) service defined in RFC
7285 [https://tools.ietf.org/html/rfc7285#section-9].

Install the Feature

To enable simple IRD, run the following command in the karaf CLI:

karaf > feature:install odl-alto-simpleird

After the feature is successfully installed, a special context will be
created for all simple IRD resources. The id for this context can be
seen by executing the following command in a terminal:

curl -X GET -u admin:admin http://localhost:8181/restconf/operational/alto-simple-ird:information/

Create a new IRD

To create a new IRD resource, two fields MUST be provided:

	Field instance-id: the resource-id of the IRD resource;

	Field entry-context: the context-id for non-IRD entries managed
by this IRD resource.

Using the following script, one can create an empty IRD resource:

#!/bin/bash
filename: ird-create
INSTANCE_ID=$1
if [$2]; then
 CONTEXT_ID=$2
else
 CONTEXT_ID="00000000-0000-0000-0000-000000000000"
fi
URL="`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/"$INSTANCE_ID"/[`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/"$INSTANCE_ID"/`]`"
DATA=$(cat template \
 | sed 's/\$1/'$CONTEXT_ID'/g' \
 | sed 's/\$2/'$INSTANCE_ID'/g')
curl -4 -D - -X PUT -u admin:admin \
 -H "Content-Type: application/json" -d "$(echo $DATA)"\
 $URL

For example, the following command will create a new IRD named ird
which can accept entries with the default context-id:

$./ird-create ird 000000000000-0000-0000-0000-00000000

And below is the what the template file looks like:

{
 "ird-instance-configuration": {
 "entry-context": "/alto-resourcepool:context[alto-resourcepool:context-id='$1']",
 "instance-id": "$2"
 }
}

Remove an IRD

To remove an existing IRD (and all the entries in it), one can use the
following command in a terminal:

curl -X DELETE -u admin:admin http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/$INSTANCE_ID

Add a new entry

There are several ways to add entries to an IRD and in this section we
introduce only the simplest method. Using the following script, one can
add a new entry to the target IRD.

For each new entry, four parameters MUST be provided:

	Parameter ird-id: the resource-id of the target IRD;

	Parameter entry-id: the resource-id of the ALTO service to be
added;

	Parameter context-id: the context-id of the ALTO service to be
added, which MUST be identical to the target IRD’s entry-context;

	Parameter location: either a URI or a relative path to the ALTO
service.

The following script can be used to add one entry to the target IRD,
where the relative path is used:

#!/bin/bash
filename: ird-add-entry
IRD_ID=$1
ENTRY_ID=$2
CONTEXT_ID=$3
BASE_URL=$4
URL="`http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/"$IRD_ID"/ird-configuration-entry/"$ENTRY_ID"/"
DATA=$(cat template \
 | sed 's/\$1/'$ENTRY_ID'/g' \
 | sed 's/\$2/'$CONTEXT_ID'/g' \
 | sed 's/\$3/'$BASE_URL'/g')
curl -4 -D - -X PUT -u admin:admin \
 -H "Content-Type: application/json" -d "$(echo $DATA)" \
 $URL

For example, the following command will add a new resource named
networkmap, whose context-id is the default context-id and the base
URL is /alto/networkmap, to the IRD named ird:

$./ird-add-entry ird networkmap 000000000000-0000-0000-0000-00000000 /alto/networkmap

And below is the template file:

{
 "ird-configuration-entry": {
 "entry-id": "$1",
 "instance": "/alto-resourcepool:context[alto-resourcepool:context-id='$2']/alto-resourcepool:resource[alto-resourcepool:resource-id='$1']",
 "path": "$3/$1"
 }
}

Remove an entry

To remove an entry from an IRD, one can use the following one-line
command:

curl -X DELETE -u admin:admin http://localhost:8181/restconf/config/alto-simple-ird:ird-instance-configuration/$IRD_ID/ird-configuration-entry/$ENTRY_ID/

How to Use Host-tracker-based ECS

As a real instance of ALTO services, *alto-hosttracker* reads data
from *l2switch* and generates a network map with resource id
hosttracker-network-map and a cost map with resource id
hostracker-cost-map. It can only work with OpenFlow-enabled
networks.

After installing the *odl-alto-hosttracker* feature, the
corresponding network map and cost map will be inserted into the data
store.

Managing Resource with alto-resourcepool

After installing odl-alto-release feature in Karaf,
alto-resourcepool feature will be installed automatically. And you
can manage all resources in ALTO via RESTCONF APIs provided by
alto-resourcepool.

With the example bash script below you can get any resource infomation
in a given context.

#!/bin/bash
RESOURCE_ID=$1
if [$2] ; then
 CONTEXT_ID=$2
else
 CONTEXT_ID="00000000-0000-0000-0000-000000000000"
fi
URL="http://localhost:8181/restconf/operational/alto-resourcepool:context/"$CONTEXT_ID"/alto-resourcepool:resource/"$RESOURCE_ID
curl -X GET -u admin:admin $URL | python -m json.tool | sed -n '/default-tag/p' | sed 's/.*:.*\"\(.*\)\".*/\1/g'

Manual Configuration

Using RESTCONF API

After installing odl-alto-release feature in Karaf, it is possible
to manage network-maps and cost-maps using RESTCONF. Take a look at all
the operations provided by resource-config at the API service page
which can be found at
http://localhost:8181/apidoc/explorer/index.html.

The easiest method to operate network-maps and cost-maps is to modify
data broker via RESTCONF API directly.

Using RPC

The resource-config package also provides a query RPC to config the
resources. You can CREATE, UPDATE and DELETE network-maps and
cost-maps via query RPC.

Simple Path Computation Engine

The simple-pce module provides a simple path computation engine for
ALTO and other projects. It supports basic CRUD (create, read, update,
delete) operations to manage L2 and L3 routing with/without rate
limitation. This module is an independent feature, so you can follow the
instruction below to install it independently.

karaf > feature:install odl-alto-extenstion

Note

The rate limitation meter requires OpenFlow 1.3 support.

Basic Usage with RESTCONF API

You can use the simple path computation engine with RESTCONF API, which
is defined in the YANG model
here [https://git.opendaylight.org/gerrit/gitweb?p=alto.git;a=blob;f=alto-extensions/simple-pce/api/src/main/yang/alto-spce.yang;h=f5bbe6744f7dfba493edd275aa18114e363727ab;hb=refs/heads/stable/boron].

Use Case

Server Selection

One of the key use case for ALTO is server selection. For example, a
client (with IP address 10.0.0.1) sends a data transferring request to
Data Transferring Service (DTS). And there are three data replica
servers (with IP address 10.60.0.1, 10.60.0.2 and 10.60.0.3) which can
response the request. In this case, DTS can send a query request to ALTO
server to make server selection decision.

Following is an example ALTO query:

POST /alto/endpointcost HTTP/1.1
Host: localhost:8080
Content-Type: application/alto-endpointcostparams+json
Accept: application/alto-endpointcost+json,application/alto-error+json
{
 "cost-type": {
 "cost-mode": "ordinal",
 "cost-metric": "hopcount"
 },
 "endpoints": {
 "srcs": ["ipv4:10.0.0.1"],
 "dsts": [
 "ipv4:10.60.0.1",
 "ipv4:10.60.0.2",
 "ipv4:10.60.0.3"
]
 }
}

Authentication, Authorization and Accounting (AAA) Services

The Boron AAA services are based on the Apache Shiro Java Security
Framework. The main configuration file for AAA is located at
“etc/shiro.ini” relative to the ODL karaf home directory.

Terms And Definitions

	Token

	A claim of access to a group of resources on the controller

	Domain

	A group of resources, direct or indirect, physical, logical, or
virtual, for the purpose of access control. ODL recommends using the
default “sdn” domain in the Boron release.

	User

	A person who either owns or has access to a resource or group of
resources on the controller

	Role

	Opaque representation of a set of permissions, which is merely a
unique string as admin or guest

	Credential

	Proof of identity such as username and password, OTP, biometrics, or
others

	Client

	A service or application that requires access to the controller

	Claim

	A data set of validated assertions regarding a user, e.g. the role,
domain, name, etc.

How to enable AAA

AAA is enabled through installing the odl-aaa-shiro feature.
odl-aaa-shiro is automatically installed as part of the odl-restconf
offering.

How to disable AAA

Edit the “etc/shiro.ini” file and replace the following:

/** = authcBasic

with

/** = anon

Then restart the karaf process.

How application developers can leverage AAA to provide servlet security

In order to provide security to a servlet, add the following to the
servlet’s web.xml file as the first filter definition:

<context-param>
 <param-name>shiroEnvironmentClass</param-name>
 <param-value>org.opendaylight.aaa.shiro.web.env.KarafIniWebEnvironment</param-value>
</context-param>

<listener>
 <listener-class>org.apache.shiro.web.env.EnvironmentLoaderListener</listener-class>
</listener>

<filter>
 <filter-name>ShiroFilter</filter-name>
 <filter-class>org.opendaylight.aaa.shiro.filters.AAAShiroFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>AAAShiroFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Note

It is very important to place this AAAShiroFilter as the first
javax.servlet.Filter, as Jersey applies Filters in the order they
appear within web.xml. Placing the AAAShiroFilter first ensures
incoming HTTP/HTTPS requests have proper credentials before any
other filtering is attempted.

AAA Realms

AAA plugin utilizes realms to support pluggable authentication &
authorization schemes. There are two parent types of realms:

	AuthenticatingRealm
	Provides no Authorization capability.

	Users authenticated through this type of realm are treated
equally.

	AuthorizingRealm
	AuthorizingRealm is a more sophisticated AuthenticatingRealm,
which provides the additional mechanisms to distinguish users
based on roles.

	Useful for applications in which roles determine allowed
cabilities.

ODL Contains Four Implementations

	TokenAuthRealm
	An AuthorizingRealm built to bridge the Shiro-based AAA service
with the h2-based AAA implementation.

	Exposes a RESTful web service to manipulate IdM policy on a
per-node basis. If identical AAA policy is desired across a
cluster, the backing data store must be synchronized using an out
of band method.

	A python script located at “etc/idmtool” is included to help
manipulate data contained in the TokenAuthRealm.

	Enabled out of the box.

	ODLJndiLdapRealm
	An AuthorizingRealm built to extract identity information from IdM
data contained on an LDAP server.

	Extracts group information from LDAP, which is translated into ODL
roles.

	Useful when federating against an existing LDAP server, in which
only certain types of users should have certain access privileges.

	Disabled out of the box.

	ODLJndiLdapRealmAuthNOnly
	The same as ODLJndiLdapRealm, except without role extraction.
Thus, all LDAP users have equal authentication and authorization
rights.

	Disabled out of the box.

	ActiveDirectoryRealm

Note

More than one Realm implementation can be specified. Realms are
attempted in order until authentication succeeds or all realm
sources are exhausted.

TokenAuthRealm Configuration

TokenAuthRealm stores IdM data in an h2 database on each node. Thus,
configuration of a cluster currently requires configuring the desired
IdM policy on each node. There are two supported methods to manipulate
the TokenAuthRealm IdM configuration:

	idmtool Configuration

	RESTful Web Service Configuration

idmtool Configuration

A utility script located at “etc/idmtool” is used to manipulate the
TokenAuthRealm IdM policy. idmtool assumes a single domain (sdn), since
multiple domains are not leveraged in the Boron release. General usage
information for idmtool is derived through issuing the following
command:

$ python etc/idmtool -h
usage: idmtool [-h] [--target-host TARGET_HOST]
 user
 {list-users,add-user,change-password,delete-user,list-domains,list-roles,add-role,delete-role,add-grant,get-grants,delete-grant}
 ...

positional arguments:
 user username for BSC node
 {list-users,add-user,change-password,delete-user,list-domains,list-roles,add-role,delete-role,add-grant,get-grants,delete-grant}
 sub-command help
 list-users list all users
 add-user add a user
 change-password change a password
 delete-user delete a user
 list-domains list all domains
 list-roles list all roles
 add-role add a role
 delete-role delete a role
 add-grant add a grant
 get-grants get grants for userid on sdn
 delete-grant delete a grant

optional arguments:
 -h, --help show this help message and exit
 --target-host TARGET_HOST
 target host node

Add a user

python etc/idmtool admin add-user newUser
Password:
Enter new password:
Re-enter password:
add_user(admin)

command succeeded!

json:
{
 "description": "",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "newUser",
 "password": "**********",
 "salt": "**********",
 "userid": "newUser@sdn"
}

Note

AAA redacts the password and salt fields for security purposes.

Delete a user

$ python etc/idmtool admin delete-user newUser@sdn
Password:
delete_user(newUser@sdn)

command succeeded!

List all users

$ python etc/idmtool admin list-users
Password:
list_users

command succeeded!

json:
{
 "users": [
 {
 "description": "user user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "user",
 "password": "**********",
 "salt": "**********",
 "userid": "user@sdn"
 },
 {
 "description": "admin user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "admin",
 "password": "**********",
 "salt": "**********",
 "userid": "admin@sdn"
 }
]
}

Change a user’s password

$ python etc/idmtool admin change-password admin@sdn
Password:
Enter new password:
Re-enter password:
change_password(admin)

command succeeded!

json:
{
 "description": "admin user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "admin",
 "password": "**********",
 "salt": "**********",
 "userid": "admin@sdn"
}

Add a role

$ python etc/idmtool admin add-role network-admin
Password:
add_role(network-admin)

command succeeded!

json:
{
 "description": "",
 "domainid": "sdn",
 "name": "network-admin",
 "roleid": "network-admin@sdn"
}

Delete a role

$ python etc/idmtool admin delete-role network-admin@sdn
Password:
delete_role(network-admin@sdn)

command succeeded!

List all roles

$ python etc/idmtool admin list-roles
Password:
list_roles

command succeeded!

json:
{
 "roles": [
 {
 "description": "a role for admins",
 "domainid": "sdn",
 "name": "admin",
 "roleid": "admin@sdn"
 },
 {
 "description": "a role for users",
 "domainid": "sdn",
 "name": "user",
 "roleid": "user@sdn"
 }
]
}

List all domains

$ python etc/idmtool admin list-domains
Password:
list_domains

command succeeded!

json:
{
 "domains": [
 {
 "description": "default odl sdn domain",
 "domainid": "sdn",
 "enabled": true,
 "name": "sdn"
 }
]
}

Add a grant

$ python etc/idmtool admin add-grant user@sdn admin@sdn
Password:
add_grant(userid=user@sdn,roleid=admin@sdn)

command succeeded!

json:
{
 "domainid": "sdn",
 "grantid": "user@sdn@admin@sdn@sdn",
 "roleid": "admin@sdn",
 "userid": "user@sdn"
}

Delete a grant

$ python etc/idmtool admin delete-grant user@sdn admin@sdn
Password:
http://localhost:8181/auth/v1/domains/sdn/users/user@sdn/roles/admin@sdn
delete_grant(userid=user@sdn,roleid=admin@sdn)

command succeeded!

Get grants for a user

python etc/idmtool admin get-grants admin@sdn
Password:
get_grants(admin@sdn)

command succeeded!

json:
{
 "roles": [
 {
 "description": "a role for users",
 "domainid": "sdn",
 "name": "user",
 "roleid": "user@sdn"
 },
 {
 "description": "a role for admins",
 "domainid": "sdn",
 "name": "admin",
 "roleid": "admin@sdn"
 }
]
}

RESTful Web Service

The TokenAuthRealm IdM policy is fully configurable through a RESTful
web service. Full documentation for manipulating AAA IdM data is located
online (https://wiki.opendaylight.org/images/0/00/AAA_Test_Plan.docx),
and a few examples are included in this guide:

Get All Users

curl -u admin:admin http://localhost:8181/auth/v1/users
OUTPUT:
{
 "users": [
 {
 "description": "user user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "user",
 "password": "**********",
 "salt": "**********",
 "userid": "user@sdn"
 },
 {
 "description": "admin user",
 "domainid": "sdn",
 "email": "",
 "enabled": true,
 "name": "admin",
 "password": "**********",
 "salt": "**********",
 "userid": "admin@sdn"
 }
]
}

Create a User

curl -u admin:admin -X POST -H "Content-Type: application/json" --data-binary @./user.json http://localhost:8181/auth/v1/users
PAYLOAD:
{
 "name": "ryan",
 "userid": "ryan@sdn",
 "password": "ryan",
 "domainid": "sdn",
 "description": "Ryan's User Account",
 "email": "ryandgoulding@gmail.com"
}

OUTPUT:
{
 "userid":"ryan@sdn",
 "name":"ryan",
 "description":"Ryan's User Account",
 "enabled":true,
 "email":"ryandgoulding@gmail.com",
 "password":"**********",
 "salt":"**********",
 "domainid":"sdn"
}

Create an OAuth2 Token For Admin Scoped to SDN

curl -d 'grant_type=password&username=admin&password=a&scope=sdn' http://localhost:8181/oauth2/token

OUTPUT:
{
 "expires_in":3600,
 "token_type":"Bearer",
 "access_token":"5a615fbc-bcad-3759-95f4-ad97e831c730"
}

Use an OAuth2 Token

curl -H "Authorization: Bearer 5a615fbc-bcad-3759-95f4-ad97e831c730" http://localhost:8181/auth/v1/domains
{
 "domains":
 [
 {
 "domainid":"sdn",
 "name":"sdn”,
 "description":"default odl sdn domain",
 "enabled":true
 }
]
}

ODLJndiLdapRealm Configuration

LDAP integration is provided in order to externalize identity
management. To configure LDAP parameters, modify “etc/shiro.ini”
parameters to include the ODLJndiLdapRealm:

ODL provides a few LDAP implementations, which are disabled out of the box.
ODLJndiLdapRealm includes authorization functionality based on LDAP elements
extracted through and LDAP search. This requires a bit of knowledge about
how your LDAP system is setup. An example is provided below:
ldapRealm = org.opendaylight.aaa.shiro.realm.ODLJndiLdapRealm
ldapRealm.userDnTemplate = uid={0},ou=People,dc=DOMAIN,dc=TLD
ldapRealm.contextFactory.url = ldap://<URL>:389
ldapRealm.searchBase = dc=DOMAIN,dc=TLD
ldapRealm.ldapAttributeForComparison = objectClass
ldapRealm.groupRolesMap = "Person":"admin"
...
further down in the file...
Stacked realm configuration; realms are round-robbined until authentication succeeds or realm sources are exhausted.
securityManager.realms = $tokenAuthRealm, $ldapRealm

This configuration allows federation with an external LDAP server, and
the user’s ODL role parameters are mapped to corresponding LDAP
attributes as specified by the groupRolesMap. Thus, an LDAP operator can
provision attributes for LDAP users that support different ODL role
structures.

ODLJndiLdapRealmAuthNOnly Configuration

Edit the “etc/shiro.ini” file and modify the following:

ldapRealm = org.opendaylight.aaa.shiro.realm.ODLJndiLdapRealm
ldapRealm.userDnTemplate = uid={0},ou=People,dc=DOMAIN,dc=TLD
ldapRealm.contextFactory.url = ldap://<URL>:389
...
further down in the file...
Stacked realm configuration; realms are round-robbined until authentication succeeds or realm sources are exhausted.
securityManager.realms = $tokenAuthRealm, $ldapRealm

This is useful for setups where all LDAP users are allowed equal access.

Token Store Configuration Parameters

Edit the file “etc/opendaylight/karaf/08-authn-config.xml” and edit the
following: .timeToLive: Configure the maximum time, in
milliseconds, that tokens are to be cached. Default is 360000. Save the
file.

Authorization Configuration

Shiro-Based Authorization

OpenDaylight AAA has support for Role Based Access Control based on the
Apache Shiro permissions system. Configuration of the authorization
system is done offline; authorization currently cannot be configured
after the controller is started. Thus, Authorization in this
release is aimed towards supporting coarse-grained security policies,
with the aim to provide more robust configuration capabilities in the
future. Shiro-based Authorization is documented on the Apache Shiro
website (http://shiro.apache.org/web.html#Web-%7B%7B%5Curls%5C%7D%7D).

Enable “admin” Role Based Access to the IdMLight RESTful web service

Edit the “etc/shiro.ini” configuration file and add “/auth/v1/=
authcBasic, roles[admin]” above the line “/ = authcBasic” within the
“urls” section.

/auth/v1/** = authcBasic, roles[admin]
/** = authcBasic

This will restrict the idmlight rest endpoints so that a grant for admin
role must be present for the requesting user.

Note

The ordering of the authorization rules above is important!

AuthZ Broker Facade

ODL includes an experimental Authorization Broker Facade, which allows
finer grained access control for REST endpoints. Since this feature was
not well tested in the Boron release, it is recommended to use the
Shiro-based mechanism instead, and rely on the Authorization Broker
Facade for POC use only.

AuthZ Broker Facade Feature Installation

To install the authorization broker facade, please issue the following
command in the karaf shell:

feature:install odl-restconf odl-aaa-authz

Add an Authorization Rule

The following shows how one might go about securing the controller so
that only admins can access restconf.

curl -u admin:admin -H “Content-Type: application/xml” --data-binary @./rule.json http://localhost:8181/restconf/config/authorization-schema:simple-authorization/policies/RestConfService/
cat ./rule.json
{
 "policies": {
 "resource": "*",
 "service":"RestConfService",
 "role": "admin"
 }
}

Accounting Configuration

All AAA logging is output to the standard karaf.log file.

log:set TRACE org.opendaylight.aaa

This command enables the most verbose level of logging for AAA
components.

Atrium User Guide

Overview

Project Atrium is an open source SDN distribution - a vertically
integrated set of open source components which together form a complete
SDN stack. It’s goals are threefold:

	Close the large integration-gap of the elements that are needed to
build an SDN stack - while there are multiple choices at each layer,
there are missing pieces with poor or no integration.

	Overcome a massive gap in interoperability - This exists both at the
switch level, where existing products from different vendors have
limited compatibility, making it difficult to connect an arbitrary
switch and controller and at an API level, where its difficult to
write a portable application across multiple controller platforms.

	Work closely with network operators on deployable use-cases, so that
they could download near production quality code from one location,
and get started with functioning software defined networks on real
hardware.

Architecture

The key components of Atrium BGP Peering Router Application are as
follows:

	Data Plane Switch - Data plane switch is the entity that uses flow
table entries installed by BGP Routing Application through SDN
controller. In the simplest form data plane switch with the installed
flows act like a BGP Router.

	OpenDaylight Controller - OpenDaylight SDN controller has many
utility applications or plugins which are leveraged by the BGP Router
application to manage the control plane information.

	BGP Routing Application - An application running within the
OpenDaylight runtime environment to handle I-BGP updates.

	DIDM - DIDM manages the drivers specific to
each data plane switch connected to the controller. The drivers are
created primarily to hide the underlying complexity of the devices
and to expose a uniform API to applications.

	Flow Objectives API - The driver implementation provides a pipeline
abstraction and exposes Flow Objectives API. This means applications
need to be aware of only the Flow Objectives API without worrying
about the Table IDs or the pipelines.

	Control Plane Switch - This component is primarily used to connect
the OpenDaylight SDN controller with the Quagga Soft-Router and
establish a path for forwarding E-BGP packets to and from Quagga.

	Quagga soft router - An open source routing software that handles
E-BGP updates.

Running Atrium

	To run the Atrium BGP Routing Application in OpenDaylight
distribution, simply install the odl-atrium-all feature.

feature:install odl-atrium-all

BGP User Guide

This guide contains information on how to use OpenDaylight Border Gateway Protocol (BGP) plugin.
The user should learn about BGP basic concepts, supported capabilities, configuration and usage.

Contents

	Overview

	Running BGP

	Basic Configuration & Concepts

	IP Unicast Family

	IP Labeled Unicast Family

	IP L3VPN Family

	Link-State Family

	Flow Specification Family

	EVPN Family

	Additional Path

	Route Refresh

	High Availability

	Topology Provider

	Test Tools

	Troubleshooting

Overview

This section provides high-level overview of the Border Gateway Protocol, OpenDaylight implementation and BGP usage in SDN era.

Contents

	Border Gateway Protocol

	BGP in SDN

	OpenDaylight BGP plugin

	List of supported capabilities

Border Gateway Protocol

The Border Gateway Protocol (BGP) is an inter-Autonomous System (AS) routing protocol.
The primary role of the BGP is an exchange of routes among other BGP systems.
The route is an unit of information which pairs destination (IP address prefix) with attributes to the path with the destination.
One of the most interesting attributes is a list of ASes that the route traversed - essential when avoiding loop routing.
Advertised routes are stored in the Routing Information Bases (RIBs). Routes are later used to forward packets, stored in Routing Table for this purpose.
The main advantage of the BGP over other routing protocols is its scalability, thus it has become the standardized Internet routing protocol (Internet is a set of ASes).

BGP in SDN

However BGP evolved long time before SDN was born, it plays a significant role in many SDN use-cases.
Also, continuous evolution of the protocol brings extensions that are very well suited for SDN.
Nowadays, BGP can carry various types of routing information - L3VPN, L2VPN, IP multicast, linkstate, etc.
Here is a brief list of software-based/legacy-network technologies where BGP-based SDN solution get into an action:

	SDN WAN - WAN orchestration and optimization

	SDN router - Turns switch into an Internet router

	Virtual Route Reflector - High-performance server-based BGP Route Reflector

	SDX - A Software Defined Internet Exchange controller

	Large-Scale Data Centers - BGP Data Center Routing, MPLS/SR in DCs, DC interconnection

	DDoS mitigation - Traffic Filtering distribution with BGP

OpenDaylight BGP plugin

The OpenDaylight controller provides an implementation of BGP (RFC 4271) as a south-bound protocol plugin.
The implementation renders all basic BGP speaker capabilities:

	inter/intra-AS peering

	routes advertising

	routes originating

	routes storage

The plugin’s north-bound API (REST/Java) provides to user:

	fully dynamic runtime standardized BGP configuration

	read-only access to all RIBs

	read-write programmable RIBs

	read-only reachability/linkstate topology view

Note

The BGP plugin is NOT a virtual router - does not construct Routing Tables, nor forward traffic.

List of supported capabilities

In addition to the base protocol implementation, the plugin provides many extensions to BGP, all based on IETF standards.

	RFC4271 [https://tools.ietf.org/html/rfc4271] - A Border Gateway Protocol 4 (BGP-4)

	RFC4456 [https://tools.ietf.org/html/rfc4456] - BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)

	RFC1997 [https://tools.ietf.org/html/rfc1997] - BGP Communities Attribute

	RFC4360 [https://tools.ietf.org/html/rfc4360] - BGP Extended Communities Attribute

	RFC4486 [https://tools.ietf.org/html/rfc4486] - Subcodes for BGP Cease Notification Message

	RFC5492 [https://tools.ietf.org/html/rfc5492] - Capabilities Advertisement with BGP-4

	RFC5004 [https://tools.ietf.org/html/rfc5004] - Avoid BGP Best Path Transitions from One External to Another

	RFC6286 [https://tools.ietf.org/html/rfc6286] - Autonomous-System-Wide Unique BGP Identifier for BGP-4

	RFC6793 [https://tools.ietf.org/html/rfc6793] - BGP Support for Four-Octet Autonomous System (AS) Number Space

	RFC7311 [https://tools.ietf.org/html/rfc7311] - The Accumulated IGP Metric Attribute for BGP

	RFC5668 [https://tools.ietf.org/html/rfc5668] - 4-Octet AS Specific BGP Extended Community

	draft-ietf-idr-link-bandwidth [https://tools.ietf.org/html/draft-ietf-idr-link-bandwidth-06] - BGP Link Bandwidth Extended Community

	draft-ietf-idr-bgp-extended-messages [https://tools.ietf.org/html/draft-ietf-idr-bgp-extended-messages-13] - Extended Message support for BGP

	
	RFC4760 [https://tools.ietf.org/html/rfc4760] - Multiprotocol Extensions for BGP-4

	
	
	RFC7752 [https://tools.ietf.org/html/rfc7752] - North-Bound Distribution of Link-State and TE Information using BGP

	
	draft-gredler-idr-bgp-ls-segment-routing-ext [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03] - BGP Link-State extensions for Segment Routing

	draft-ietf-idr-bgpls-segment-routing-epe [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05] - Segment Routing Egress Peer Engineering BGP-LS Extensions

	
	RFC5575 [https://tools.ietf.org/html/rfc5575] - Dissemination of Flow Specification Rules

	
	RFC7674 [http://tools.ietf.org/html/rfc7674] - Clarification of the Flowspec Redirect Extended Community

	draft-ietf-idr-flow-spec-v6 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-07] - Dissemination of Flow Specification Rules for IPv6

	draft-ietf-idr-flowspec-redirect-ip [https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-00] - BGP Flow-Spec Redirect to IP Action

	
	RFC3107 [https://tools.ietf.org/html/rfc3107] - Carrying Label Information in BGP-4

	
	draft-ietf-idr-bgp-prefix-sid [https://tools.ietf.org/html/draft-ietf-idr-bgp-prefix-sid-03] - Segment Routing Prefix SID extensions for BGP

	
	RFC4364 [https://tools.ietf.org/html/rfc4364] - BGP/MPLS IP Virtual Private Networks (VPNs)

	
	RFC4659 [https://tools.ietf.org/html/rfc4659] - BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN

	
	RFC7432 [https://tools.ietf.org/html/rfc7432] - BGP MPLS-Based Ethernet VPN

	
	draft-ietf-bess-evpn-overlay [https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04] - A Network Virtualization Overlay Solution using EVPN

	draft-ietf-bess-evpn-vpws [https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-07] - VPWS support in EVPN

	RFC7911 [https://tools.ietf.org/html/rfc7911] - Advertisement of Multiple Paths in BGP

	RFC2918 [https://tools.ietf.org/html/rfc2918] - Route Refresh Capability for BGP-4

Running BGP

This section explains how to install BGP plugin.

	Install BGP feature - odl-bgpcep-bgp.
Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-bgp

	The BGP plugin contains a default configuration, which is applied after the feature starts up.
One instance of BGP plugin is created (named example-bgp-rib), and its presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib

Method: GET

Response Body:

<bgp-rib xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <rib>
 <id>example-bgp-rib</id>
 <loc-rib>

 </loc-rib>
 </rib>
</bgp-rib>

Basic Configuration & Concepts

The following section shows how to configure BGP basics, how to verify functionality and presents essential components of the plugin.
Next samples demonstrate the plugin’s runtime configuration capability.
It shows the way to configure the plugin via REST, using standardized OpenConfig BGP APIs.

Contents

	BGP RIB API

	Protocol Configuration

	BGP Peering
	External peering configuration

	Route reflector configuration

	MD5 authentication configuration

	Simple Routing Policy configuration

	BGP Application Peer and programmable RIB
	Application Peer configuration

	Programmable RIB

	BGP pipeline

	References

BGP RIB API

This tree illustrates the BGP RIBs organization in datastore.

bgp-rib
 +--ro rib* [id]
 +--ro id rib-id
 +--ro peer* [peer-id]
 | +--ro peer-id peer-id
 | +--ro peer-role peer-role
 | +--ro simple-routing-policy? simple-routing-policy
 | +--ro supported-tables* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro send-receive? send-receive
 | +--ro adj-rib-in
 | | +--ro tables* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro attributes
 | | | +--ro uptodate? boolean
 | | +--ro (routes)?
 | +--ro effective-rib-in
 | | +--ro tables* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro attributes
 | | | +--ro uptodate? boolean
 | | +--ro (routes)?
 | +--ro adj-rib-out
 | +--ro tables* [afi safi]
 | +--ro afi identityref
 | +--ro safi identityref
 | +--ro attributes
 | | +--ro uptodate? boolean
 | +--ro (routes)?
 +--ro loc-rib
 +--ro tables* [afi safi]
 +--ro afi identityref
 +--ro safi identityref
 +--ro attributes
 | +--ro uptodate? boolean
 +--ro (routes)?

Protocol Configuration

As a first step, a new protocol instance needs to be configured.
It is a very basic configuration conforming with RFC4271.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 </global>
 </bgp>
</protocol>

@line 2: The unique protocol instance identifier.

@line 7: BGP Identifier of the speaker.

@line 8: Local autonomous system number of the speaker. Note that, OpenDaylight BGP implementation supports four-octet AS numbers only.

The new instance presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	<rib xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <id>bgp-example</id>
 <loc-rib>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </loc-rib>
</rib>

@line 3: Loc-RIB - Per-protocol instance RIB, which contains the routes that have been selected by local BGP speaker’s decision process.

@line 4: The BGP-4 supports carrying IPv4 prefixes, such routes are stored in ipv4-address-family/unicast-subsequent-address-family table.

BGP Peering

To exchange routing information between two BGP systems (peers), it is required to configure a peering on both BGP speakers first.
This mean that each BGP speaker has a white list of neighbors, representing remote peers, with which the peering is allowed.
BGP uses TCP as its transport protocol, by default listens on port 179.

Important

OpenDaylight BGP plugin is configured to listen on port 1790, due to privileged ports restriction for non-root users.
One of the workarounds is to use port redirection.

The TCP connection is established between two peers and they exchange messages to open and confirm the connection parameters followed by routes exchange.

Here is a sample basic neighbor configuration:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <timers>
 <config>
 <hold-time>90</hold-time>
 <connect-retry>10</connect-retry>
 </config>
 </timers>
 <transport>
 <config>
 <remote-port>179</remote-port>
 <passive-mode>false</passive-mode>
 </config>
 </transport>
 <config>
 <peer-type>INTERNAL</peer-type>
 </config>
</neighbor>

@line 2: IP address of the remote BGP peer. Also serves as an unique identifier of a neighbor in a list of neighbors.

@line 5: Proposed number of seconds for value of the Hold Timer. Default value is 90.

@line 6: Time interval in seconds between attempts to establish session with the peer. Effective in active mode only. Default value is 30.

@line 11: Remote port number to which the local BGP is connecting. Effective in active mode only. Default value 179.

@line 12: Wait for peers to issue requests to open a BGP session, rather than initiating sessions from the local router. Default value is false.

@line 16: Explicitly designate the peer as internal or external. Default value is INTERNAL.

Once the remote peer is connected and it advertised routes to local BGP system, routes are stored in peer’s RIBs.
The RIBs can be checked via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F192.0.2.1

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

	<peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <peer-id>bgp://192.0.2.1</peer-id>
 <supported-tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 </supported-tables>
 <peer-role>ibgp</peer-role>
 <adj-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </adj-rib-in>
 <effective-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </effective-rib-in>
 <adj-rib-out>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes></attributes>
 </tables>
 </adj-rib-out>
</peer>

@line 8: Adj-RIB-In - Per-peer RIB, which contains unprocessed routes that has been advertised to local BGP speaker by the remote peer.

@line 13: Here is the reported route with destination 10.0.0.10/32 in Adj-RIB-In.

@line 35: Effective-RIB-In - Per-peer RIB, which contains processed routes as a result of applying inbound policy to Adj-RIB-In routes.

@line 40: Here is the reported route with destination 10.0.0.10/32, same as in Adj-RIB-In, as it was not touched by import policy.

@line 62: Adj-RIB-Out - Per-peer RIB, which contains routes for advertisement to the peer by means of the local speaker’s UPDATE message.

@line 66: The peer’s Adj-RIB-Out is empty as there are no routes to be advertise from local BGP speaker.

Also the same route should appeared in Loc-RIB now:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

@line 4: Destination - IPv4 Prefix Address.

@line 6: AS_PATH - mandatory attribute, contains a list of the autonomous system numbers through that routing information has traversed.

@line 8: ORIGIN - mandatory attribute, indicates an origin of the route - ibgp, egp, incomplete.

@line 11: LOCAL_PREF - indicates a degree of preference for external routes, higher value is preferred.

@line 14: NEXT_HOP - mandatory attribute, defines IP address of the router that should be used as the next hop to the destination.

There are much more attributes that may be carried along with the destination:

BGP-4 Path Attributes

	
	MULTI_EXIT_DISC (MED)

	Optional attribute, to be used to discriminate among multiple exit/entry points on external links, lower number is preferred.

<multi-exit-disc>
 <med>0</med>
</multi-exit-disc>

	
	ATOMIC_AGGREGATE

	Indicates whether AS_SET was excluded from AS_PATH due to routes aggregation.

<atomic-aggregate/>

	
	AGGREGATOR

	Optional attribute, contains AS number and IP address of a BGP speaker which performed routes aggregation.

<aggregator>
 <as-number>65000</as-number>
 <network-address>192.0.2.2</network-address>
</aggregator>

	
	Unrecognised

	Optional attribute, used to store optional attributes, unrecognized by a local BGP speaker.

<unrecognized-attributes>
 <partial>true</partial>
 <transitive>true</transitive>
 <type>101</type>
 <value>0101010101010101</value>
</unrecognized-attributes>

Route Reflector Attributes

	
	ORIGINATOR_ID

	Optional attribute, carries BGP Identifier of the originator of the route.

<originator-id>
 <originator>41.41.41.41</originator>
</originator-id>

	
	CLUSTER_LIST

	Optional attribute, contains a list of CLUSTER_ID values representing the path that the route has traversed.

<cluster-id>
 <cluster>40.40.40.40</cluster>
</cluster-id>

	
	Communities

	Optional attribute, may be used for policy routing.

<communities>
 <as-number>65000</as-number>
 <semantics>30740</semantics>
</communities>

Extended Communities

	
	Route Target

	Identifies one or more routers that may receive a route.

<extended-communities>
 <transitive>true</transitive>
 <route-target-ipv4>
 <global-administrator>192.0.2.2</global-administrator>
 <local-administrator>123</local-administrator>
 </route-target-ipv4>
</extended-communities>
<extended-communities>
 <transitive>true</transitive>
 <as-4-route-target-extended-community>
 <as-4-specific-common>
 <as-number>65000</as-number>
 <local-administrator>123</local-administrator>
 </as-4-specific-common>
 </as-4-route-target-extended-community>
</extended-communities>

	
	Route Origin

	Identifies one or more routers that injected a route.

<extended-communities>
 <transitive>true</transitive>
 <route-origin-ipv4>
 <global-administrator>192.0.2.2</global-administrator>
 <local-administrator>123</local-administrator>
 </route-origin-ipv4>
</extended-communities>
<extended-communities>
 <transitive>true</transitive>
 <as-4-route-origin-extended-community>
 <as-4-specific-common>
 <as-number>65000</as-number>
 <local-administrator>123</local-administrator>
 </as-4-origin-common>
 </as-4-route-target-extended-community>
</extended-communities>

	
	Link Bandwidth

	Carries the cost to reach external neighbor.

<extended-communities>
 <transitive>true</transitive>
 <link-bandwidth-extended-community>
 <bandwidth>BH9CQAA=</bandwidth>
 </link-bandwidth-extended-community>
</extended-communities>

	
	AIGP

	Optional attribute, carries accumulated IGP metric.

<aigp>
 <aigp-tlv>
 <metric>120</metric>
 </aigp-tlv>
</aigp>

Note

When the remote peer disconnects, it disappear from operational state of local speaker instance and advertised routes are removed too.

External peering configuration

An example above provided configuration for internal peering only.
Following configuration sample is intended for external peering:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6
7

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.3</neighbor-address>
 <config>
 <peer-type>EXTERNAL</peer-type>
 <peer-as>64999</peer-as>
 </config>
</neighbor>

@line 5: AS number of the remote peer.

Route reflector configuration

The local BGP speaker can be configured with a specific cluster ID.
Following example adds the cluster ID to the existing speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/global/config

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 <route-reflector-cluster-id>192.0.2.1</route-reflector-cluster-id>
</config>

	@line 4: Route-reflector cluster id to use when local router is configured as a route reflector.

	The router-id is used as a default value.

Following configuration sample is intended for route reflector client peering:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.4</neighbor-address>
 <config>
 <peer-type>INTERNAL</peer-type>
 </config>
 <route-reflector>
 <config>
 <route-reflector-client>true</route-reflector-client>
 </config>
 </route-reflector>
</neighbor>

@line 8: Configure the neighbor as a route reflector client. Default value is false.

MD5 authentication configuration

The OpenDaylight BGP implementation is supporting TCP MD5 for authentication.
Sample configuration below shows how to set authentication password for a peer:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.5</neighbor-address>
 <config>
 <auth-password>topsecret</auth-password>
 </config>
</neighbor>

@line 4: Configures an MD5 authentication password for use with neighboring devices.

Simple Routing Policy configuration

The OpenDaylight BGP implementation is supporting Simple Routing Policy.
Sample configuration below shows how to set Simple Routing Policy for a peer:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.7</neighbor-address>
 <config>
 <simple-routing-policy>learn-none</simple-routing-policy>
 </config>
</neighbor>

@line 4: Simple Routing Policy:

	learn-none - routes advertised by the peer are not propagated to Effective-RIB-In and Loc-RIB

	announce-none - routes from local Loc-RIB are not advertised to the peer

Note

Existing neighbor configuration can be reconfigured (change configuration parameters) anytime.
As a result, established connection is dropped, peer instance is recreated with a new configuration settings and connection re-established.

Note

The BGP configuration is persisted on OpendDaylight shutdown and restored after the re-start.

BGP Application Peer and programmable RIB

The OpenDaylight BGP implementation also supports routes injection via Application Peer.
Such peer has its own programmable RIB, which can be modified by user.
This concept allows user to originate new routes and advertise them to all connected peers.

Application Peer configuration

Following configuration sample show a way to configure the Application Peer:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>10.25.1.9</neighbor-address>
 <config>
 <peer-group>application-peers</peer-group>
 </config>
</neighbor>

@line 2: IP address is uniquely identifying Application Peer and its programmable RIB. Address is also used in local BGP speaker decision process.

@line 4: Indicates that peer is associated with application-peers group. It serves to distinguish Application Peer’s from regular neighbors.

The Application Peer presence can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F10.25.1.9

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	<peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <peer-id>bgp://10.25.1.9</peer-id>
 <peer-role>internal</peer-role>
 <adj-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes>
 <uptodate>false</uptodate>
 </attributes>
 </tables>
 </adj-rib-in>
 <effective-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet"></ipv4-routes>
 <attributes></attributes>
 </tables>
 </effective-rib-in>
</peer>

@line 3: Peer role for Application Peer is internal.

@line 8: Adj-RIB-In is empty, as no routes were originated yet.

Note

There is no Adj-RIB-Out for Application Peer.

Programmable RIB

Next example shows how to inject a route into the programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

Now the injected route appears in Application Peer’s RIBs and in local speaker’s Loc-RIB:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F10.25.1.9

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	<peer xmlns="urn:opendaylight:params:xml:ns:yang:bgp-rib">
 <peer-id>bgp://10.25.1.9</peer-id>
 <peer-role>internal</peer-role>
 <adj-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>false</uptodate>
 </attributes>
 </tables>
 </adj-rib-in>
 <effective-rib-in>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes></attributes>
 </tables>
 </effective-rib-in>
</peer>

@line 9: Injected route is present in Application Peer’s Adj-RIB-In and Effective-RIB-In.

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>10.0.0.10/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.10.1.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

@line 2: The injected route is now present in Loc-RIB along with a route (destination 10.0.0.10/32) advertised by remote peer.

This route is also advertised to the remote peer (192.0.2.1), hence route appears in its Adj-RIB-Out:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/peer/bgp:%2F%2F192.0.2.1/adj-rib-out/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: GET

Response Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

The injected route can be modified (i.e. different path attribute):

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: PUT

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>50</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.2</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

The route can be removed from programmable RIB in a following way:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: DELETE

Also it is possible to remove all routes from a particular table at once:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/

Method: DELETE

Consequently, route disappears from programmable RIB, Application Peer’s RIBs, Loc-RIB and peer’s Adj-RIB-Out (UPDATE message with prefix withdrawal is send).

Note

Routes stored in programmable RIB are persisted on OpendDaylight shutdown and restored after the re-start.

BGP pipeline

[image: BGP pipeline.]
BGP pipeline - routes re-advertisement.

[image: BGP Application Peer pipeline.]
BGP applcaition peer pipeline - routes injection.

References

	A Border Gateway Protocol 4 (BGP-4) [https://tools.ietf.org/html/rfc4271]

	BGP Route Reflection [https://tools.ietf.org/html/rfc4456]

	BGP Communities Attribute [https://tools.ietf.org/html/rfc1997]

	BGP Support for Four-Octet Autonomous System (AS) Number Space [https://tools.ietf.org/html/rfc6793]

	The Accumulated IGP Metric Attribute for BGP [https://tools.ietf.org/html/rfc7311]

	4-Octet AS Specific BGP Extended Community [https://tools.ietf.org/html/rfc5668]

	BGP Link Bandwidth Extended Community [https://tools.ietf.org/html/draft-ietf-idr-link-bandwidth-06]

	Use of BGP for Routing in Large-Scale Data Centers [https://tools.ietf.org/html/rfc7938]

IP Unicast Family

The BGP-4 allows to carry IPv4 specific information only.
The basic BGP Multiprotocol extension brings Unicast Subsequent Address Family (SAFI) - intended to be used for IP unicast forwarding.
The combination of IPv4 and IPv6 Address Family (AF) and Unicast SAFI is essential for Internet routing.
The IPv4 Unicast routes are interchangeable with BGP-4 routes, as they can carry the same type of routing information.

Contents

	Configuration
	BGP Speaker

	BGP Peer

	IP Unicast API
	IPv4 Unicast Route

	IPv6 Unicast Route

	Usage
	IPv4 Unicast

	IPv6 Unicast

	Programming
	IPv4 Unicast

	IPv6 Unicast

	References

Configuration

This section shows a way to enable IPv4 and IPv6 Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 Unicast support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 Unicast family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

IP Unicast API

Following trees illustrate the BGP IP Unicast routes structures.

IPv4 Unicast Route

:(ipv4-routes-case)
 +--ro ipv4-routes
 +--ro ipv4-route* [prefix path-id]
 +--ro prefix inet:ipv4-prefix
 +--ro path-id path-id
 +--ro attributes
 +--ro origin
 | +--ro value bgp-t:bgp-origin
 +--ro as-path
 | +--ro segments*
 | +--ro as-sequence* inet:as-number
 | +--ro as-set* inet:as-number
 +--ro (c-next-hop)?
 | +--:(ipv4-next-hop-case)
 | | +--ro ipv4-next-hop
 | | +--ro global? inet:ipv4-address
 | +--:(ipv6-next-hop-case)
 | | +--ro ipv6-next-hop
 | | +--ro global? inet:ipv6-address
 | | +--ro link-local? inet:ipv6-address
 | +--:(empty-next-hop-case)
 | +--ro empty-next-hop? empty
 +--ro multi-exit-disc
 | +--ro med? uint32
 +--ro local-pref
 | +--ro pref? uint32
 +--ro atomic-aggregate!
 +--ro aggregator
 | +--ro as-number? inet:as-number
 | +--ro network-address? inet:ipv4-address
 +--ro communities*
 | +--ro as-number? inet:as-number
 | +--ro semantics? uint16
 +--ro extended-communities*
 | +--ro transitive? boolean
 | +--ro (extended-community)?
 | +--:(as-specific-extended-community-case)
 | | +--ro as-specific-extended-community
 | | +--ro global-administrator? short-as-number
 | | +--ro local-administrator? binary
 | +--:(inet4-specific-extended-community-case)
 | | +--ro inet4-specific-extended-community
 | | +--ro global-administrator? inet:ipv4-address
 | | +--ro local-administrator? binary
 | +--:(opaque-extended-community-case)
 | | +--ro opaque-extended-community
 | | +--ro value? binary
 | +--:(route-target-extended-community-case)
 | | +--ro route-target-extended-community
 | | +--ro global-administrator? short-as-number
 | | +--ro local-administrator? binary
 | +--:(route-origin-extended-community-case)
 | | +--ro route-origin-extended-community
 | | +--ro global-administrator? short-as-number
 | | +--ro local-administrator? binary
 | +--:(route-target-ipv4-case)
 | | +--ro route-target-ipv4
 | | +--ro global-administrator? inet:ipv4-address
 | | +--ro local-administrator? uint16
 | +--:(route-origin-ipv4-case)
 | | +--ro route-origin-ipv4
 | | +--ro global-administrator? inet:ipv4-address
 | | +--ro local-administrator? uint16
 | +--:(link-bandwidth-case)
 | | +--ro link-bandwidth-extended-community
 | | +--ro bandwidth netc:bandwidth
 | +--:(as-4-generic-spec-extended-community-case)
 | | +--ro as-4-generic-spec-extended-community
 | | +--ro as-4-specific-common
 | | +--ro as-number inet:as-number
 | | +--ro local-administrator uint16
 | +--:(as-4-route-target-extended-community-case)
 | | +--ro as-4-route-target-extended-community
 | | +--ro as-4-specific-common
 | | +--ro as-number inet:as-number
 | | +--ro local-administrator uint16
 | +--:(as-4-route-origin-extended-community-case)
 | | +--ro as-4-route-origin-extended-community
 | | +--ro as-4-specific-common
 | | +--ro as-number inet:as-number
 | | +--ro local-administrator uint16
 | +--:(encapsulation-case)
 | +--ro encapsulation-extended-community
 | +--ro tunnel-type encapsulation-tunnel-type
 +--ro originator-id
 | +--ro originator? inet:ipv4-address
 +--ro cluster-id
 | +--ro cluster* bgp-t:cluster-identifier
 +--ro aigp
 | +--ro aigp-tlv
 | +--ro metric? netc:accumulated-igp-metric
 +--ro unrecognized-attributes* [type]
 +--ro partial boolean
 +--ro transitive boolean
 +--ro type uint8
 +--ro value binary

IPv6 Unicast Route

:(ipv6-routes-case)
 +--ro ipv6-routes
 +--ro ipv6-route* [prefix path-id]
 +--ro prefix inet:ipv6-prefix
 +--ro path-id path-id
 +--ro attributes
 ...

Usage

IPv4 Unicast

The IPv4 Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>0</path-id>
 <prefix>193.0.2.1/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.0.0.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

IPv6 Unicast

The IPv6 Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv6-routes

Method: GET

Response Body:

<ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv6-route>
 <path-id>0</path-id>
 <prefix>2a02:b80:0:1::/64</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>200</pref>
 </local-pref>
 <ipv6-next-hop>
 <global>2a02:b80:0:2::1</global>
 </ipv6-next-hop>
 </attributes>
 </ipv6-route>
</ipv6-routes>

Note

IPv4/6 routes mapping to topology nodes is supported by BGP Topology Provider.

Programming

IPv4 Unicast

This examples show how to originate and remove IPv4 route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv4-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <path-id>0</path-id>
 <prefix>10.0.0.11/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.11.1.1</global>
 </ipv4-next-hop>
 </attributes>
</ipv4-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv4-routes/ipv4-route/10.0.0.11%2F32/0

Method: DELETE

IPv6 Unicast

This examples show how to originate and remove IPv6 route via programmable RIB:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<ipv6-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <prefix>2001:db8:30::3/128</prefix>
 <path-id>0</path-id>
 <attributes>
 <ipv6-next-hop>
 <global>2001:db8:1::6</global>
 </ipv6-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</ipv6-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-types:unicast-subsequent-address-family/bgp-inet:ipv6-routes/ipv6-route/2001:db8:30::3%2F128/0

Method: DELETE

References

	Multiprotocol Extensions for BGP-4 [https://tools.ietf.org/html/rfc4760]

IP Labeled Unicast Family

The BGP Labeled Unicast (BGP-LU) Multiprotocol extension is used to distribute a MPLS label that is mapped to a particular route.
It can be used to advertise a MPLS transport path between IGP regions and Autonomous Systems.
Also, BGP-LU can help to solve the Inter-domain traffic-engineering problem and can be deployed in large-scale data centers along with MPLS and Spring.
In addition, IPv6 Labeled Unicast can be used to interconnect IPv6 islands over IPv4/MPLS networks using 6PE.

Contents

	Configuration
	BGP Speaker

	BGP Peer

	IP Labeled Unicast API
	IPv4 Labeled Unicast Route

	IPv6 Labeled Unicast Route

	Usage

	Programming
	IPv4 Labeled

	IPv6 Labeled

	References

Configuration

This section shows a way to enable IPv4 and IPv6 Labeled Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 Labeled Unicast support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 Labeled Unicast family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV6-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

IP Labeled Unicast API

Following trees illustrate the BGP IP Labeled Unicast routes structures.

IPv4 Labeled Unicast Route

:(labeled-unicast-routes-case)
 +--ro labeled-unicast-routes
 +--ro labeled-unicast-route* [route-key path-id]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id path-id
 +--ro attributes
 ...

IPv6 Labeled Unicast Route

:(labeled-unicast-ipv6-routes-case)
 +--ro labeled-unicast-ipv6-routes
 +--ro labeled-unicast-route* [route-key path-id]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id path-id
 +--ro attributes
 ...

Usage

The IPv4 Labeled Unicast table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-routes

Method: GET

Response Body:

<labeled-unicast-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <labeled-unicast-route>
 <path-id>0</path-id>
 <route-key>MAA+gRQAAA==</route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>200.10.0.101</global>
 </ipv4-next-hop>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 </attributes>
 <label-stack>
 <label-value>1000</label-value>
 </label-stack>
 <prefix>20.0.0.0/24</prefix>
 </labeled-unicast-route>
</labeled-unicast-routes>

Programming

IPv4 Labeled

This examples show how to originate and remove IPv4 labeled route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-routes

Method: POST

Content-Type: application/xml

Request Body:

<labeled-unicast-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <route-key>label1</route-key>
 <prefix>1.1.1.1/32</prefix>
 <path-id>0</path-id>
 <label-stack>
 <label-value>800322</label-value>
 </label-stack>
 <attributes>
 <ipv4-next-hop>
 <global>199.20.160.41</global>
 </ipv4-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</labeled-unicast-route>

In addition, BGP-LU Spring extension allows to attach BGP Prefix SID attribute to the route, in order to signal the BGP-Prefix-SID, where the SR is applied to MPLS dataplane.

<bgp-prefix-sid>
 <bgp-prefix-sid-tlvs>
 <label-index-tlv xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">322</label-index-tlv>
 </bgp-prefix-sid-tlvs>
 <bgp-prefix-sid-tlvs>
 <srgb-value xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <base>800000</base>
 <range>4095</range>
 </srgb-value>
 </bgp-prefix-sid-tlvs>
</bgp-prefix-sid>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-routes/bgp-labeled-unicast:labeled-unicast-route/label1/0

Method: DELETE

IPv6 Labeled

This examples show how to originate and remove IPv6 labeled route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<labeled-unicast-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-labeled-unicast">
 <route-key>label1</route-key>
 <prefix>2001:db8:30::3/128</prefix>
 <path-id>0</path-id>
 <label-stack>
 <label-value>123</label-value>
 </label-stack>
 <attributes>
 <ipv6-next-hop>
 <global>2003:4:5:6::7</global>
 </ipv6-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</labeled-unicast-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-labeled-unicast:labeled-unicast-subsequent-address-family/bgp-labeled-unicast:labeled-unicast-ipv6-routes/bgp-labeled-unicast:labeled-unicast-route/label1/0

Method: DELETE

References

	Carrying Label Information in BGP-4 [https://tools.ietf.org/html/rfc3107]

	Segment Routing Prefix SID extensions for BGP [https://tools.ietf.org/html/draft-ietf-idr-bgp-prefix-sid-03]

	Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE) [https://tools.ietf.org/html/rfc4798]

	BGP-Prefix Segment in large-scale data centers [https://tools.ietf.org/html/draft-ietf-spring-segment-routing-msdc-01]

	Egress Peer Engineering using BGP-LU [https://tools.ietf.org/html/draft-gredler-idr-bgplu-epe-06]

IP L3VPN Family

The BGP/MPLS IP Virtual Private Networks (BGP L3VPN) Multiprotocol extension can be used to exchange particular VPN (customer) routes among the provider’s routers attached to that VPN.
Also, routes are distributed to specific VPN remote sites.

Contents

	Configuration
	BGP Speaker

	BGP Peer

	IP L3VPN API
	IPv4 L3VPN Route

	IPv6 L3VPN Route

	Usage
	IPv4 L3VPN

	IPv6 L3VPN

	Programming

	References

Configuration

This section shows a way to enable IPv4 and IPv6 L3VPN family in BGP speaker and peer configuration.

BGP Speaker

To enable IPv4 and IPv6 L3VPN support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled IPv4 and IPv6 L3VPN family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV4-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L3VPN-IPV6-UNICAST</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

IP L3VPN API

Following trees illustrate the BGP IP L3VPN routes structures.

IPv4 L3VPN Route

:(vpn-ipv4-routes-case)
 +--ro vpn-ipv4-routes
 +--ro vpn-route* [route-key]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id? path-id
 +--ro route-distinguisher? bgp-t:route-distinguisher
 +--ro attributes
 ...

IPv6 L3VPN Route

:(vpn-ipv6-routes-case)
 +--ro vpn-ipv6-routes
 +--ro vpn-route* [route-key]
 +--ro route-key string
 +--ro label-stack*
 | +--ro label-value? netc:mpls-label
 +--ro prefix? inet:ip-prefix
 +--ro path-id? path-id
 +--ro route-distinguisher? bgp-t:route-distinguisher
 +--ro attributes
 ...

Usage

IPv4 L3VPN

The IPv4 L3VPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv4:vpn-ipv4-routes

Method: GET

Response Body:

<vpn-ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv4">
 <vpn-route>
 <route-key>cAXdYQABrBAALABlCgIi</route-key>
 <label-stack>
 <label-value>24022</label-value>
 </label-stack>
 <attributes>
 <extended-communities>
 <transitive>true</transitive>
 <route-target-extended-community>
 <global-administrator>65000</global-administrator>
 <local-administrator>AAAAZQ==</local-administrator>
 </route-target-extended-community>
 </extended-communities>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>127.16.0.44</global>
 </ipv4-next-hop>
 </attributes>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <prefix>10.2.34.0/24</prefix>
 </vpn-route>
</vpn-ipv4-routes>

IPv6 L3VPN

The IPv6 L3VPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv6-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv6:vpn-ipv6-routes

Method: GET

Response Body:

<vpn-ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv6">
 <vpn-route>
 <route-key>mAXdcQABrBAALABlKgILgAAAAAE=</route-key>
 <label-stack>
 <label-value>24023</label-value>
 </label-stack>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <extended-communities>
 <route-target-extended-community>
 <global-administrator>65000</global-administrator>
 <local-administrator>AAAAZQ==</local-administrator>
 </route-target-extended-community>
 <transitive>true</transitive>
 </extended-communities>
 <ipv6-next-hop>
 <global>2a02:b80:0:2::1</global>
 </ipv6-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 </attributes>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <prefix>2a02:b80:0:1::/64</prefix>
 </vpn-route>
</vpn-ipv6-routes>

Programming

This examples show how to originate and remove IPv4 L3VPN route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv4:vpn-ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<vpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-vpn-ipv4">
 <route-key>vpn1</route-key>
 <label-stack>
 <label-value>123</label-value>
 </label-stack>
 <route-distinguisher>429496729:1</route-distinguisher>
 <prefix>2.2.2.2/32</prefix>
 <attributes>
 <ipv4-next-hop>
 <global>199.20.166.41</global>
 </ipv4-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <extended-communities>
 <route-target-extended-community>
 <global-administrator>65000</global-administrator>
 <local-administrator>AAAAZQ==</local-administrator>
 </route-target-extended-community>
 <transitive>true</transitive>
 </extended-communities>
 </attributes>
</vpn-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-types:mpls-labeled-vpn-subsequent-address-family/bgp-vpn-ipv4:vpn-ipv4-routes/vpn-route/vpn1

Method: DELETE

References

	BGP/MPLS IP Virtual Private Networks (VPNs) [https://tools.ietf.org/html/rfc4364]

	BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN [https://tools.ietf.org/html/rfc4659]

	BGP/MPLS VPN Virtual PE [https://tools.ietf.org/html/draft-ietf-bess-virtual-pe-00]

Link-State Family

The BGP Link-State (BGP-LS) Multiprotocol extension allows to distribute Link-State and Traffic Engineering (TE) information.
This information is typically distributed by IGP routing protocols with in the network, limiting LSDB or TED visibility to the IGP area.
The BGP-LS-enabled routers are capable to collect such information from networks (multiple IGP areas, inter-AS) and share with external components (i.e. OpenDaylight BGP).
The information is applicable in ALTO servers and PCEs, as both need to gather information about topologies.
In addition, link-state information is extended to carry segment information (Spring).

Contents

	Configuration
	BGP Speaker

	Linkstate path attribute

	BGP Peer

	Link-State Route API

	Usage

	References

Configuration

This section shows a way to enable IPv4 and IPv6 Labeled Unicast family in BGP speaker and peer configuration.

BGP Speaker

To enable BGP-LS support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>LINKSTATE</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

Linkstate path attribute

IANA allocation for BGP-LS path attribute is TYPE 29.
Some older BGP-LS implementations might still require earliest asigned allocation TYPE 99.
To use TYPE = 99, you need to set value bellow to false.

URL: /restconf/config/bgp-linkstate-app-config:bgp-linkstate-app-config

Method: PUT

Content-Type: application/xml

Request Body:

<bgp-linkstate-app-config xmlns="urn:opendaylight:params:xml:ns:yang:controller:bgp:linkstate-app-config">
 <iana-linkstate-attribute-type>false</iana-linkstate-attribute-type>
</bgp-linkstate-app-config>

BGP Peer

Here is an example for BGP peer configuration with enabled BGP-LS family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>LINKSTATE</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

Link-State Route API

Following tree illustrate the BGP Link-State route structure.

:(linkstate-routes-case)
 +--ro linkstate-routes
 +--ro linkstate-route* [route-key]
 +--ro route-key binary
 +--ro protocol-id protocol-id
 +--ro identifier identifier
 +--ro (object-type)?
 | +--:(node-case)
 | | +--ro node-descriptors
 | | +--ro as-number? inet:as-number
 | | +--ro area-id? area-identifier
 | | +--ro domain-id? domain-identifier
 | | +--ro (c-router-identifier)?
 | | +--:(isis-node-case)
 | | | +--ro isis-node
 | | | +--ro iso-system-id netc:iso-system-identifier
 | | +--:(isis-pseudonode-case)
 | | | +--ro isis-pseudonode
 | | | +--ro is-is-router-identifier
 | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | +--ro psn uint8
 | | +--:(ospf-node-case)
 | | | +--ro ospf-node
 | | | +--ro ospf-router-id uint32
 | | +--:(ospf-pseudonode-case)
 | | +--ro ospf-pseudonode
 | | +--ro ospf-router-id uint32
 | | +--ro lan-interface ospf-interface-identifier
 | +--:(link-case)
 | | +--ro local-node-descriptors
 | | | +--ro as-number? inet:as-number
 | | | +--ro area-id? area-identifier
 | | | +--ro domain-id? domain-identifier
 | | | +--ro (c-router-identifier)?
 | | | | +--:(isis-node-case)
 | | | | | +--ro isis-node
 | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | +--:(isis-pseudonode-case)
 | | | | | +--ro isis-pseudonode
 | | | | | +--ro is-is-router-identifier
 | | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | | +--ro psn uint8
 | | | | +--:(ospf-node-case)
 | | | | | +--ro ospf-node
 | | | | | +--ro ospf-router-id uint32
 | | | | +--:(ospf-pseudonode-case)
 | | | | +--ro ospf-pseudonode
 | | | | +--ro ospf-router-id uint32
 | | | | +--ro lan-interface ospf-interface-identifier
 | | | +--ro bgp-router-id? inet:ipv4-address
 | | | +--ro member-asn? inet:as-number
 | | +--ro remote-node-descriptors
 | | | +--ro as-number? inet:as-number
 | | | +--ro area-id? area-identifier
 | | | +--ro domain-id? domain-identifier
 | | | +--ro (c-router-identifier)?
 | | | | +--:(isis-node-case)
 | | | | | +--ro isis-node
 | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | +--:(isis-pseudonode-case)
 | | | | | +--ro isis-pseudonode
 | | | | | +--ro is-is-router-identifier
 | | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | | +--ro psn uint8
 | | | | +--:(ospf-node-case)
 | | | | | +--ro ospf-node
 | | | | | +--ro ospf-router-id uint32
 | | | | +--:(ospf-pseudonode-case)
 | | | | +--ro ospf-pseudonode
 | | | | +--ro ospf-router-id uint32
 | | | | +--ro lan-interface ospf-interface-identifier
 | | | +--ro bgp-router-id? inet:ipv4-address
 | | | +--ro member-asn? inet:as-number
 | | +--ro link-descriptors
 | | +--ro link-local-identifier? uint32
 | | +--ro link-remote-identifier? uint32
 | | +--ro ipv4-interface-address? ipv4-interface-identifier
 | | +--ro ipv6-interface-address? ipv6-interface-identifier
 | | +--ro ipv4-neighbor-address? ipv4-interface-identifier
 | | +--ro ipv6-neighbor-address? ipv6-interface-identifier
 | | +--ro multi-topology-id? topology-identifier
 | +--:(prefix-case)
 | | +--ro advertising-node-descriptors
 | | | +--ro as-number? inet:as-number
 | | | +--ro area-id? area-identifier
 | | | +--ro domain-id? domain-identifier
 | | | +--ro (c-router-identifier)?
 | | | +--:(isis-node-case)
 | | | | +--ro isis-node
 | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | +--:(isis-pseudonode-case)
 | | | | +--ro isis-pseudonode
 | | | | +--ro is-is-router-identifier
 | | | | | +--ro iso-system-id netc:iso-system-identifier
 | | | | +--ro psn uint8
 | | | +--:(ospf-node-case)
 | | | | +--ro ospf-node
 | | | | +--ro ospf-router-id uint32
 | | | +--:(ospf-pseudonode-case)
 | | | +--ro ospf-pseudonode
 | | | +--ro ospf-router-id uint32
 | | | +--ro lan-interface ospf-interface-identifier
 | | +--ro prefix-descriptors
 | | +--ro multi-topology-id? topology-identifier
 | | +--ro ospf-route-type? ospf-route-type
 | | +--ro ip-reachability-information? inet:ip-prefix
 | +--:(te-lsp-case)
 | +--ro (address-family)?
 | | +--:(ipv4-case)
 | | | +--ro ipv4-tunnel-sender-address inet:ipv4-address
 | | | +--ro ipv4-tunnel-endpoint-address inet:ipv4-address
 | | +--:(ipv6-case)
 | | +--ro ipv6-tunnel-sender-address inet:ipv6-address
 | | +--ro ipv6-tunnel-endpoint-address inet:ipv6-address
 | +--ro tunnel-id? rsvp:tunnel-id
 | +--ro lsp-id? rsvp:lsp-id
 +--ro attributes
 +--ro (link-state-attribute)?
 +--:(node-attributes-case)
 | +--ro node-attributes
 | +--ro topology-identifier* topology-identifier
 | +--ro node-flags? node-flag-bits
 | +--ro isis-area-id* isis-area-identifier
 | +--ro dynamic-hostname? string
 | +--ro ipv4-router-id? ipv4-router-identifier
 | +--ro ipv6-router-id? ipv6-router-identifier
 | +--ro sr-capabilities
 | | +--ro mpls-ipv4? boolean
 | | +--ro mpls-ipv6? boolean
 | | +--ro sr-ipv6? boolean
 | | +--ro range-size? uint32
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro sr-algorithm
 | +--ro algorithms* algorithm
 +--:(link-attributes-case)
 | +--ro link-attributes
 | +--ro local-ipv4-router-id? ipv4-router-identifier
 | +--ro local-ipv6-router-id? ipv6-router-identifier
 | +--ro remote-ipv4-router-id? ipv4-router-identifier
 | +--ro remote-ipv6-router-id? ipv6-router-identifier
 | +--ro mpls-protocol? mpls-protocol-mask
 | +--ro te-metric? netc:te-metric
 | +--ro metric? netc:metric
 | +--ro shared-risk-link-groups* rsvp:srlg-id
 | +--ro link-name? string
 | +--ro max-link-bandwidth? netc:bandwidth
 | +--ro max-reservable-bandwidth? netc:bandwidth
 | +--ro unreserved-bandwidth* [priority]
 | | +--ro priority uint8
 | | +--ro bandwidth? netc:bandwidth
 | +--ro link-protection? link-protection-type
 | +--ro admin-group? administrative-group
 | +--ro sr-adj-ids*
 | | +--ro (flags)?
 | | | +--:(ospf-adj-flags-case)
 | | | | +--ro backup? boolean
 | | | | +--ro set? boolean
 | | | +--:(isis-adj-flags-case)
 | | | +--ro backup? boolean
 | | | +--ro set? boolean
 | | | +--ro address-family? boolean
 | | +--ro weight? weight
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro sr-lan-adj-ids*
 | | +--ro (flags)?
 | | | +--:(ospf-adj-flags-case)
 | | | | +--ro backup? boolean
 | | | | +--ro set? boolean
 | | | +--:(isis-adj-flags-case)
 | | | +--ro backup? boolean
 | | | +--ro set? boolean
 | | | +--ro address-family? boolean
 | | +--ro weight? weight
 | | +--ro iso-system-id? netc:iso-system-identifier
 | | +--ro neighbor-id? inet:ipv4-address
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro peer-node-sid
 | | +--ro weight? weight
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro peer-adj-sid
 | | +--ro weight? weight
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro peer-set-sids*
 | +--ro weight? weight
 | +--ro (sid-label-index)?
 | +--:(local-label-case)
 | | +--ro local-label? netc:mpls-label
 | +--:(ipv6-address-case)
 | | +--ro ipv6-address? inet:ipv6-address
 | +--:(sid-case)
 | +--ro sid? uint32
 +--:(prefix-attributes-case)
 | +--ro prefix-attributes
 | +--ro igp-bits
 | | x--ro up-down? bits
 | | +--ro is-is-up-down? boolean
 | | +--ro ospf-no-unicast? boolean
 | | +--ro ospf-local-address? boolean
 | | +--ro ospf-propagate-nssa? boolean
 | +--ro route-tags* route-tag
 | +--ro extended-tags* extended-route-tag
 | +--ro prefix-metric? netc:igp-metric
 | +--ro ospf-forwarding-address? inet:ip-address
 | +--ro sr-prefix
 | | +--ro (flags)?
 | | | +--:(isis-prefix-flags-case)
 | | | | +--ro no-php? boolean
 | | | | +--ro explicit-null? boolean
 | | | | +--ro readvertisement? boolean
 | | | | +--ro node-sid? boolean
 | | | +--:(ospf-prefix-flags-case)
 | | | +--ro no-php? boolean
 | | | +--ro explicit-null? boolean
 | | | +--ro mapping-server? boolean
 | | +--ro algorithm? algorithm
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro ipv6-sr-prefix
 | | +--ro algorithm? algorithm
 | +--ro sr-range
 | | +--ro inter-area? boolean
 | | +--ro range-size? uint16
 | | +--ro sub-tlvs*
 | | +--ro (range-sub-tlv)?
 | | +--:(binding-sid-tlv-case)
 | | | +--ro weight? weight
 | | | +--ro (flags)?
 | | | | +--:(isis-binding-flags-case)
 | | | | | +--ro address-family? boolean
 | | | | | +--ro mirror-context? boolean
 | | | | | +--ro spread-tlv? boolean
 | | | | | +--ro leaked-from-level-2? boolean
 | | | | | +--ro attached-flag? boolean
 | | | | +--:(ospf-binding-flags-case)
 | | | | +--ro mirroring? boolean
 | | | +--ro binding-sub-tlvs*
 | | | +--ro (binding-sub-tlv)?
 | | | +--:(prefix-sid-case)
 | | | | +--ro (flags)?
 | | | | | +--:(isis-prefix-flags-case)
 | | | | | | +--ro no-php? boolean
 | | | | | | +--ro explicit-null? boolean
 | | | | | | +--ro readvertisement? boolean
 | | | | | | +--ro node-sid? boolean
 | | | | | +--:(ospf-prefix-flags-case)
 | | | | | +--ro no-php? boolean
 | | | | | +--ro explicit-null? boolean
 | | | | | +--ro mapping-server? boolean
 | | | | +--ro algorithm? algorithm
 | | | | +--ro (sid-label-index)?
 | | | | +--:(local-label-case)
 | | | | | +--ro local-label? netc:mpls-label
 | | | | +--:(ipv6-address-case)
 | | | | | +--ro ipv6-address? inet:ipv6-address
 | | | | +--:(sid-case)
 | | | | +--ro sid? uint32
 | | | +--:(ipv6-prefix-sid-case)
 | | | | +--ro algorithm? algorithm
 | | | +--:(sid-label-case)
 | | | | +--ro (sid-label-index)?
 | | | | +--:(local-label-case)
 | | | | | +--ro local-label? netc:mpls-label
 | | | | +--:(ipv6-address-case)
 | | | | | +--ro ipv6-address? inet:ipv6-address
 | | | | +--:(sid-case)
 | | | | +--ro sid? uint32
 | | | +--:(ero-metric-case)
 | | | | +--ro ero-metric? netc:te-metric
 | | | +--:(ipv4-ero-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv4-address
 | | | +--:(ipv6-ero-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv6-address
 | | | +--:(unnumbered-interface-id-ero-case)
 | | | | +--ro loose? boolean
 | | | | +--ro router-id? uint32
 | | | | +--ro interface-id? uint32
 | | | +--:(ipv4-ero-backup-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv4-address
 | | | +--:(ipv6-ero-backup-case)
 | | | | +--ro loose? boolean
 | | | | +--ro address inet:ipv6-address
 | | | +--:(unnumbered-interface-id-backup-ero-case)
 | | | +--ro loose? boolean
 | | | +--ro router-id? uint32
 | | | +--ro interface-id? uint32
 | | +--:(prefix-sid-tlv-case)
 | | | +--ro (flags)?
 | | | | +--:(isis-prefix-flags-case)
 | | | | | +--ro no-php? boolean
 | | | | | +--ro explicit-null? boolean
 | | | | | +--ro readvertisement? boolean
 | | | | | +--ro node-sid? boolean
 | | | | +--:(ospf-prefix-flags-case)
 | | | | +--ro no-php? boolean
 | | | | +--ro explicit-null? boolean
 | | | | +--ro mapping-server? boolean
 | | | +--ro algorithm? algorithm
 | | | +--ro (sid-label-index)?
 | | | +--:(local-label-case)
 | | | | +--ro local-label? netc:mpls-label
 | | | +--:(ipv6-address-case)
 | | | | +--ro ipv6-address? inet:ipv6-address
 | | | +--:(sid-case)
 | | | +--ro sid? uint32
 | | +--:(ipv6-prefix-sid-tlv-case)
 | | | +--ro algorithm? algorithm
 | | +--:(sid-label-tlv-case)
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--ro sr-binding-sid-labels*
 | +--ro weight? weight
 | +--ro (flags)?
 | | +--:(isis-binding-flags-case)
 | | | +--ro address-family? boolean
 | | | +--ro mirror-context? boolean
 | | | +--ro spread-tlv? boolean
 | | | +--ro leaked-from-level-2? boolean
 | | | +--ro attached-flag? boolean
 | | +--:(ospf-binding-flags-case)
 | | +--ro mirroring? boolean
 | +--ro binding-sub-tlvs*
 | +--ro (binding-sub-tlv)?
 | +--:(prefix-sid-case)
 | | +--ro (flags)?
 | | | +--:(isis-prefix-flags-case)
 | | | | +--ro no-php? boolean
 | | | | +--ro explicit-null? boolean
 | | | | +--ro readvertisement? boolean
 | | | | +--ro node-sid? boolean
 | | | +--:(ospf-prefix-flags-case)
 | | | +--ro no-php? boolean
 | | | +--ro explicit-null? boolean
 | | | +--ro mapping-server? boolean
 | | +--ro algorithm? algorithm
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--:(ipv6-prefix-sid-case)
 | | +--ro algorithm? algorithm
 | +--:(sid-label-case)
 | | +--ro (sid-label-index)?
 | | +--:(local-label-case)
 | | | +--ro local-label? netc:mpls-label
 | | +--:(ipv6-address-case)
 | | | +--ro ipv6-address? inet:ipv6-address
 | | +--:(sid-case)
 | | +--ro sid? uint32
 | +--:(ero-metric-case)
 | | +--ro ero-metric? netc:te-metric
 | +--:(ipv4-ero-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv4-address
 | +--:(ipv6-ero-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv6-address
 | +--:(unnumbered-interface-id-ero-case)
 | | +--ro loose? boolean
 | | +--ro router-id? uint32
 | | +--ro interface-id? uint32
 | +--:(ipv4-ero-backup-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv4-address
 | +--:(ipv6-ero-backup-case)
 | | +--ro loose? boolean
 | | +--ro address inet:ipv6-address
 | +--:(unnumbered-interface-id-backup-ero-case)
 | +--ro loose? boolean
 | +--ro router-id? uint32
 | +--ro interface-id? uint32
 x--:(te-lsp-attributes-case)
 +--ro te-lsp-attributes

Usage

The Link-State table in a instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-linkstate:linkstate-address-family/bgp-linkstate:linkstate-subsequent-address-family/linkstate-routes

Method: GET

Response Body:

<linkstate-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-linkstate">
 ...
</linkstate-routes>

Note

Link-State routes mapping to topology links/nodes/prefixes is supported by BGP Topology Provider.

References

	North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP [https://tools.ietf.org/html/rfc7752]

	BGP Link-State extensions for Segment Routing [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-03]

	Segment Routing BGP Egress Peer Engineering BGP-LS Extensions [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-05]

	BGP Link-State Information Distribution Implementation Report [https://tools.ietf.org/html/draft-ietf-idr-ls-distribution-impl-04]

Flow Specification Family

The BGP Flow Specification (BGP-FS) Multiprotocol extension can be used to distribute traffic flow specifications.
For example, the BGP-FS can be used in a case of (distributed) denial-of-service (DDoS) attack mitigation procedures and traffic filtering (BGP/MPLS VPN service, DC).

Contents

	Configuration
	BGP Speaker

	BGP Peer

	Flow Specification API
	IPv4 Flow Specification Route

	IPv6 Flow Specification Route

	Usage
	IPv4 Flow Specification

	IPv6 Flows Specification

	IPv4 L3VPN Flows Specification

	Programming
	IPv4 Flow Specification

	IPv4 L3VPN Flow Specification

	IPv6 Flow Specification

	References

Configuration

This section shows a way to enable BGP-FS family in BGP speaker and peer configuration.

BGP Speaker

To enable BGP-FS support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>IPV4-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled BGP-FS family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name>IPV4-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV4-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name>IPV6-L3VPN-FLOW</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

Flow Specification API

Following trees illustrate the BGP Flow Specification routes structure.

IPv4 Flow Specification Route

:(flowspec-routes-case)
 +--ro flowspec-routes
 +--ro flowspec-route* [route-key path-id]
 +--ro route-key string
 +--ro flowspec*
 | +--ro (flowspec-type)?
 | +--:(port-case)
 | | +--ro ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(destination-port-case)
 | | +--ro destination-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(source-port-case)
 | | +--ro source-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(icmp-type-case)
 | | +--ro types*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(icmp-code-case)
 | | +--ro codes*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(tcp-flags-case)
 | | +--ro tcp-flags*
 | | +--ro op? bitmask-operand
 | | +--ro value? uint16
 | +--:(packet-length-case)
 | | +--ro packet-lengths*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(dscp-case)
 | | +--ro dscps*
 | | +--ro op? numeric-operand
 | | +--ro value? dscp
 | +--:(fragment-case)
 | | +--ro fragments*
 | | +--ro op? bitmask-operand
 | | +--ro value? fragment
 | +--:(destination-prefix-case)
 | | +--ro destination-prefix? inet:ipv4-prefix
 | +--:(source-prefix-case)
 | | +--ro source-prefix? inet:ipv4-prefix
 | +--:(protocol-ip-case)
 | +--ro protocol-ips*
 | +--ro op? numeric-operand
 | +--ro value? uint8
 +--ro path-id path-id
 +--ro attributes
 +--ro extended-communities*
 +--ro transitive? boolean
 +--ro (extended-community)?
 +--:(traffic-rate-extended-community-case)
 | +--ro traffic-rate-extended-community
 | +--ro informative-as? bgp-t:short-as-number
 | +--ro local-administrator? netc:bandwidth
 +--:(traffic-action-extended-community-case)
 | +--ro traffic-action-extended-community
 | +--ro sample? boolean
 | +--ro terminal-action? boolean
 +--:(redirect-extended-community-case)
 | +--ro redirect-extended-community
 | +--ro global-administrator? bgp-t:short-as-number
 | +--ro local-administrator? binary
 +--:(traffic-marking-extended-community-case)
 | +--ro traffic-marking-extended-community
 | +--ro global-administrator? dscp
 +--:(redirect-ipv4-extended-community-case)
 | +--ro redirect-ipv4
 | +--ro global-administrator? inet:ipv4-address
 | +--ro local-administrator? uint16
 +--:(redirect-as4-extended-community-case)
 | +--ro redirect-as4
 | +--ro global-administrator? inet:as-number
 | +--ro local-administrator? uint16
 +--:(redirect-ip-nh-extended-community-case)
 +--ro redirect-ip-nh-extended-community
 +--ro next-hop-address? inet:ip-address
 +--ro copy? boolean

IPv6 Flow Specification Route

:(flowspec-ipv6-routes-case)
 +--ro flowspec-ipv6-routes
 +--ro flowspec-route* [route-key path-id]
 +--ro flowspec*
 | +--ro (flowspec-type)?
 | +--:(port-case)
 | | +--ro ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(destination-port-case)
 | | +--ro destination-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(source-port-case)
 | | +--ro source-ports*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(icmp-type-case)
 | | +--ro types*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(icmp-code-case)
 | | +--ro codes*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(tcp-flags-case)
 | | +--ro tcp-flags*
 | | +--ro op? bitmask-operand
 | | +--ro value? uint16
 | +--:(packet-length-case)
 | | +--ro packet-lengths*
 | | +--ro op? numeric-operand
 | | +--ro value? uint16
 | +--:(dscp-case)
 | | +--ro dscps*
 | | +--ro op? numeric-operand
 | | +--ro value? dscp
 | +--:(fragment-case)
 | | +--ro fragments*
 | | +--ro op? bitmask-operand
 | | +--ro value? fragment
 | +--:(destination-ipv6-prefix-case)
 | | +--ro destination-prefix? inet:ipv6-prefix
 | +--:(source-ipv6-prefix-case)
 | | +--ro source-prefix? inet:ipv6-prefix
 | +--:(next-header-case)
 | | +--ro next-headers*
 | | +--ro op? numeric-operand
 | | +--ro value? uint8
 | +--:(flow-label-case)
 | +--ro flow-label*
 | +--ro op? numeric-operand
 | +--ro value? uint32
 +--ro path-id path-id
 +--ro attributes
 +--ro extended-communities*
 +--ro transitive? boolean
 +--ro (extended-community)?
 +--:(traffic-rate-extended-community-case)
 | +--ro traffic-rate-extended-community
 | +--ro informative-as? bgp-t:short-as-number
 | +--ro local-administrator? netc:bandwidth
 +--:(traffic-action-extended-community-case)
 | +--ro traffic-action-extended-community
 | +--ro sample? boolean
 | +--ro terminal-action? boolean
 +--:(redirect-extended-community-case)
 | +--ro redirect-extended-community
 | +--ro global-administrator? bgp-t:short-as-number
 | +--ro local-administrator? binary
 +--:(traffic-marking-extended-community-case)
 | +--ro traffic-marking-extended-community
 | +--ro global-administrator? dscp
 +--:(redirect-ipv6-extended-community-case)
 | +--ro redirect-ipv6
 | +--ro global-administrator? inet:ipv6-address
 | +--ro local-administrator? uint16
 +--:(redirect-as4-extended-community-case)
 | +--ro redirect-as4
 | +--ro global-administrator? inet:as-number
 | +--ro local-administrator? uint16
 +--:(redirect-ip-nh-extended-community-case)
 +--ro redirect-ip-nh-extended-community
 +--ro next-hop-address? inet:ip-address
 +--ro copy? boolean

Usage

The flowspec route represents rules and an action, defined as an extended community.

IPv4 Flow Specification

The IPv4 Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-routes

Method: GET

Response Body:

<flowspec-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <flowspec-route>
 <path-id>0</path-id>
 <route-key>all packets to 192.168.0.1/32 AND from 10.0.0.2/32 AND where IP protocol equals to 17 or equals to 6 AND where port equals to 80 or equals to 8080 AND where destination port is greater than 8080 and is less than 8088 or equals to 3128 AND where source port is greater than 1024 </route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-extended-community>
 <local-administrator>AgMWLg==</local-administrator>
 <global-administrator>258</global-administrator>
 </redirect-extended-community>
 </extended-communities>
 </attributes>
 <flowspec>
 <destination-prefix>192.168.0.1/32</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>10.0.0.2/32</source-prefix>
 </flowspec>
 <flowspec>
 <protocol-ips>
 <op>equals</op>
 <value>17</value>
 </protocol-ips>
 <protocol-ips>
 <op>equals end-of-list</op>
 <value>6</value>
 </protocol-ips>
 </flowspec>
 <flowspec>
 <ports>
 <op>equals</op>
 <value>80</value>
 </ports>
 <ports>
 <op>equals end-of-list</op>
 <value>8080</value>
 </ports>
 </flowspec>
 <flowspec>
 <destination-ports>
 <op>greater-than</op>
 <value>8080</value>
 </destination-ports>
 <destination-ports>
 <op>less-than and-bit</op>
 <value>8088</value>
 </destination-ports>
 <destination-ports>
 <op>equals end-of-list</op>
 <value>3128</value>
 </destination-ports>
 </flowspec>
 <flowspec>
 <source-ports>
 <op>end-of-list greater-than</op>
 <value>1024</value>
 </source-ports>
 </flowspec>
 </flowspec-route>
</flowspec-routes>

IPv6 Flows Specification

The IPv6 Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-ipv6-routes

Method: GET

Response Body:

<flowspec-ipv6-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <flowspec-route>
 <path-id>0</path-id>
 <route-key>all packets to 2001:db8:31::/64 AND from 2001:db8:30::/64 AND where next header equals to 17 AND where DSCP equals to 50 AND where flow label equals to 2013 </route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <traffic-rate-extended-community>
 <informative-as>0</informative-as>
 <local-administrator>AAAAAA==</local-administrator>
 </traffic-rate-extended-community>
 </extended-communities>
 </attributes>
 <flowspec>
 <destination-prefix>2001:db8:31::/64</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>2001:db8:30::/64</source-prefix>
 </flowspec>
 <flowspec>
 <next-headers>
 <op>equals end-of-list</op>
 <value>17</value>
 </next-headers>
 </flowspec>
 <flowspec>
 <dscps>
 <op>equals end-of-list</op>
 <value>50</value>
 </dscps>
 </flowspec>
 <flowspec>
 <flow-label>
 <op>equals end-of-list</op>
 <value>2013</value>
 </flow-label>
 </flowspec>
 </flowspec-route>
</flowspec-ipv6-routes>

IPv4 L3VPN Flows Specification

The IPv4 L3VPN Flowspec table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/bgp-flowspec:flowspec-l3vpn-ipv4-routes

Method: GET

Response Body:

<flowspec-l3vpn-ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <flowspec-l3vpn-route>
 <path-id>0</path-id>
 <route-key>[l3vpn with route-distinguisher 172.16.0.44:101] all packets from 10.0.0.3/32</route-key>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>5.6.7.8</global>
 </ipv4-next-hop>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-ip-nh-extended-community>
 <copy>false</copy>
 <next-hop-address>0.0.0.0</next-hop-address>
 </redirect-ip-nh-extended-community>
 </extended-communities>
 </attributes>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <flowspec>
 <source-prefix>10.0.0.3/32</source-prefix>
 </flowspec>
 </flowspec-l3vpn-route>
</flowspec-l3vpn-ipv4-routes>

Programming

IPv4 Flow Specification

This examples show how to originate and remove IPv4 fowspec route via programmable RIB.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <route-key>flow1</route-key>
 <path-id>0</path-id>
 <flowspec>
 <destination-prefix>192.168.0.1/32</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>10.0.0.1/32</source-prefix>
 </flowspec>
 <flowspec>
 <protocol-ips>
 <op>equals end-of-list</op>
 <value>6</value>
 </protocol-ips>
 </flowspec>
 <flowspec>
 <ports>
 <op>equals end-of-list</op>
 <value>80</value>
 </ports>
 </flowspec>
 <flowspec>
 <destination-ports>
 <op>greater-than</op>
 <value>8080</value>
 </destination-ports>
 <destination-ports>
 <op>and-bit less-than end-of-list</op>
 <value>8088</value>
 </destination-ports>
 </flowspec>
 <flowspec>
 <source-ports>
 <op>greater-than end-of-list</op>
 <value>1024</value>
 </source-ports>
 </flowspec>
 <flowspec>
 <types>
 <op>equals end-of-list</op>
 <value>0</value>
 </types>
 </flowspec>
 <flowspec>
 <codes>
 <op>equals end-of-list</op>
 <value>0</value>
 </codes>
 </flowspec>
 <flowspec>
 <tcp-flags>
 <op>match end-of-list</op>
 <value>32</value>
 </tcp-flags>
 </flowspec>
 <flowspec>
 <packet-lengths>
 <op>greater-than</op>
 <value>400</value>
 </packet-lengths>
 <packet-lengths>
 <op>and-bit less-than end-of-list</op>
 <value>500</value>
 </packet-lengths>
 </flowspec>
 <flowspec>
 <dscps>
 <op>equals end-of-list</op>
 <value>20</value>
 </dscps>
 </flowspec>
 <flowspec>
 <fragments>
 <op>match end-of-list</op>
 <value>first</value>
 </fragments>
 </flowspec>
 <attributes>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <extended-communities>

 </extended-communities>
 </attributes>
</flowspec-route>

Extended Communities

	
	Traffic Rate

		1
2
3
4
5
6
7

	<extended-communities>
 <transitive>true</transitive>
 <traffic-rate-extended-community>
 <informative-as>123</informative-as>
 <local-administrator>AAAAAA==</local-administrator>
 </traffic-rate-extended-community>
</extended-communities>

@line 5: A rate in bytes per second, AAAAAA== (0) means traffic discard.

	
	Traffic Action

	<extended-communities>
 <transitive>true</transitive>
 <traffic-action-extended-community>
 <sample>true</sample>
 <terminal-action>false</terminal-action>
 </traffic-action-extended-community>
</extended-communities>

	
	Redirect to VRF AS 2byte format

	<extended-communities>
 <transitive>true</transitive>
 <redirect-extended-community>
 <global-administrator>123</global-administrator>
 <local-administrator>AAAAew==</local-administrator>
 </redirect-extended-community>
</extended-communities>

	
	Redirect to VRF IPv4 format

	<extended-communities>
 <transitive>true</transitive>
 <redirect-ipv4>
 <global-administrator>192.168.0.1</global-administrator>
 <local-administrator>12345</local-administrator>
 </redirect-ipv4>
</extended-communities>

	
	Redirect to VRF AS 4byte format

	<extended-communities>
 <transitive>true</transitive>
 <redirect-as4>
 <global-administrator>64495</global-administrator>
 <local-administrator>12345</local-administrator>
 </redirect-as4>
</extended-communities>

	
	Redirect to IP

	<extended-communities>
 <transitive>true</transitive>
 <redirect-ip-nh-extended-community>
 <copy>false</false>
 </redirect-ip-nh-extended-community>
</extended-communities>

	
	Traffic Marking

	<extended-communities>
 <transitive>true</transitive>
 <traffic-marking-extended-community>
 <global-administrator>20</global-administrator>
 </traffic-marking-extended-community>
</extended-communities>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-routes/bgp-flowspec:flowspec-route/flow1/0

Method: DELETE

IPv4 L3VPN Flow Specification

This examples show how to originate and remove IPv4 L3VPN fowspec route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/bgp-flowspec:flowspec-l3vpn-ipv4-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-l3vpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <path-id>0</path-id>
 <route-key>flow-l3vpn</route-key>
 <route-distinguisher>172.16.0.44:101</route-distinguisher>
 <flowspec>
 <source-prefix>10.0.0.3/32</source-prefix>
 </flowspec>
 <attributes>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <origin>
 <value>igp</value>
 </origin>
 <as-path></as-path>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-ipv4>
 <global-administrator>172.16.0.44</global-administrator>
 <local-administrator>102</local-administrator>
 </redirect-ipv4>
 </extended-communities>
 </attributes>
</flowspec-l3vpn-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/bgp-flowspec:flowspec-l3vpn-subsequent-address-family/bgp-flowspec:flowspec-l3vpn-ipv4-routes/flowspec-l3vpn-route/flow-l3vpn/0

Method: DELETE

IPv6 Flow Specification

This examples show how to originate and remove IPv6 fowspec route via programmable RIB.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-ipv6-routes

Method: POST

Content-Type: application/xml

Request Body:

<flowspec-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-flowspec">
 <route-key>flow-v6</route-key>
 <path-id>0</path-id>
 <flowspec>
 <destination-prefix>2001:db8:30::3/128</destination-prefix>
 </flowspec>
 <flowspec>
 <source-prefix>2001:db8:31::3/128</source-prefix>
 </flowspec>
 <flowspec>
 <flow-label>
 <op>equals end-of-list</op>
 <value>1</value>
 </flow-label>
 </flowspec>
 <attributes>
 <extended-communities>
 <transitive>true</transitive>
 <redirect-ipv6>
 <global-administrator>2001:db8:1::6</global-administrator>
 <local-administrator>12345</local-administrator>
 </redirect-ipv6>
 </extended-communities>
 <origin>
 <value>igp</value>
 </origin>
 <as-path/>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 </attributes>
</flowspec-route>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv6-address-family/bgp-flowspec:flowspec-subsequent-address-family/bgp-flowspec:flowspec-ipv6-routes/bgp-flowspec:flowspec-route/flow-v6/0

Method: DELETE

References

	Dissemination of Flow Specification Rules [https://tools.ietf.org/html/rfc5575]

	Dissemination of Flow Specification Rules for IPv6 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-07]

	BGP Flow-Spec Extended Community for Traffic Redirect to IP Next Hop [https://tools.ietf.org/html/draft-ietf-idr-flowspec-redirect-ip-00]

	Clarification of the Flowspec Redirect Extended Community [https://tools.ietf.org/html/rfc7674]

	Revised Validation Procedure for BGP Flow Specifications [https://tools.ietf.org/html/draft-ietf-idr-bgp-flowspec-oid-03]

EVPN Family

The BGP MPLS-Based Ethernet VPN (BGP EVPN) Multiprotocol extension can be used to distribute Ethernet L2VPN service related routes in order to support a concept of MAC routing.
A major use-case for BGP EVPN is data-center interconnection (DCI), where advantage of BGP EVPN are MAC/IP address advertising across MPLS network, Multihoming functionality including Fast Convergence, Split Horizon and Aliasing support, VM (MAC) Mobility, support Multicast and Broadcast traffic.
In addition to MPLS, IP tunnelling encapsulation techniques like VXLAN, NVGRE, MPLSoGRE and others can be used for packet transportation.
Also, Provider Backbone Bridging (PBB) can be combined with EVPN in order to reduce a number of MAC Advertisement routes.

Contents

	Configuration
	BGP Speaker

	BGP Peer

	EVPN Route API

	Usage

	Programming

	References

Configuration

This section shows a way to enable EVPN family in BGP speaker and peer configuration.

BGP Speaker

To enable EVPN support in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN</afi-safi-name>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

BGP Peer

Here is an example for BGP peer configuration with enabled EVPN family.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:L2VPN-EVPN</afi-safi-name>
 </afi-safi>
 </afi-safis>
</neighbor>

EVPN Route API

Following tree illustrate the BGP EVPN route structure.

:(evpn-routes-case)
 +--ro evpn-routes
 +--ro evpn-route* [route-key]
 +--ro route-key string
 +--ro (evpn-choice)
 | +--:(ethernet-a-d-route-case)
 | | +--ro ethernet-a-d-route
 | | +--ro (esi)
 | | | +--:(arbitrary-case)
 | | | | +--ro arbitrary
 | | | | +--ro arbitrary binary
 | | | +--:(lacp-auto-generated-case)
 | | | | +--ro lacp-auto-generated
 | | | | +--ro ce-lacp-mac-address yang:mac-address
 | | | | +--ro ce-lacp-port-key uint16
 | | | +--:(lan-auto-generated-case)
 | | | | +--ro lan-auto-generated
 | | | | +--ro root-bridge-mac-address yang:mac-address
 | | | | +--ro root-bridge-priority uint16
 | | | +--:(mac-auto-generated-case)
 | | | | +--ro mac-auto-generated
 | | | | +--ro system-mac-address yang:mac-address
 | | | | +--ro local-discriminator uint24
 | | | +--:(router-id-generated-case)
 | | | | +--ro router-id-generated
 | | | | +--ro router-id inet:ipv4-address
 | | | | +--ro local-discriminator uint32
 | | | +--:(as-generated-case)
 | | | +--ro as-generated
 | | | +--ro as inet:as-number
 | | | +--ro local-discriminator uint32
 | | +--ro ethernet-tag-id
 | | | +--ro vlan-id uint32
 | | +--ro mpls-label netc:mpls-label
 | +--:(mac-ip-adv-route-case)
 | | +--ro mac-ip-adv-route
 | | +--ro (esi)
 | | | +--:(arbitrary-case)
 | | | | +--ro arbitrary
 | | | | +--ro arbitrary binary
 | | | +--:(lacp-auto-generated-case)
 | | | | +--ro lacp-auto-generated
 | | | | +--ro ce-lacp-mac-address yang:mac-address
 | | | | +--ro ce-lacp-port-key uint16
 | | | +--:(lan-auto-generated-case)
 | | | | +--ro lan-auto-generated
 | | | | +--ro root-bridge-mac-address yang:mac-address
 | | | | +--ro root-bridge-priority uint16
 | | | +--:(mac-auto-generated-case)
 | | | | +--ro mac-auto-generated
 | | | | +--ro system-mac-address yang:mac-address
 | | | | +--ro local-discriminator uint24
 | | | +--:(router-id-generated-case)
 | | | | +--ro router-id-generated
 | | | | +--ro router-id inet:ipv4-address
 | | | | +--ro local-discriminator uint32
 | | | +--:(as-generated-case)
 | | | +--ro as-generated
 | | | +--ro as inet:as-number
 | | | +--ro local-discriminator uint32
 | | +--ro ethernet-tag-id
 | | | +--ro vlan-id uint32
 | | +--ro mac-address yang:mac-address
 | | +--ro ip-address? inet:ip-address
 | | +--ro mpls-label1 netc:mpls-label
 | | +--ro mpls-label2? netc:mpls-label
 | +--:(inc-multi-ethernet-tag-res-case)
 | | +--ro inc-multi-ethernet-tag-res
 | | +--ro ethernet-tag-id
 | | | +--ro vlan-id uint32
 | | +--ro orig-route-ip? inet:ip-address
 | +--:(es-route-case)
 | +--ro es-route
 | +--ro (esi)
 | | +--:(arbitrary-case)
 | | | +--ro arbitrary
 | | | +--ro arbitrary binary
 | | +--:(lacp-auto-generated-case)
 | | | +--ro lacp-auto-generated
 | | | +--ro ce-lacp-mac-address yang:mac-address
 | | | +--ro ce-lacp-port-key uint16
 | | +--:(lan-auto-generated-case)
 | | | +--ro lan-auto-generated
 | | | +--ro root-bridge-mac-address yang:mac-address
 | | | +--ro root-bridge-priority uint16
 | | +--:(mac-auto-generated-case)
 | | | +--ro mac-auto-generated
 | | | +--ro system-mac-address yang:mac-address
 | | | +--ro local-discriminator uint24
 | | +--:(router-id-generated-case)
 | | | +--ro router-id-generated
 | | | +--ro router-id inet:ipv4-address
 | | | +--ro local-discriminator uint32
 | | +--:(as-generated-case)
 | | +--ro as-generated
 | | +--ro as inet:as-number
 | | +--ro local-discriminator uint32
 | +--ro orig-route-ip inet:ip-address
 +--ro route-distinguisher bgp-t:route-distinguisher
 +--ro attributes
 +--ro extended-communities*
 | +--ro transitive? boolean
 | +--ro (extended-community)?
 | +--:(encapsulation-case)
 | | +--ro encapsulation-extended-community
 | | +--ro tunnel-type encapsulation-tunnel-type
 | +--:(esi-label-extended-community-case)
 | | +--ro esi-label-extended-community
 | | +--ro single-active-mode? boolean
 | | +--ro esi-label netc:mpls-label
 | +--:(es-import-route-extended-community-case)
 | | +--ro es-import-route-extended-community
 | | +--ro es-import yang:mac-address
 | +--:(mac-mobility-extended-community-case)
 | | +--ro mac-mobility-extended-community
 | | +--ro static? boolean
 | | +--ro seq-number uint32
 | +--:(default-gateway-extended-community-case)
 | | +--ro default-gateway-extended-community!
 | +--:(layer-2-attributes-extended-community-case)
 | +--ro layer-2-attributes-extended-community
 | +--ro primary-pe? boolean
 | +--ro backup-pe? boolean
 | +--ro control-word? boolean
 | +--ro l2-mtu uint16
 +--ro pmsi-tunnel!
 +--ro leaf-information-required boolean
 +--ro mpls-label? netc:mpls-label
 +--ro (tunnel-identifier)?
 +--:(rsvp-te-p2mp-lsp)
 | +--ro rsvp-te-p2mp-lps
 | +--ro p2mp-id uint32
 | +--ro tunnel-id uint16
 | +--ro extended-tunnel-id inet:ip-address
 +--:(mldp-p2mp-lsp)
 | +--ro mldp-p2mp-lsp
 | +--ro address-family identityref
 | +--ro root-node-address inet:ip-address
 | +--ro opaque-value*
 | +--ro opaque-type uint8
 | +--ro opaque-extended-type? uint16
 | +--ro opaque yang:hex-string
 +--:(pim-ssm-tree)
 | +--ro pim-ssm-tree
 | +--ro p-address inet:ip-address
 | +--ro p-multicast-group inet:ip-address
 +--:(pim-sm-tree)
 | +--ro pim-sm-tree
 | +--ro p-address inet:ip-address
 | +--ro p-multicast-group inet:ip-address
 +--:(bidir-pim-tree)
 | +--ro bidir-pim-tree
 | +--ro p-address inet:ip-address
 | +--ro p-multicast-group inet:ip-address
 +--:(ingress-replication)
 | +--ro ingress-replication
 | +--ro receiving-endpoint-address? inet:ip-address
 +--:(mldp-mp2mp-lsp)
 +--ro mldp-mp2mp-lsp
 +--ro opaque-type uint8
 +--ro opaque-extended-type? uint16
 +--ro opaque
 ...

Usage

The L2VPN EVPN table in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/evpn-routes

Method: GET

Response Body:

<evpn-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-evpn">
 <evpn-route>
 <route-key>AxEAAcCoZAED6AAAAQAgwKhkAQ==</route-key>
 <route-distinguisher>192.168.100.1:1000</route-distinguisher>
 <inc-multi-ethernet-tag-res>
 <ethernet-tag-id>
 <vlan-id>256</vlan-id>
 </ethernet-tag-id>
 <orig-route-ip>192.168.100.1</orig-route-ip>
 </inc-multi-ethernet-tag-res>
 <attributes>
 <ipv4-next-hop>
 <global>172.23.29.104</global>
 </ipv4-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <extended-communities>
 <extended-communities>
 <transitive>true</transitive>
 <route-target-extended-community>
 <global-administrator>65504</global-administrator>
 <local-administrator>AAAD6A==</local-administrator>
 </route-target-extended-community>
 </extended-communities>
 </extended-communities>
 <pmsi-tunnel>
 <leaf-information-required>true</leaf-information-required>
 <mpls-label>20024</mpls-label>
 <ingress-replication>
 <receiving-endpoint-address>192.168.100.1</receiving-endpoint-address>
 </ingress-replication>
 </pmsi-tunnel>
 </attributes>
 </evpn-route>
</evpn-routes>

Programming

This examples show how to originate and remove EVPN routes via programmable RIB.
There are four different types of EVPN routes, and several extended communities.
Routes can be used for variety of use-cases supported by BGP/MPLS EVPN, PBB EVPN and NVO EVPN.
Make sure the Application Peer is configured first.

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/odl-bgp-evpn:evpn-routes

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	<evpn-route xmlns="urn:opendaylight:params:xml:ns:yang:bgp-evpn">
 <route-key>evpn</route-key>
 <route-distinguisher>172.12.123.3:200</route-distinguisher>

 <attributes>
 <ipv4-next-hop>
 <global>199.20.166.41</global>
 </ipv4-next-hop>
 <as-path/>
 <origin>
 <value>igp</value>
 </origin>
 <extended-communities>

 </extended-communities>
 </attributes>
</evpn-route>

@line 3: Route Distinguisher (RD) - set to RD of the MAC-VRF advertising the NLRI, recommended format <IP>:<VLAN_ID>

@line 4: One of the EVPN route must be set here.

@line 14: In some cases, specific extended community presence is required. The route may carry one or more Route Target attributes.

EVPN Routes:

	
	Ethernet AD per ESI

	<ethernet-a-d-route>
 <mpls-label>0</mpls-label>
 <ethernet-tag-id>
 <vlan-id>4294967295</vlan-id>
 </ethernet-tag-id>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
</ethernet-a-d-route>

	
	Ethernet AD per EVI

	<ethernet-a-d-route>
 <mpls-label>24001</mpls-label>
 <ethernet-tag-id>
 <vlan-id>2200</vlan-id>
 </ethernet-tag-id>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
</ethernet-a-d-route>

	
	MAC/IP Advertisement

	<mac-ip-adv-route>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
 <ethernet-tag-id>
 <vlan-id>2100</vlan-id>
 </ethernet-tag-id>
 <mac-address>f2:0c:dd:80:9f:f7</mac-address>
 <ip-address>10.0.1.12</ip-address>
 <mpls-label1>299776</mpls-label1>
</mac-ip-adv-route>

	
	Inclusive Multicast Ethernet Tag

	<inc-multi-ethernet-tag-res>
 <ethernet-tag-id>
 <vlan-id>2100</vlan-id>
 </ethernet-tag-id>
 <orig-route-ip>43.43.43.43</orig-route-ip>
</inc-multi-ethernet-tag-res>

	
	Ethernet Segment

	<es-route>
 <orig-route-ip>43.43.43.43</orig-route-ip>
 <arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
 </arbitrary>
</es-route>

EVPN Ethernet Segment Identifier (ESI):

	
	Type 0

	Indicates an arbitrary 9-octet ESI.

<arbitrary>
 <arbitrary>AAAAAAAAAAAA</arbitrary>
</arbitrary>

	
	Type 1

	IEEE 802.1AX LACP is used.

<lacp-auto-generated>
 <ce-lacp-mac-address>f2:0c:dd:80:9f:f7</ce-lacp-mac-address>
 <ce-lacp-port-key>22</ce-lacp-port-key>
</lacp-auto-generated>

	
	Type 2

	Indirectly connected hosts via a bridged LAN.

<lan-auto-generated>
 <root-bridge-mac-address>f2:0c:dd:80:9f:f7</root-bridge-mac-address>
 <root-bridge-priority>20</root-bridge-priority>
</lan-auto-generated>

	
	Type 3

	MAC-based ESI.

<mac-auto-generated>
 <system-mac-address>f2:0c:dd:80:9f:f7</system-mac-address>
 <local-discriminator>2000</local-discriminator>
</mac-auto-generated>

	
	Type 4

	Router-ID ESI

<router-id-generated>
 <router-id>43.43.43.43</router-id>
 <local-discriminator>2000</local-discriminator>
</router-id-generated>

	
	Type 5

	AS-based ESI

<as-generated>
 <as>16843009</as>
 <local-discriminator>2000</local-discriminator>
</as-generated>

Extended Communities:

	
	ESI Label Extended Community

	<extended-communities>
 <transitive>true</transitive>
 <esi-label-extended-community>
 <single-active-mode>false</single-active-mode>
 <esi-label>24001</esi-label>
 </esi-label-extended-community >
</extended-communities>

	
	ES-Import Route Target

	<extended-communities>
 <transitive>true</transitive>
 <es-import-route-extended-community>
 <es-import>f2:0c:dd:80:9f:f7</es-import>
 </es-import-route-extended-community>
</extended-communities>

	
	MAC Mobility Extended Community

	<extended-communities>
 <transitive>true</transitive>
 <mac-mobility-extended-community>
 <static>true</static>
 <seq-number>200</seq-number>
 </mac-mobility-extended-community>
</extended-communities>

	
	Default Gateway Extended Community

	<extended-communities>
 <transitive>true</transitive>
 <default-gateway-extended-community>
 </default-gateway-extended-community>
</extended-communities>

	
	EVPN Layer 2 attributes extended community

	<extended-communities>
 <transitive>false</transitive>
 <layer-2-attributes-extended-community>
 <primary-pe>true</primary-pe>
 <backup-pe>true</backup-pe>
 <control-word >true</control-word>
 <l2-mtu>200</l2-mtu>
 </layer-2-attributes-extended-community>
</extended-communities>

	
	BGP Encapsulation extended community

		1
2
3
4
5
6

	<extended-communities>
 <transitive>false</transitive>
 <encapsulation-extended-community>
 <tunnel-type>vxlan</tunnel-type>
 </encapsulation-extended-community>
</extended-communities>

@line 4: full list of tunnel types [http://www.iana.org/assignments/bgp-parameters/bgp-parameters.xhtml#tunnel-types]

	
	P-Multicast Service Interface Tunnel (PMSI) attribute

	<pmsi-tunnel>
 <leaf-information-required>true</leaf-information-required>
 <mpls-label>20024</mpls-label>
 <ingress-replication>
 <receiving-endpoint-address>172.12.123.3</receiving-endpoint-address>
 </ingress-replication>
</pmsi-tunnel>

To remove the route added above, following request can be used:

URL: /restconf/config/bgp-rib:application-rib/10.25.1.9/tables/bgp-types:ipv4-address-family/odl-bgp-evpn:l2vpn-address-family/odl-bgp-evpn:evpn-subsequent-address-family/odl-bgp-evpn:evpn-routes/evpn-route/evpn

Method: DELETE

EVPN Routes Usage.

	EVN Route Type
	Extended Communities
	Usage

	Ethernet Auto-discovery
	ESI Label, BGP EncapsulationEVPN Layer 2 attributes
	Fast Convergence, Split Horizon, Aliasing

	MAC/IP Advertisement
	BGP Encapsulation, MAC Mobility, Default Gateway
	MAC address reachability

	Inclusive Multicast Ethernet Tag
	PMSI Tunnel, BGP Encapsulation
	Handling of Multi-destination traffic

	Ethernet Segment
	BGP Encapsulation, ES-Import Route Target
	Designated Forwarder Election

References

	BGP MPLS-Based Ethernet VPN [https://tools.ietf.org/html/rfc7432]

	Provider Backbone Bridging Combined with Ethernet VPN [https://tools.ietf.org/html/rfc7623]

	VPWS support in EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-vpws-07]

	A Network Virtualization Overlay Solution using EVPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04]

	Interconnect Solution for EVPN Overlay networks [https://tools.ietf.org/html/draft-ietf-bess-dci-evpn-overlay-04]

	Usage and applicability of BGP MPLS based Ethernet VPN [https://tools.ietf.org/html/draft-ietf-bess-evpn-usage-03]

Additional Path

The ADD-PATH capability allows to advertise multiple paths for the same address prefix.
It can help with optimal routing and routing convergence in a network by providing potential alternate or backup paths.

Contents

	Configuration
	BGP Speaker

	BGP Peer

	Usage

	References

Configuration

This section shows a way to enable ADD-PATH capability in BGP speaker and peer configuration.

Note

The capability is applicable for IP Unicast, IP Labeled Unicast and Flow Specification address families.

BGP Speaker

To enable ADD-PATH capability in BGP plugin, first configure BGP speaker instance:

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	<protocol xmlns="http://openconfig.net/yang/network-instance">
 <name>bgp-example</name>
 <identifier xmlns:x="http://openconfig.net/yang/policy-types">x:BGP</identifier>
 <bgp xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <global>
 <config>
 <router-id>192.0.2.2</router-id>
 <as>65000</as>
 </config>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>2</send-max>
 </afi-safi>
 </afi-safis>
 </global>
 </bgp>
</protocol>

@line 14: Defines path selection strategy: send-max > 1 -> Advertise N Paths or send-max = 0 -> Advertise All Paths

Here is an example for update a specific family with enable ADD-PATH capability

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/global/afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: PUT

Content-Type: application/xml

Request Body:

<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>0</send-max>
</afi-safi>

BGP Peer

Here is an example for BGP peer configuration with enabled ADD-PATH capability.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors

Method: POST

Content-Type: application/xml

Request Body:

<neighbor xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <neighbor-address>192.0.2.1</neighbor-address>
 <afi-safis>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-LABELLED-UNICAST</afi-safi-name>
 </afi-safi>
 <afi-safi>
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>0</send-max>
 </afi-safi>
 </afi-safis>
</neighbor>

Note

The path selection strategy is not configurable on per peer basis. The send-max presence indicates a willingness to send ADD-PATH NLRIs to the neighbor.

Here is an example for update specific family BGP peer configuration with enabled ADD-PATH capability.

URL: /restconf/config/openconfig-network-instance:network-instances/network-instance/global-bgp/openconfig-network-instance:protocols/protocol/openconfig-policy-types:BGP/bgp-example/bgp/neighbors/neighbor/192.0.2.1/afi-safis/afi-safi/openconfig-bgp-types:IPV4%2DUNICAST

Method: PUT

Content-Type: application/xml

Request Body:

<afi-safi xmlns="urn:opendaylight:params:xml:ns:yang:bgp:openconfig-extensions">
 <afi-safi-name xmlns:x="http://openconfig.net/yang/bgp-types">x:IPV4-UNICAST</afi-safi-name>
 <receive>true</receive>
 <send-max>0</send-max>
</afi-safi>

Usage

The IPv4 Unicast table with enabled ADD-PATH capability in an instance of the speaker’s Loc-RIB can be verified via REST:

URL: /restconf/operational/bgp-rib:bgp-rib/rib/bgp-example/loc-rib/tables/bgp-types:ipv4-address-family/bgp-types:unicast-subsequent-address-family/ipv4-routes

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	<ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <path-id>1</path-id>
 <prefix>193.0.2.1/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.0.0.1</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
 <ipv4-route>
 <path-id>2</path-id>
 <prefix>193.0.2.1/32</prefix>
 <attributes>
 <as-path></as-path>
 <origin>
 <value>igp</value>
 </origin>
 <local-pref>
 <pref>100</pref>
 </local-pref>
 <ipv4-next-hop>
 <global>10.0.0.2</global>
 </ipv4-next-hop>
 </attributes>
 </ipv4-route>
</ipv4-routes>

@line 3: The routes with the same destination are distinguished by path-id attribute.

References

	Advertisement of Multiple Paths in BGP [https://tools.ietf.org/html/rfc7911]

	Best Practices for Advertisement of Multiple Paths in IBGP [https://tools.ietf.org/html/draft-ietf-idr-add-paths-guidelines-08]

Route Refresh

The Route Refresh Capability allows to dynamically request a re-advertisement of the Adj-RIB-Out from a BGP peer.
This is useful when the inbound routing policy for a peer changes and all prefixes from a peer must be reexamined against a new policy.

Contents

	Configuration

	Usage

	References

Configuration

The capability is enabled by default, no additional configuration is required.

Usage

To send a Route Refresh request from OpenDaylight BGP speaker instance to its neighbor, invoke RPC:

URL: /restconf/operations/bgp-peer-rpc:route-refresh-request

Method: POST

Content-Type: application/xml

Request Body:

<input xmlns="urn:opendaylight:params:xml:ns:yang:bgp-peer-rpc">
 <afi xmlns:types="urn:opendaylight:params:xml:ns:yang:bgp-types">types:ipv4-address-family</afi>
 <safi xmlns:types="urn:opendaylight:params:xml:ns:yang:bgp-types">types:unicast-subsequent-address-family</safi>
 <peer-ref xmlns:rib="urn:opendaylight:params:xml:ns:yang:bgp-rib">/rib:bgp-rib/rib:rib[rib:id="bgp-example"]/rib:peer[rib:peer-id="bgp://10.25.1.9"]</peer-ref>
</input>

References

	Route Refresh Capability for BGP-4 [https://tools.ietf.org/html/rfc2918]

High Availability

Running OpenDaylight BGP in clustered environment brings an advantage of the plugin’s high availability (HA).
This section illustrates a basic scenario for HA, also presents a configuration for clustered OpenDaylight BGP.

Contents

	Configuration

	Failover scenario

Configuration

Following example shows a configuration for running BGP in clustered environment.

	As the first step, configure (replicated deafult shard and topology shard if needed) and run OpenDaylight in clustered environment, install BGP and RESTCONF.

	On one node (OpenDaylight instance), configure BGP speaker instance and neighbor. In addition, configure BGP topology exporter if required. The configuration is shared across all interconnected cluster nodes, however BGP become active only on one node. Other nodes with configured BGP serves as stand-by backups.

	Remote peer should be configured to accept/initiate connection from/to all OpenDaylight cluster nodes with configured BGP plugin.

	Connect remote peer, let it advertise some routes. Verify routes presence in Loc-RIB and/or BGP topology exporter instance on all nodes of the OpenDaylight cluster.

Warning

Replicating RIBs across the cluster nodes is causing severe scalability issue and overall performance degradation. To avoid this problems, configure BGP RIB module as a separate shard without enabled replication. Change configuration on all nodes as following (configuration/initial):

	
	In modules.conf add a new module:

	{
 name = "bgp_rib"
 namespace = "urn:opendaylight:params:xml:ns:yang:bgp-rib"
 shard-strategy = "module"
}

	
	In module-shards.conf define a new module shard:

	{
 name = "bgp_rib"
 shards = [
 {
 name="bgp_rib"
 replicas = [
 "member-1"
]
 }
]
}

Note: Use correct member name in module shard configuration.

Failover scenario

Following section presents a basic BGP speaker failover scenario on 3-node OpenDaylight cluster setup.

[image: BGP HA setup.]
Once the OpenDaylight BGP is configured, the speaker become active on one of the cluster nodes. Remote peer can establish connection with this BGP instance.
Routes advertised by remote peer are replicated, hence RIBs state on all nodes is the same.

[image: Node went down.]
In a case a cluster node, where BGP instance is running, goes down (unexpected failure, restart), active BGP session is dropped.

[image: BGP recovery.]
Now, one of the stand-by BGP speaker instances become active. Remote peer establishes new connection and advertises routes again.

Topology Provider

This section provides an overview of the BGP topology provider service.
It shows how to configure and use all available BGP topology providers.
Providers are building topology view of BGP routes stored in local BGP speaker’s Loc-RIB.
Output topologies are rendered in a form of standardised IETF network topology model.

Contents

	Inet Reachability Topology
	Configuration

	Usage

	BGP Linkstate Topology
	Configuration

	Usage

Inet Reachability Topology

Inet reachability topology exporter offers a mapping service from IPv4/6 routes to network topology nodes.

Configuration

Following example shows how to create a new instance of IPv4 BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6
7

	<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-ipv4-topology</topology-id>
 <topology-types>
 <bgp-ipv4-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv4-reachability-topology>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-example</rib-id>
</topology>

@line 2: An identifier for a topology.

@line 4: Used to identify type of the topology. In this case BGP IPv4 reachability topology.

@line 6: A name of the local BGP speaker instance.

The topology exporter instance can be removed in a following way:

URL: /restconf/config/network-topology:network-topology/topology/bgp-example-ipv4-topology

Method: DELETE

Following example shows how to create a new instance of IPv6 BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-ipv6-topology</topology-id>
 <topology-types>
 <bgp-ipv6-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv6-reachability-topology>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-example</rib-id>
</topology>

Usage

Operational state of the topology can be verified via REST:

URL: /restconf/operational/network-topology:network-topology/topology/bgp-example-ipv4-topology

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-ipv4-topology</topology-id>
 <server-provided>true</server-provided>
 <topology-types>
 <bgp-ipv4-reachability-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-ipv4-reachability-topology>
 </topology-types>
 <node>
 <node-id>10.10.1.1</node-id>
 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <prefix>
 <prefix>10.0.0.10/32</prefix>
 </prefix>
 </igp-node-attributes>
 </node>
</topology>

@line 8: The identifier of a node in a topology. Its value is mapped from route’s NEXT_HOP attribute.

@line 11: The IP prefix attribute of the node. Its value is mapped from routes’s destination IP prefix.

BGP Linkstate Topology

BGP linkstate topology exporter offers a mapping service from BGP-LS routes to network topology nodes and links.

Configuration

Following example shows how to create a new instance of linkstate BGP topology exporter:

URL: /restconf/config/network-topology:network-topology

Method: POST

Content-Type: application/xml

Request Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-linkstate-topology</topology-id>
 <topology-types>
 <bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-linkstate-topology>
 </topology-types>
 <rib-id xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-config">bgp-example</rib-id>
</topology>

Usage

Operational state of the topology can be verified via REST.
A sample output below represents a two node topology with two unidirectional links interconnecting those nodes.

URL: /restconf/operational/network-topology:network-topology/topology/bgp-example-linkstate-topology

Method: GET

Response Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>bgp-example-linkstate-topology</topology-id>
 <server-provided>true</server-provided>
 <topology-types>
 <bgp-linkstate-topology xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-topology-types"></bgp-linkstate-topology>
 </topology-types>
 <node>
 <node-id>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0040</node-id>
 <termination-point>
 <tp-id>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</tp-id>
 <igp-termination-point-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology"/>
 </termination-point>
 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <prefix>
 <prefix>40.40.40.40/32</prefix>
 <metric>10</metric>
 </prefix>
 <prefix>
 <prefix>203.20.160.0/24</prefix>
 <metric>10</metric>
 </prefix>
 <name>node1</name>
 <router-id>40.40.40.40</router-id>
 <isis-node-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <te-router-id-ipv4>40.40.40.40</te-router-id-ipv4>
 </ted>
 <iso>
 <iso-system-id>MDAwMDAwMDAwMDY0</iso-system-id>
 </iso>
 </isis-node-attributes>
 </igp-node-attributes>
 </node>
 <node>
 <node-id>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0039</node-id>
 <termination-point>
 <tp-id>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</tp-id>
 <igp-termination-point-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology"/>
 </termination-point>
 <igp-node-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <prefix>
 <prefix>39.39.39.39/32</prefix>
 <metric>10</metric>
 </prefix>
 <prefix>
 <prefix>203.20.160.0/24</prefix>
 <metric>10</metric>
 </prefix>
 <name>node2</name>
 <router-id>39.39.39.39</router-id>
 <isis-node-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <te-router-id-ipv4>39.39.39.39</te-router-id-ipv4>
 </ted>
 <iso>
 <iso-system-id>MDAwMDAwMDAwMDg3</iso-system-id>
 </iso>
 </isis-node-attributes>
 </igp-node-attributes>
 </node>
 <link>
 <destination>
 <dest-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0039</dest-node>
 <dest-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</dest-tp>
 </destination>
 <link-id>bgpls://IsisLevel2:1/type=link&local-as=65000&local-domain=673720360&local-router=0000.0000.0040&remote-as=65000&remote-domain=673720360&remote-router=0000.0000.0039&ipv4-iface=203.20.160.40&ipv4-neigh=203.20.160.39</link-id>
 <source>
 <source-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0040</source-node>
 <source-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</source-tp>
 </source>
 <igp-link-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <metric>10</metric>
 <isis-link-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <color>0</color>
 <max-link-bandwidth>1250000.0</max-link-bandwidth>
 <max-resv-link-bandwidth>12500.0</max-resv-link-bandwidth>
 <te-default-metric>0</te-default-metric>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>0</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>1</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>2</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>3</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>4</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>5</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>6</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>7</priority>
 </unreserved-bandwidth>
 </ted>
 </isis-link-attributes>
 </igp-link-attributes>
 </link>
 <link>
 <destination>
 <dest-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0040</dest-node>
 <dest-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.40</dest-tp>
 </destination>
 <link-id>bgpls://IsisLevel2:1/type=link&local-as=65000&local-domain=673720360&local-router=0000.0000.0039&remote-as=65000&remote-domain=673720360&remote-router=0000.0000.0040&ipv4-iface=203.20.160.39&ipv4-neigh=203.20.160.40</link-id>
 <source>
 <source-node>bgpls://IsisLevel2:1/type=node&as=65000&domain=673720360&router=0000.0000.0039</source-node>
 <source-tp>bgpls://IsisLevel2:1/type=tp&ipv4=203.20.160.39</source-tp>
 </source>
 <igp-link-attributes xmlns="urn:TBD:params:xml:ns:yang:nt:l3-unicast-igp-topology">
 <metric>10</metric>
 <isis-link-attributes xmlns="urn:TBD:params:xml:ns:yang:network:isis-topology">
 <ted>
 <color>0</color>
 <max-link-bandwidth>1250000.0</max-link-bandwidth>
 <max-resv-link-bandwidth>12500.0</max-resv-link-bandwidth>
 <te-default-metric>0</te-default-metric>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>0</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>1</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>2</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>3</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>4</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>5</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>6</priority>
 </unreserved-bandwidth>
 <unreserved-bandwidth>
 <bandwidth>12500.0</bandwidth>
 <priority>7</priority>
 </unreserved-bandwidth>
 </ted>
 </isis-link-attributes>
 </igp-link-attributes>
 </link>
</topology>

Test Tools

BGP test tools serves to test basic BGP functionality, scalability and performance.

Contents

	BGP Test Tool
	Usage

	BGP Application Peer Benchmark
	Configuration

	Inject routes

	Remove routes

BGP Test Tool

The BGP Test Tool is a stand-alone Java application purposed to simulate remote BGP peers, that are capable to advertise sample routes.
This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/bgpcep/bgp-testtool

Usage

The application can be run from command line:

java -jar bgp-testtool-*-executable.jar

with optional input parameters:

-i <BOOLEAN>, --active <BOOLEAN>
 Active initialisation of the connection, by default false.

-ho <N>, --holdtimer <N>
 In seconds, value of the desired holdtimer, by default 90.

-sc <N>, --speakersCount <N>
 Number of simulated BGP speakers, when creating each speaker, uses incremented local-address for binding, by default 0.

-ra <IP_ADDRESS:PORT,...>, --remoteAddress <IP_ADDRESS:PORT,...>
 A list of IP addresses of remote BGP peers, that the tool can accept or initiate connect to that address (based on the mode), by default 192.0.2.2:1790.

-la <IP_ADDRESS:PORT>, --localAddress <IP_ADDRESS:PORT>
 IP address of BGP speakers which the tools simulates, by default 192.0.2.2:0.

-pr <N>, --prefixes <N>
 Number of prefixes to be advertised by each simulated speaker

-mp <BOOLEAN>, --multiPathSupport <BOOLEAN>
 Active ADD-PATH support, by default false.

-as <N>, --as <N>
 Local AS Number, by default 64496.

-ec <EXTENDED_COMMUNITIES>, --extended_communities <EXTENDED_COMMUNITIES>
 Extended communities to be send. Format: x,x,x where x is each extended community from bgp-types.yang, by default empty.

-ll <LOG_LEVEL>, --log_level <LOG_LEVEL>
 Log level for console output, by default INFO.

BGP Application Peer Benchmark

It is a simple OpenDaylight application which is capable to inject and remove specific amount of IPv4 routes.
This application is part of the OpenDaylight Karaf distribution.

Configuration

As a first step install BGP, RESTCONF and NETCONF connector plugin, then configure Application Peer.
Install odl-bgpcep-bgp-benchmark feature and reconfigure BGP Application Peer Benchmark application as per following:

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-bgp-benchmark-cfg:app-peer-benchmark/bgp-app-peer-benchmark

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:odl-bgp-benchmark-cfg">x:app-peer-benchmark</type>
 <name>bgp-app-peer-benchmark</name>
 <binding-data-broker xmlns="urn:opendaylight:params:xml:ns:yang:controller:odl-bgp-benchmark-cfg">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-async-data-broker</type>
 <name>pingpong-binding-data-broker</name>
 </binding-data-broker>
 <rpc-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:odl-bgp-benchmark-cfg">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-rpc-registry</type>
 <name>binding-rpc-broker</name>
 </rpc-registry>
 <app-rib-id xmlns="urn:opendaylight:params:xml:ns:yang:controller:odl-bgp-benchmark-cfg">10.25.1.9</app-rib-id>
</module>

@line 12: The Application Peer identifier.

Warning

This configuration will be moved to configuration datastore in Carbon release.

Inject routes

Routes injection can be invoked via RPC:

URL: /restconf/operations/odl-bgp-app-peer-benchmark:add-prefix

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5
6

	<input xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <prefix>1.1.1.1/32</prefix>
 <count>100000</count>
 <batchsize>2000</batchsize>
 <nexthop>192.0.2.2</nexthop>
</input>

@line 2: A initial IPv4 prefix carried in route. Value is incremented for following routes.

@line 3: An amount of routes to be added to Application Peer’s programmable RIB.

@line 4: A size of the transaction batch.

@line 5: A NEXT_HOP attribute value used in all injected routes.

Response Body:

	1
2
3
4
5
6
7

	<output xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <result>
 <duration>4301</duration>
 <rate>25000</rate>
 <count>100000</count>
 </result>
</output>

@line 3: Request duration in milliseconds.

@line 4: Writes per second rate.

@line 5: An amount of routes added to Application Peer’s programmable RIB.

Remove routes

Routes deletion can be invoked via RPC:

URL: /restconf/operations/odl-bgp-app-peer-benchmark:delete-prefix

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<input xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <prefix>1.1.1.1/32</prefix>
 <count>100000</count>
 <batchsize>2000</batchsize>
</input>

@line 2: A initial IPv4 prefix carried in route to be removed. Value is incremented for following routes.

@line 3: An amount of routes to be removed from Application Peer’s programmable RIB.

@line 4: A size of the transaction batch.

Response Body:

<output xmlns="urn:opendaylight:params:xml:ns:yang:odl-bgp-app-peer-benchmark">
 <result>
 <duration>1837</duration>
 <rate>54500</rate>
 <count>100000</count>
 </result>
</output>

Troubleshooting

This section offers advices in a case OpenDaylight BGP plugin is not working as expected.

Contents

	BGP is not working...

	Bug reporting

BGP is not working...

	First of all, ensure that all required features are installed, local and remote BGP configuration is correct.

	Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

	Try to minimise effect of other OpenDaylight features, when searching for a reason of the problem.

	Try to set DEBUG severity level for BGP logger via Karaf console commands, in order to collect more information:

log:set DEBUG org.opendaylight.protocol.bgp

log:set DEBUG org.opendaylight.bgpcep.bgp

Bug reporting

Before you report a bug, check BGPCEP Bugzilla [https://bugs.opendaylight.org/buglist.cgi?list_id=65849&product=bgpcep&resolution=—] to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

	State OpenDaylight version

	Describe your use-case and provide as much details related to BGP as possible

	Steps to reproduce

	Attach Karaf log files, optionally packet captures, REST input/output

BGP Monitoring Protocol User Guide

This guide contains information on how to use the OpenDaylight BGP Monitoring Protocol (BMP) plugin.
It covers BMP basic concepts, supported capabilities, configuration and operations.

Contents

	Overview

	Running BMP

	BMP Monitoring Station

	Test tools

	Troubleshooting

Overview

This section provides high-level overview of the BMP plugin, OpenDaylight implementation and BMP usage for SDN.

Contents

	BGP Monitoring Protocol

	BMP in SDN

	OpenDaylight BMP plugin

	List of supported capabilities

BGP Monitoring Protocol

The BGP Monitoring Protocol (BMP) serves to monitor BGP sessions.
The BMP can be used to obtain route view instead of screen scraping.
The BMP provides access to unprocessed routing information (Adj-RIB-In) and processed routes (applied inbound policy) of monitored router’s peer.
In addition, monitored router can provide periodic dump of statistics.

The BMP runs over TCP.
Both monitored router and monitoring station can be configured as active or passive party of the connection.
The passive party listens at particular port.
The router can be monitored by multiple monitoring stations.
BMP messages are sent by monitored router only, monitoring station supposed to collect and process data received over BMP.

[image: BMP]
The BMP overview - Monitoring Station, Monitored Router and Monitored Peers.

BMP in SDN

The main concept of BMP is to monitor BGP sessions - monitoring station is aware of monitored peer’s status, collects statistics and analyzes them in order to provide valuable information for network operators.

Moreover, BMP provides provides peer RIBs visibility, without need to establish BGP sessions.
Unprocessed routes may serve as a source of information for software-driven routing optimization.
In this case, SDN controller, a BMP monitoring station, collects routing information from monitored routers.
The routes are used in subsequent optimization procedures.

OpenDaylight BMP plugin

The OpenDaylight BMP plugin provides monitoring station implementation.
The plugin can establish BMP session with one or more monitored routers in order to collect routing and statistical information.

	Runtime configurable monitoring station

	Read-only routes and statistics view

	Supports various routing information types

[image: BMP plugin]
OpenDaylight BMP plugin overview.

Important

The BMP plugin is not storing historical data, it provides current snapshot only.

List of supported capabilities

The BMP plugin implementation is based on Internet standards:

	RFC7854 [https://tools.ietf.org/html/rfc7854] - BGP Monitoring Protocol (BMP)

Note

The BMP plugin is capable to process various types of routing information (IP Unicast, EVPN, L3VPN, Link-State,...).
Please, see complete list in BGP user guide.

Running BMP

This section explains how to install BMP plugin.

	Install BMP feature - odl-bgpcep-bmp.
Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-bmp

	The BMP plugin contains a default configuration, which is applied after the feature starts up.
One instance of BMP monitoring station is created (named example-bmp-monitor), and its presence can be verified via REST:

URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor

Method: GET

Response Body:

<monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
 <monitor-id>example-bmp-monitor</monitor-id>
</monitor>

BMP Monitoring Station

The following section shows how to configure BMP basics, how to verify functionality and presents essential components of the plugin. Next samples demonstrate the plugin’s runtime configuration capability.

The monitoring station is responsible for received BMP PDUs processing and storage.
The default BMP server is listening at port 12345.

Contents

	Configuration
	Monitoring station configuration

	Active mode configuration

	MD5 authentication configuration

	Collector DB Tree

	Operations

Configuration

This section shows the way to configure the BMP monitoring station via REST API.

Warning

The BMP monitoring station configuration is going to be changed in Carbon.
This user-guide will be updated accordingly.

Monitoring station configuration

In order to change default’s BMP monitoring station configuration, use following request.
It is required to install odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <name>example-bmp-monitor</name>
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">x:bmp-monitor-impl</type>
 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">12355</binding-port>
 <binding-address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">0.0.0.0</binding-address>
 <bmp-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type>bmp-dispatcher</type>
 <name>global-bmp-dispatcher</name>
 </bmp-dispatcher>
 <codec-tree-factory xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-codec-tree-factory</type>
 <name>runtime-mapping-singleton</name>
 </codec-tree-factory>
 <extensions xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:spi">x:extensions</type>
 <name>global-rib-extensions</name>
 </extensions>
 <dom-data-provider xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">x:dom-async-data-broker</type>
 <name>pingpong-broker</name>
 </dom-data-provider>
 </module>

@line 4: binding-port - The BMP server listening port.

@line 5: binding-address - The BMP server biding address.

Note

User may create multiple BMP monitoring station instances at runtime.

Active mode configuration

In order to enable active connection, use following request.
It is required to install odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <name>example-bmp-monitor</name>
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">x:bmp-monitor-impl</type>
 <bmp-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type>bmp-dispatcher</type>
 <name>global-bmp-dispatcher</name>
 </bmp-dispatcher>
 <codec-tree-factory xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-codec-tree-factory</type>
 <name>runtime-mapping-singleton</name>
 </codec-tree-factory>
 <extensions xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:spi">x:extensions</type>
 <name>global-rib-extensions</name>
 </extensions>
 <binding-address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">0.0.0.0</binding-address>
 <dom-data-provider xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">x:dom-async-data-broker</type>
 <name>pingpong-broker</name>
 </dom-data-provider>
 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">12345</binding-port>
 <monitored-router xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">10.10.10.10</address>
 <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">1234</port>
 <active xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">true</active>
 </monitored-router>
 </module>

@line 23: address - The monitored router’s IP address.

@line 24: port - The monitored router’s port.

@line 25: active - Active mode set.

Note

User may configure active session establishment for multiple monitored routers.

MD5 authentication configuration

In order to enable active connection, use following request.
It is required to install odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/config:module/odl-bmp-impl-cfg:bmp-monitor-impl/example-bmp-monitor

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <name>example-bmp-monitor</name>
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">x:bmp-monitor-impl</type>
 <bmp-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type>bmp-dispatcher</type>
 <name>global-bmp-dispatcher</name>
 </bmp-dispatcher>
 <codec-tree-factory xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-codec-tree-factory</type>
 <name>runtime-mapping-singleton</name>
 </codec-tree-factory>
 <extensions xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:spi">x:extensions</type>
 <name>global-rib-extensions</name>
 </extensions>
 <binding-address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">0.0.0.0</binding-address>
 <dom-data-provider xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">x:dom-async-data-broker</type>
 <name>pingpong-broker</name>
 </dom-data-provider>
 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">12345</binding-port>
 <monitored-router xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">
 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">11.11.11.11</address>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">topsecret</password>
 </monitored-router>
 </module>

@line 23: address - The monitored router’s IP address.

@line 24: password - The TCP MD5 signature.

Collector DB Tree

module: bmp-monitor
 +--rw bmp-monitor
 +--ro monitor* [monitor-id]
 +--ro monitor-id monitor-id
 +--ro router* [router-id]
 +--ro name? string
 +--ro description? string
 +--ro info? string
 +--ro router-id router-id
 +--ro status? status
 +--ro peer* [peer-id]
 +--ro peer-id rib:peer-id
 +--ro type peer-type
 x--ro distinguisher
 | +--ro distinguisher-type? distinguisher-type
 | +--ro distinguisher? string
 +--ro peer-distinguisher? union
 +--ro address inet:ip-address
 +--ro as inet:as-number
 +--ro bgp-id inet:ipv4-address
 +--ro router-distinguisher? string
 +--ro peer-session
 | +--ro local-address inet:ip-address
 | +--ro local-port inet:port-number
 | +--ro remote-port inet:port-number
 | +--ro sent-open
 | | +--ro version? protocol-version
 | | +--ro my-as-number? uint16
 | | +--ro hold-timer uint16
 | | +--ro bgp-identifier inet:ipv4-address
 | | +--ro bgp-parameters*
 | | +--ro optional-capabilities*
 | | +--ro c-parameters
 | | +--ro as4-bytes-capability
 | | | +--ro as-number? inet:as-number
 | | +--ro bgp-extended-message-capability!
 | | +--ro multiprotocol-capability
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | +--ro graceful-restart-capability
 | | | +--ro restart-flags bits
 | | | +--ro restart-time uint16
 | | | +--ro tables* [afi safi]
 | | | +--ro afi identityref
 | | | +--ro safi identityref
 | | | +--ro afi-flags bits
 | | +--ro add-path-capability
 | | | +--ro address-families*
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | | +--ro send-receive? send-receive
 | | +--ro route-refresh-capability!
 | +--ro received-open
 | | +--ro version? protocol-version
 | | +--ro my-as-number? uint16
 | | +--ro hold-timer uint16
 | | +--ro bgp-identifier inet:ipv4-address
 | | +--ro bgp-parameters*
 | | +--ro optional-capabilities*
 | | +--ro c-parameters
 | | +--ro as4-bytes-capability
 | | | +--ro as-number? inet:as-number
 | | +--ro bgp-extended-message-capability!
 | | +--ro multiprotocol-capability
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | +--ro graceful-restart-capability
 | | | +--ro restart-flags bits
 | | | +--ro restart-time uint16
 | | | +--ro tables* [afi safi]
 | | | +--ro afi identityref
 | | | +--ro safi identityref
 | | | +--ro afi-flags bits
 | | +--ro add-path-capability
 | | | +--ro address-families*
 | | | +--ro afi? identityref
 | | | +--ro safi? identityref
 | | | +--ro send-receive? send-receive
 | | +--ro route-refresh-capability!
 | +--ro information
 | | +--ro string-information*
 | | +--ro string-tlv
 | | +--ro string-info? string
 | +--ro status? status
 | +--ro timestamp-sec? yang:timestamp
 | +--ro timestamp-micro? yang:timestamp
 +--ro stats
 | +--ro rejected-prefixes? yang:counter32
 | +--ro duplicate-prefix-advertisements? yang:counter32
 | +--ro duplicate-withdraws? yang:counter32
 | +--ro invalidated-cluster-list-loop? yang:counter32
 | +--ro invalidated-as-path-loop? yang:counter32
 | +--ro invalidated-originator-id? yang:counter32
 | +--ro invalidated-as-confed-loop? yang:counter32
 | +--ro adj-ribs-in-routes? yang:gauge64
 | +--ro loc-rib-routes? yang:gauge64
 | +--ro per-afi-safi-adj-rib-in-routes
 | | +--ro afi-safi* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro count? yang:gauge64
 | +--ro per-afi-safi-loc-rib-routes
 | | +--ro afi-safi* [afi safi]
 | | +--ro afi identityref
 | | +--ro safi identityref
 | | +--ro count? yang:gauge64
 | +--ro updates-treated-as-withdraw? yang:counter32
 | +--ro prefixes-treated-as-withdraw? yang:counter32
 | +--ro duplicate-updates? yang:counter32
 | +--ro timestamp-sec? yang:timestamp
 | +--ro timestamp-micro? yang:timestamp
 +--ro pre-policy-rib
 | +--ro tables* [afi safi]
 | +--ro afi identityref
 | +--ro safi identityref
 | +--ro attributes
 | | +--ro uptodate? boolean
 | +--ro (routes)?
 +--ro post-policy-rib
 | +--ro tables* [afi safi]
 | +--ro afi identityref
 | +--ro safi identityref
 | +--ro attributes
 | | +--ro uptodate? boolean
 | +--ro (routes)?
 +--ro mirrors
 +--ro information? bmp-msg:mirror-information-code
 +--ro timestamp-sec? yang:timestamp
 +--ro timestamp-micro? yang:timestamp

Operations

The BMP plugin offers view of collected routes and statistical information from monitored peers.
To get top-level view of monitoring station:

URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	<bmp-monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
 <monitor>
 <monitor-id>example-bmp-monitor</monitor-id>
 <router>
 <router-id>10.10.10.10</router-id>
 <name>name</name>
 <description>monitored-router</description>
 <info>monitored router;</info>
 <status>up</status>
 <peer>
 <peer-id>20.20.20.20</peer-id>
 <address>20.20.20.20</address>
 <bgp-id>20.20.20.20</bgp-id>
 <as>65000</as>
 <type>global</type>
 <peer-session>
 <remote-port>1790</remote-port>
 <timestamp-sec>0</timestamp-sec>
 <status>up</status>
 <local-address>10.10.10.10</local-address>
 <local-port>2200</local-port>
 <received-open>
 <hold-timer>180</hold-timer>
 <my-as-number>65000</my-as-number>
 <bgp-identifier>20.20.20.20</bgp-identifier>
 </received-open>
 <sent-open>
 <hold-timer>180</hold-timer>
 <my-as-number>65000</my-as-number>
 <bgp-identifier>65000</bgp-identifier>
 </sent-open>
 </peer-session>
 <pre-policy-rib>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <prefix>10.10.10.0/24</prefix>
 <attributes>
 ...
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </pre-policy-rib>
 <post-policy-rib>
 ...
 </post-policy-rib>
 <stats>
 <timestamp-sec>0</timestamp-sec>
 <invalidated-cluster-list-loop>0</invalidated-cluster-list-loop>
 <duplicate-prefix-advertisements>0</duplicate-prefix-advertisements>
 <loc-rib-routes>100</loc-rib-routes>
 <duplicate-withdraws>0</duplicate-withdraws>
 <invalidated-as-confed-loop>0</invalidated-as-confed-loop>
 <adj-ribs-in-routes>10</adj-ribs-in-routes>
 <invalidated-as-path-loop>0</invalidated-as-path-loop>
 <invalidated-originator-id>0</invalidated-originator-id>
 <rejected-prefixes>8</rejected-prefixes>
 </stats>
 </peer>
 </router>
 </monitor>
</bmp-monitor>

@line 3: monitor-id - The BMP monitoring station instance identifier.

@line 5: router-id - The monitored router IP address, serves as an identifier.

@line 11: peer-id - The monitored peer’s BGP identifier, serves a an identifier.

@line 12: address - The IP address of the peer, associated with the TCP session.

@line 13: bgp-id - The BGP Identifier of the peer.

@line 14: as - The Autonomous System number of the peer.

@line 15: type - Identifies type of the peer - Global Instance, RD Instance or Local Instance

@line 17: remote-port - The peer’s port number associated with TCP session.

@line 20: local-address - The IP address of the monitored router associated with the peering TCP session.

@line 21: local-port - The port number of the monitored router associated with the peering TCP session.

@line 22: received-open - The full OPEN message received by monitored router from the peer.

@line 27: sent-open - The full OPEN message send by monitored router to the peer.

@line 33: pre-policy-rib - The Adj-RIB-In that contains unprocessed routing information.

@line 50: post-policy-rib - The Post-Policy Ad-RIB-In that contains routes filtered by inbound policy.

@line 53: stats - Contains various statistics, periodically updated by the router.

	
	To view collected information from particular monitored router:

	URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor/router/10.10.10.10

	
	To view collected information from particular monitored peer:

	URL: /restconf/operational/bmp-monitor:bmp-monitor/monitor/example-bmp-monitor/router/10.10.10.10/peer/20.20.20.20

Test tools

BMP test tool serves to test basic BMP functionality, scalability and performance.

BMP mock

The BMP mock is a stand-alone Java application purposed to simulate a BMP-enabled router(s) and peers.
The simulator is capable to report dummy routes and statistics.
This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/bgpcep/bgp-bmp-mock

Usage

The application can be run from command line:

java -jar bgp-bmp-mock-*-executable.jar

with optional input parameters:

--local_address <address> (optional, default 127.0.0.1)
 The IPv4 address where BMP mock is bind to.

--remote_address <address:port> (optional, default 127.0.0.1:12345)
 The remote IPv4 Address and port number of BMP monitoring station.

--passive (optional, not present by default)
 This flags enables passive mode for simulated routers.

--routers_count <0..N> (optional, default 1)
 An amount of BMP routers to be connected to the BMP monitoring station.

--peers_count <0..N> (optional, default 0)
 An amount of peers reported by each BMP router.

--pre_policy_routes <0..N> (optional, default 0)
 An amount of "pre-policy" simple IPv4 routes reported by each peer.

--post_policy_routes <0..N> (optional, default 0)
 An amount of "post-policy" simple IPv4 routes reported by each peer.

--log_level <FATAL|ERROR|INFO|DEBUG|TRACE> (optional, default INFO)
 Set logging level for BMP mock.

Troubleshooting

This section offers advices in a case OpenDaylight BMP plugin is not working as expected.

Contents

	BMP is not working...

	Bug reporting

BMP is not working...

	First of all, ensure that all required features are installed, local monitoring station and monitored router/peers configuration is correct.

To list all installed features in OpenDaylight use the following command at the Karaf console:

feature:list -i

	Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

	Try to minimize effect of other OpenDaylight features, when searching for a reason of the problem.

	Try to set DEBUG severity level for BMP logger via Karaf console commands, in order to collect more information:

log:set DEBUG org.opendaylight.protocol.bmp

Bug reporting

Before you report a bug, check BGPCEP Bugzilla [https://bugs.opendaylight.org/buglist.cgi?list_id=65849&product=bgpcep&resolution=—] to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

	State OpenDaylight version

	Describe your use-case and provide as much details related to BMP as possible

	Steps to reproduce

	Attach Karaf log files, optionally packet captures, REST input/output

CAPWAP User Guide

This document describes how to use the Control And Provisioning of
Wireless Access Points (CAPWAP) feature in OpenDaylight. This document
contains configuration, administration, and management sections for the
feature.

Overview

CAPWAP feature fills the gap OpenDaylight Controller has with respect to
managing CAPWAP compliant wireless termination point (WTP) network
devices present in enterprise networks. Intelligent applications (e.g.
centralized firmware management, radio planning) can be developed by
tapping into the WTP network device’s operational states via REST APIs.

CAPWAP Architecture

The CAPWAP feature is implemented as an MD-SAL based provider module,
which helps discover WTP devices and update their states in MD-SAL
operational datastore.

Scope of CAPWAP Project

In this release, CAPWAP project aims to only detect the WTPs and
store their basic attributes in the operational data store, which is
accessible via REST and JAVA APIs.

Installing CAPWAP

To install CAPWAP, download OpenDaylight and use the Karaf console to
install the following feature:

odl-capwap-ac-rest

Configuring CAPWAP

As of this release, there are no configuration requirements.

Administering or Managing CAPWAP

After installing the odl-capwap-ac-rest feature from the Karaf console,
users can administer and manage CAPWAP from the APIDOCS explorer.

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the capwap-impl panel. From there, users can execute
various API calls.

Tutorials

Viewing Discovered WTPs

Overview

This tutorial can be used as a walk through to understand the steps for
starting the CAPWAP feature, detecting CAPWAP WTPs, accessing the
operational states of WTPs.

Prerequisites

It is assumed that user has access to at least one hardware/software
based CAPWAP compliant WTP. These devices should be configured with
OpenDaylight controller IP address as a CAPWAP Access Controller (AC)
address. It is also assumed that WTPs and OpenDaylight controller share
the same ethernet broadcast domain.

Instructions

	Run the OpenDaylight distribution and install odl-capwap-ac-rest from
the Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Expand capwap-impl

	Click /operational/capwap-impl:capwap-ac-root/

	Click “Try it out”

	The above step should display list of WTPs discovered using ODL
CAPWAP feature.

Cardinal: OpenDaylight Monitoring as a Service

This section describes how to use the Cardinal feature in OpenDaylight
and contains configuration, administration, and management sections for
the feature.

Overview

Cardinal (OpenDaylight Monitoring as a Service) enables OpenDaylight and
the underlying software defined network to be remotely monitored by
deployed Network Management Systems (NMS) or Analytics suite. In the
Boron release, Cardinal will add:

	OpenDaylight MIB.

	Enable ODL diagnostics/monitoring to be exposed across SNMP (v2c, v3)
and REST north-bound.

	Extend ODL System health, Karaf parameter and feature info, ODL
plugin scalability and network parameters.

	Support autonomous notifications (SNMP Traps).

Cardinal Architecture

The Cardinal architecture can be found at the below link:

https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

Configuring Cardinal feature

To start Cardinal feature, start karaf and type the following command:

feature:install odl-cardinal

After this Cardinal should be up and working with SNMP daemon running on
port 161.

Tutorials

Below are tutorials for Cardinal.

Using Cardinal

These tutorials are intended for any user who wants to monitor three
basic component in OpenDaylight

	System Info in which controller is running.

	Karaf Info

	Project Specific Information.

Prerequisites

There is no as such specific prerequisite. Cardinal can work without
installing any third party software. However If one wants to see the
output of a snmpget/snmpwalk on the CLI prompt, than one can install the
SNMP using the below link:

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-an-snmp-daemon-and-client-on-ubuntu-14-04

Using the above command line utility one can get the same result as the
cardinal APIs will give for the snmpget/snmpwalk request.

Target Environment

This tutorial is developed considering the following environment:

controller-Linux(Ubuntu 14.02).

Instructions

Install Cardinal feature

Open karaf and install the cardinal feature using the following command:

feature:install odl-cardinal

Please verify that SNMP daemon is up on port 161 using the following
command on the terminal window of Linux machine:

netstat -anp | grep "161"

If the grep on the ``snmpd`` port is successful than SNMP daemon is
up and working.

APIs Reference

Please see Developer guide for usage of Cardinal APIs.

CLI commands to do snmpget/walk

One can do snmpget/walk on the ODL-CARDINAL-MIB. Open the linux terminal
and type the below command:

snmpget -v2c -c public localhost Oid_Of_the_mib_variable

Or

snmpget -v2c -c public localhost ODL-CARDINAL-MIB::mib_variable_name

For snmpwalk use the below command:

snmpwalk -v2c -c public localhost SNMPv2-SMI::experimental

Centinel User Guide

The Centinel project aims at providing a distributed, reliable framework
for efficiently collecting, aggregating and sinking streaming data
across Persistence DB and stream analyzers (example: Graylog, Elastic
search, Spark, Hive etc.). This document contains configuration,
administration, management, using sections for the feature.

Overview

In this release of Centinel, this framework enables SDN
applications/services to receive events from multiple streaming sources
(e.g., Syslog, Thrift, Avro, AMQP, Log4j, HTTP/REST) and execute actions
like network configuration/batch processing/real-time analytics. It also
provides a Log Service to assist operators running SDN ecosystem by
installing the feature odl-centinel-all.

With the configurations development of “Log Service” and plug-in for log
analyzer (e.g., Graylog) will take place. Log service will do processing
of real time events coming from log analyzer. Additionally, stream
collector (Flume and Sqoop based) that will collect logs from
OpenDaylight and sink it to persistence service (integrated with TSDR).
Also includes RESTCONF interface to inject events to north bound
applications for real-time analytic/network configuration. Centinel User
Interface (web interface) will be available to operators to enable
rules/alerts/dashboard.

Centinel core features

The core features of the Centinel framework are:

	Stream collector

	Collecting, aggregating and sinking streaming data

	Log Service

	Listen log stream events coming from log analyzer

	Log Service

	Enables user to configure rules (e.g., alerts, diagnostic, health,
dashboard)

	Log Service

	Performs event processing/analytics

	User Interface

	Enable set-rule, search, visualize, alert, diagnostic, dashboard
etc.

	Adaptor

	Log analyzer plug-in to Graylog and a generic data-model to extend
to other stream analyzers (e.g., Logstash)

	REST Service

	Northbound APIs for Log Service and Steam collector framework

	Leverages

	TSDR persistence service, data query, purging and elastic search

Centinel Architecture

The following wiki pages capture the Centinel Model/Architecture

	https://wiki.opendaylight.org/view/Centinel:Main

	https://wiki.opendaylight.org/view/Project_Proposals:Centinel

	https://wiki.opendaylight.org/images/0/09/Centinel-08132015.pdf

Administering or Managing Centinel with default configuration

Prerequisites

	Check whether Graylog is up and running and plugins deployed as
mentioned in installation
guide [https://opendaylight.readthedocs.io/en/stable-boron/getting-started-guide/project-specific-guides/centinel.html].

	Check whether HBase is up and respective tables and column families
as mentioned in installation
guide [https://opendaylight.readthedocs.io/en/stable-boron/getting-started-guide/project-specific-guides/centinel.html]
are created.

	Check if apache flume is up and running.

	Check if apache drill is up and running.

Running Centinel

The following steps should be followed to bring up the controller:

	Download the Centinel OpenDaylight distribution release from below
link: http://www.opendaylight.org/software/downloads

	Run Karaf of the distribution from bin folder

./karaf

	Install the centinel features using below command:

feature:install odl-centinel-all

	Give some time for the centinel to come up.

User Actions

	Log In: User logs into the Centinel with required credentials
using following URL: http://localhost:8181/index.html

	Create Rule:
	Select Centinel sub-tree present in left side and go to Rule tab.

	Create Rule with title and description.

	Configure flow rule on the stream to filter the logs accordingly
for, e.g., bundle_name=org.opendaylight.openflow-plugin

	Set Alarm Condition: Configure alarm condition, e.g.,
message-count-rule such that if 10 messages comes on a stream (e.g.,
The OpenFlow Plugin) in last 1 minute with an alert is generated.

	Subscription: User can subscribe to the rule and alarm condition
by entering the http details or email-id in subscription textfield by
clicking on the subscribe button.

	Create Dashboard: Configure dashboard for stream and alert
widgets. Alarm and Stream count will be updated in corresponding
widget in Dashboard.

	Event Tab: Intercepted Logs, Alarms and Raw Logs in Event Tab
will be displayed by selecting the appropriate radio button. User can
also filter the searched data using SQL query in the search box.

DIDM User Guide

Overview

The Device Identification and Driver Management (DIDM) project addresses
the need to provide device-specific functionality. Device-specific
functionality is code that performs a feature, and the code is
knowledgeable of the capability and limitations of the device. For
example, configuring VLANs and adjusting FlowMods are features, and
there may be different implementations for different device types.
Device-specific functionality is implemented as Device Drivers. Device
Drivers need to be associated with the devices they can be used with. To
determine this association requires the ability to identify the device
type.

DIDM Architecture

The DIDM project creates the infrastructure to support the following
functions:

	Discovery - Determination that a device exists in the controller
management domain and connectivity to the device can be established.
For devices that support the OpenFlow protocol, the existing
discovery mechanism in OpenDaylight suffices. Devices that do not
support OpenFlow will be discovered through manual means such as the
operator entering device information via GUI or REST API.

	Identification – Determination of the device type.

	Driver Registration – Registration of Device Drivers as routed
RPCs.

	Synchronization – Collection of device information, device
configuration, and link (connection) information.

	Data Models for Common Features – Data models will be defined to
perform common features such as VLAN configuration. For example,
applications can configure a VLAN by writing the VLAN data to the
data store as specified by the common data model.

	RPCs for Common Features – Configuring VLANs and adjusting
FlowMods are example of features. RPCs will be defined that specify
the APIs for these features. Drivers implement features for specific
devices and support the APIs defined by the RPCs. There may be
different Driver implementations for different device types.

Atrium Support

The Atrium implements an open source router that speaks BGP to other
routers, and forwards packets received on one port/vlan to another,
based on the next-hop learnt via BGP peering. A BGP peering application
for the Open Daylight Controller and a new model for flow objective
drivers for switches integrated with the Open Daylight Atrium
distribution was developed for this project. The implementation has the
same level of feature partly that was introduced by the Atrium 2015/A
distribution on the ONOS controller. An overview of the architecture is
available at here
(https://github.com/onfsdn/atrium-docs/wiki/ODL-Based-Atrium-Router-16A).

Atrium stack is implemented in OpenDaylight using Atrium and DIDM
project. Atrium project provides the application implementation for BGP
peering and the DIDM project provides implementation for FlowObjectives.
FlowObjective provides an abstraction layer and present the pipeline
agnostic api to application to consume.

FlowObjective

Flow Objectives describe an SDN application’s objective (or intention)
behind a flow it is sending to a device.

Application communicates the flow installation requirement using Flow
Objectives. DIDM drivers translates the Flow Objectives to device
specific flows as per the device pipeline.

There are three FlowObjectives (already implemented in ONOS controller)
:

	Filtering Objective

	Next Objective

	Forwarding Objective

Installing DIDM

To install DIDM, download OpenDaylight and use the Karaf console to
install the following features:

	odl-openflowplugin-all

	odl-didm-all

odl-didm-all installs the following required features:

	odl-didm-ovs-all

	odl-didm-ovs-impl

	odl-didm-util

	odl-didm-identification

	odl-didm-drivers

	odl-didm-hp-all

Configuring DIDM

This section shows an example configuration steps for installing a
driver (HP 3800 OpenFlow switch driver).

Install DIDM features:

feature:install odl-didm-identification-api
feature:install odl-didm-drivers

In order to identify the device, device driver needs to be installed
first. Identification Manager will be notified when a new device
connects to the controller.

Install HP driver

feature:install odl-didm-hp-all installs the following features

	odl-didm-util

	odl-didm-identification

	odl-didm-drivers

	odl-didm-hp-all

	odl-didm-hp-impl

Now at this point, the driver has written all of the identification
information in to the MD-SAL datastore. The identification manager
should have that information so that it can try to identify the HP 3800
device when it connects to the controller.

Configure the switch and connect it to the controller from the switch
CLI.

Run REST GET command to verify the device details:

http://<CONTROLLER-IP:8181>/restconf/operational/opendaylight-inventory:nodes

Run REST adjust-flow command to adjust flows and push to the device

Flow mod driver for HP 3800 device

This driver adjusts the flows and push the same to the device. This API
takes the flow to be adjusted as input and displays the adjusted flow as
output in the REST output container. Here is the REST API to adjust and
push flows to HP 3800 device:

http://<CONTROLLER-IP:8181>/restconf/operations/openflow-feature:adjust-flow

FlowObjectives API

FlowObjective presents the OpenFlow pipeline agnostic API to Application
to consume. Application communicate their intent behind installation of
flow to Drivers using the FlowObjective. Driver translates the
FlowObjective in device specific flows and uses the OpenFlowPlugin to
install the flows to the device.

Filter Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:filter

Next Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:next

Forward Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:forward

Fabric As A Service

This document describes, from a user’s or application’s perspective, how
to use the Fabric As A Service (FaaS) feature in OpenDaylight. This
document contains configuration, administration, and management sections
for the FaaS feature.

Overview

Currently network applications and network administrators mostly rely on
lower level interfaces such as CLI, SNMP, OVSDB, NETCONF or OpenFlow to
directly configure individual device for network service provisioning.
In general, those interfaces are:

	Technology oriented, not application oriented.

	Vendor specific

	Individual device oriented, not network oriented.

	Not declarative, complicated and procedure oriented.

To address the gap between application needs and network interface,
there are a few application centric language proposed in OpenDaylight
including Group Based Policy (GBP), Network Intent Composition (NIC),
and NEtwork MOdeling (NEMO) trying to replace traditional southbound
interface to application. Those languages are top-down abstractions and
model application requirements in a more application-oriented way.

After being involved with GBP development for a while, we feel the top
down model still has a quite gap between the model and the underneath
network since the existing interfaces to network devices lack of
abstraction makes it very hard to map high level abstractions to the
physical network. Often the applications built with these low level
interfaces are coupled tightly with underneath technology and make the
application’s architecture monolithic, error prone and hard to maintain.

We think a bottom-up abstraction of network can simplify, reduce the
gap, and make it easy to implement the application centric model.
Moreover in some uses cases, an interface with network service oriented
are still desired for example from network monitoring/troubleshooting
perspective. That’s where the Fabric as a Service comes in.

FaaS Architecture

	Fabric and its controller (Fabric Controller)

	The Fabric object provides an abstraction of a homogeneous network
or portion of the network and also has a built in Fabric controller
which provides management plane and control plane for the fabric.
The fabric controller implements the services required in Fabric
Service and monitor and control the fabric operation.

	Fabric Manager

	Fabric Manager manages all the fabric objects. also Fabric manager
acts as a Unified Fabric Controller which provides inter-connect
fabric control and configuration Also Fabric Manager is FaaS API
service via Which FaaS user level logical network API (the top level
API as mentioned previously) exposed and implemented.

	FaaS render for GBP (Group Based Policy)

	FaaS render for GBP is an application of FaaS and provides the
rendering service between GBP model and logical network model
provided by Fabric Manager.

FaaS RESTCONF API

FaaS Provides two layers API:

	The top layer is a user level logical network API which defines
CRUD services operating on the following abstracted constructs:
	vcontainer - virtual container

	logical Port - a input/out/access point of a logical device

	logical link - connects ports

	logical switch - a layer 2 forwarding device

	logical router - a layer 3 forwarding device

	Subnet

	Rule/ACL

	End Points Registration

	End Points Attachment

Through these constructs, a logical network can be described without
users knowing too much details about the physical network device and
technology, i.e. users’ network services is decoupled from underneath
physical infrastructure. This decoupling brought the benefit that the
users defined service is not locked in with any specific technology or
physical devices. FaaS maps the logical network to the physical network
configuration automatically which in maximum eliminates the manual
provisioning work. As a result, human error is avoided and OPEX for
network operators is massively reduced. Moreover migration from one
technology to another is much easier to do and transparent to users’
services.

	The second layer defines an abstraction layer called Fabric API.
The idea is to abstract network into a topology formed by a
collections of fabric objects other than varies of physical
devices.Each Fabric object provides a collection of unified services.
The top level API enables application developers or users to write
applications to map high level model such as GBP, Intent etc… into a
logical network model, while the lower level gives the application
more control to individual fabric object level. More importantly the
Fabric API is more like SPI (Service Provider API) a fabric provider
or vendor can implement the SPI based on its own Fabric technique
such as TRILL, SPB etc …

This document is focused on the top layer API. For how to use second
level API operation, please refer to FaaS developer guide for more
details.

Note

that for any JSON data or link not described here, please go to
http://${ipaddress}:8181/apidoc/explorer/index.htm
for details or clarification.

Resource Management API

The FaaS Resource Management API provides services to allocate and
reclaim the network resources provided by Fabric object. Those APIs can
be accessed via RESTCONF rendered from YANG in MD-SAL.

	Name: Create virtual container
	virtual container is an collections of resources allocated to a
tenant, for example, a list of physical ports, bandwidth or L2
network or logical routers quantity. etc…

	http://${ipaddress}:8181/restconf/operations/vcontainer-topology:create-vcontainer

	Description: create a given virtual container.

	Name: assign or remove fabric resource to a virtual container
	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:rm-vfabric-to-ld-node

	Name: assign or remove appliance to a virtual container
	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:rm-appliance-to-ld-node

	Name: create or remove a child container
	http://${ipaddress}:8181/restconf/operations/vc-ld-node:create-child-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:rm-child-ld-node

	RESTCONF path for Virtual Container Datastore query (note:
vcontainer-id equals tenantID for now):
	http://${ipaddress}:8181/restconf/config/network-topology/topology/{vcontainer-id}/vc-topology-attributes/

	http://${ipaddress}:8181/restconf/config/network-topology/topology/{vcontainer-id}/node/{net-node-id}/vc-net-node-attributes

	http://${ipaddress}:8181/restconf/config/network-topology/topology/{vcontainer-id}/node/{ld-node-id}/vc-ld-node-attributes

Installing Fabric As A Service

To install FaaS, download OpenDaylight and use the Karaf console to
install the following feature: odl-restconf odl-faas-all
odl-groupbasedpolicy-faas (if needs to use FaaS to render GBP)

Configuring FaaS

This section gives details about the configuration settings for various
components in FaaS.

The FaaS configuration files for the Karaf distribution are located in
distribution/karaf/target/assembly/etc/faas

	akka.conf
	This file contains configuration related to clustering. Potential
configuration properties can be found on the akka website at
http://doc.akka.io

	fabric-factory.xml

	vxlan-fabric.xml

	vxlan-fabric-ovs-adapter.xml
	Those 3 files are used to initialize fabric module and located
under distribution/karaf/target/assembly/etc/opendaylight/karaf

Managing FaaS

Start opendaylight karaf distribution

	>bin/karaf Then From karaf console,Install features in the
following order:

	>feature:Install odl-restconf

	>feature:install odl-faas-all

	>feature install odl-groupbasedpolicy-faas

After installing features above, users can manage Fabric resource and
FaaS logical network channels from the APIDOCS explorer via RESTCONF

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the FaaS panel. From there, users can execute
various API calls to test their FaaS deployment such as create virtual
container, create fabric, delete fabric, create/edit logical network
elements.

Tutorials

Below are tutorials for 4 major use cases.

	to create and provision a fabric

	to allocate resource from the fabric to a tenant

	to define a logical network for a tenant. Currently there are two
ways to create a logical network
	Create a GBP (Group Based Policy) profile for a tenant and then
convert it to a logical network via GBP FaaS render Or

	Manually create a logical network via RESTCONF APIs.

	to attach or detach an Endpoint to a logical switch or logical router

Create a fabric

Overview

This tutorial walks users through the process of create a Fabric object

Prerequisites

A set of virtual switches (OVS) have to be registered or discovered by
ODL. Mininet is recommended to create a OVS network. After an OVS
network is created, set up the controller IP pointing to ODL IP address
in each of the OVS. From ODL, a physical topology can be viewed via ODL
DLUX UI or retrieved via RESTCONF API.

Instructions

	Run the OpenDaylight distribution and install odl-faas-all from the
Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Get the network topology after OVS switches are registered in the
controller

	Determine the nodes and links to be included in the to-be-defined
Fabric object.

	Execute create-fabric RESTCONF API with the corresponding JSON data
as required.

Create virtual container for a tenant

The purpose of this tutorial is to allocate network resources to a
tenant

Overview

This tutorial walks users through the process of create a Fabric

Prerequisites

1 or more fabric objects have been created.

Instructions

	Run the OpenDaylight karaf distribution and install odl-faas-all
feature from the Karaf console. >feature:install odl-rest-conf
odl-faas-all odl-mdsal-apidoc

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute create-vcontainer with the following restconf API with
corresponding JSON data >
http://${ipaddress}:8181/restconf/operations/vcontainer-topology:create-vcontainer

After a virtual container is created, fabric resource and appliance
resource can be assigned to the container object via the following
RESTConf API.

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-vfabric-to-ld-node

	http://${ipaddress}:8181/restconf/operations/vc-ld-node:add-appliance-to-ld-node

Create a logical network

Overview

This tutorial walks users through the process of create a logical
network for a tenant

Prerequisites

a virtual container has been created and assigned to the tenant

Instructions

Currently there are two ways to create a logical network.

	Option 1 is to use logical network RESTConf REST API and directly
create individual network elements and connect them into a network

	Option 2 is to define a GBP model and FaaS can map GBP model
automatically into a logical network. Notes that for option 2, if the
generated network requires some modification, we recommend modify the
GBP model rather than change the network directly due to there is no
synchronization from network back to GBP model in current release.

Manual Provisioning

To create a logical switch

	http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches
To create a logical router

	http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers
To attach a logical switch to a router
	Step 1: updating/adding a port A on the logical switch
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-switches:logical-switches

	Step 2: updating/adding a port B on the logical router
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-routers:logical-routers

	Step 3; create a link between the port A and B
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:logical-edges:logical-edges

	To add security policies (ACL or SFC) on a port
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-security-rules

	To query the logical network just created
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks

Provision via GBP FaaS Render

	Run the OpenDaylight distribution and install odl-faas-all and GBP
faas render feature from the Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute “create GBP model” via GBP REST API. The GBP model then can
be automatically mapped into a logical network.

Attach/detach an end point to a logical device

Overview

This tutorial walks users through the process of registering an End
Point to a logical device either logical switch or router. The purpose
of this API is to inform the FaaS where an endpoint physically attach.
The location information consists of the binding information between
physical port identifier and logical port information. The logical port
is indicated by the endpoint either Layer 2 attribute(MAC address) or
Layer 3 attribute (IP address) and logical network ID (VLAN ID). The
logical network ID is indirectly indicated the tenant ID since it is
mutual exclusive resource allocated to a tenant.

Prerequisites

The logical switch to which those end points are attached has to be
created beforehand. and the identifier of the logical switch is required
for the following RESTCONF calls.

Instructions

	Run the OpenDaylight distribution and install odl-faas-all from the
Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute “attach end point ” with the following RESTCONF API and
corresponding JSON data:
http://${ipaddress}:8181/restconf/configuration/faas-logical-networks:tenant-logical-networks:faas-endpoints-locations

Genius User Guide

Overview

The Genius project provides generic network interfaces, utilities and
services. Any OpenDaylight application can use these to achieve
interference-free co-existence with other applications using Genius.

Modules and Interfaces

In the first phase delivered in OpenDaylight Boron release, Genius
provides following modules —

	Modules providing a common view of network interfaces for different
services
	Interface (logical port) Manager
	Allows bindings/registration of multiple services to logical
ports/interfaces

	Ability to plug in different types of southbound protocol
renderers

	Overlay Tunnel Manager
	Creates and maintains overlay tunnels between configured
Tunnel Endpoints (TEPs)

	Modules providing commonly used functions as shared services to avoid
duplication of code and waste of resources
	Liveness Monitor
	Provides tunnel/nexthop liveness monitoring services

	ID Manager
	Generates persistent unique integer IDs

	MD-SAL Utils
	Provides common generic APIs for interaction with MD-SAL

Interface Manager Operations

Creating interfaces

The YANG file Data Model
odl-interface.yang [https://github.com/opendaylight/genius/blob/master/interfacemanager/interfacemanager-api/src/main/yang/odl-interface.yang]
contains the interface configuration data-model.

You can create interfaces at the MD-SAL Data Node Path
/config/if:interfaces/interface, with the following attributes —

Common attributes

	name — unique interface name, can be any unique string (e.g.,
UUID string)

	type — interface type, currently supported iana-if-type:l2vlan
and iana-if-type:tunnel

	enabled — admin status, possible values true or false

	parent-refs : used to specify references to parent interface/port
feeding to this interface

	datapath-node-identifier — identifier for a fixed/physical dataplane
node, can be physical switch identifier

	parent-interface — can be a physical switch port (in conjunction of
above), virtual switch port (e.g., neutron port) or another interface

	list node-identifier — identifier of the dependant underlying
configuration protocol
	topology-id — can be ovsdb configuration protocol

	node-id — can be hwvtep node-id

Type specific attributes

	when type = l2vlan
	vlan-id — VLAN id for trunk-member l2vlan interfaces

	l2vlan-mode — currently supported ones are transparent,
trunk or trunk-member

	when type = stacked_vlan (Not supported yet)
	stacked-vlan-id — VLAN-Id for additional/second VLAN tag

	when type = tunnel
	tunnel-interface-type — tunnel type, currently supported ones
are:
	tunnel-type-vxlan

	tunnel-type-gre

	tunnel-type-mpls-over-gre

	tunnel-source — tunnel source IP address

	tunnel-destination — tunnel destination IP address

	tunnel-gateway — gateway IP address

	monitor-enabled — tunnel monitoring enable control

	monitor-interval — tunnel monitoring interval in millisiconds

	when type = mpls (Not supported yet)
	list labelStack — list of lables

	num-labels — number of lables configured

Supported REST calls are GET, PUT, DELETE, POST

Creating L2 port interfaces

Interfaces on normal L2 ports (e.g. Neutron tap ports) are created with
type l2vlan and l2vlan-mode as transparent. This type of interface
classifies packets passing through a particular L2 (OpenFlow) port. In
dataplane, packets belonging to this interface are classified by
matching in-port against the of-port-id assigned to the base port as
specified in parent-interface.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
 "interface": [
 {
 "name": "4158408c-942b-487c-9a03-0b603c39d3dd",
 "type": "iana-if-type:l2vlan", <--- interface type 'l2vlan' for normal L2 port
 "odl-interface:l2vlan-mode": "transparent", <--- 'transparent' VLAN port mode allows any (tagged, untagged) ethernet packet
 "odl-interface:parent-interface": "tap4158408c-94", <--- port-name as it appears on southbound interface
 "enabled": true
 }
]
}

Creating VLAN interfaces

A VLAN interface is created as a l2vlan interface in trunk-member
mode, by configuring a VLAN-Id and a particular L2 (vlan trunk)
interface. Parent VLAN trunk interface is created in the same way as the
transparent interface as specified above. A trunk-member interface
defines a flow on a particular L2 port and having a particular VLAN tag.
On ingress, after classification the VLAN tag is popped out and
corresponding unique dataplane-id is associated with the packet, before
delivering the packet to service processing. When a service module
delivers the packet to this interface for egress, it pushes
corresponding VLAN tag and sends the packet out of the parent L2 port.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
 "interface": [
 {
 "name": "4158408c-942b-487c-9a03-0b603c39d3dd:100",
 "type": "iana-if-type:l2vlan",
 "odl-interface:l2vlan-mode": "trunk-member", <--- for 'trunk-member', flow is classified with particular vlan-id on an l2 port
 "odl-interface:parent-interface": "4158408c-942b-487c-9a03-0b603c39d3dd", <--- Parent 'trunk' iterface name
 "odl-interface:vlan-id": "100",
 "enabled": true
 }
]
}

Creating Overlay Tunnel Interfaces

An overlay tunnel interface is created with type tunnel and particular
tunnel-interface-type. Tunnel interfaces are created on a particular
data plane node (virtual switches) with a pair of (local, remote) IP
addresses. Currently supported tunnel interface types are VxLAN, GRE and
MPLSoverGRE.

URL: /restconf/config/ietf-interfaces:interfaces

Sample JSON data

"interfaces": {
 "interface": [
 {
 "name": "MGRE_TUNNEL:1",
 "type": "iana-if-type:tunnel",
 "odl-interface:tunnel-interface-type": "odl-interface:tunnel-type-mpls-over-gre",
 "odl-interface:datapath-node-identifier": 156613701272907,
 "odl-interface:tunnel-source": "11.0.0.43",
 "odl-interface:tunnel-destination": "11.0.0.66",
 "odl-interface:monitor-enabled": false,
 "odl-interface:monitor-interval": 10000,
 "enabled": true
 }
]
}

Binding services on interface

The YANG file
odl-interface-service-bindings.yang [https://github.com/opendaylight/genius/blob/stable/boron/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-service-bindings.yang]
contains the service binding configuration data model.

An application can bind services to a particular interface by
configuring MD-SAL data node at path /config/interface-service-binding.
Binding services on interface allows particular service to pull traffic
arriving on that interface depending upon the service priority.
Service modules can specify openflow-rules to be applied on the packet
belonging to the interface. Usually these rules include sending the
packet to specific service table/pipeline. Service modules are
responsible for sending the packet back (if not consumed) to service
dispatcher table, for next service to process the packet.

URL:/restconf/config/interface-service-bindings:service-bindings/

Sample JSON data

"service-bindings": {
 "services-info": [
 {
 "interface-name": "4152de47-29eb-4e95-8727-2939ac03ef84",
 "bound-services": [
 {
 "service-name": "ELAN",
 "service-type": "interface-service-bindings:service-type-flow-based"
 "service-priority": 3,
 "flow-priority": 5,
 "flow-cookie": 134479872,
 "instruction": [
 {
 "order": 2,
 "go-to-table": {
 "table_id": 50
 }
 },
 {
 "order": 1,
 "write-metadata": {
 "metadata": 83953188864,
 "metadata-mask": 1099494850560
 }
 }
],
 },
 {
 "service-name": "L3VPN",
 "service-type": "interface-service-bindings:service-type-flow-based"
 "service-priority": 2,
 "flow-priority": 10,
 "flow-cookie": 134217729,
 "instruction": [
 {
 "order": 2,
 "go-to-table": {
 "table_id": 21
 }
 },
 {
 "order": 1,
 "write-metadata": {
 "metadata": 100,
 "metadata-mask": 4294967295
 }
 }
],
 }
]
 }
]
}

Interface Manager RPCs

In addition to the above defined configuration interfaces, Interface
Manager also provides several RPCs to access interface operational data
and other helpful information. Interface Manger RPCs are defined in
odl-interface-rpc.yang [https://github.com/opendaylight/genius/blob/stable/boron/interfacemanager/interfacemanager-api/src/main/yang/odl-interface-rpc.yang]

The following RPCs are available —

get-dpid-from-interface

This RPC is used to retrieve dpid/switch hosting the root port from
given interface name.

rpc get-dpid-from-interface {
 description "used to retrieve dpid from interface name";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf dpid {
 type uint64;
 }
 }
}

get-port-from-interface

This RPC is used to retrieve south bound port attributes from the
interface name.

rpc get-port-from-interface {
 description "used to retrieve south bound port attributes from the interface name";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf dpid {
 type uint64;
 }
 leaf portno {
 type uint32;
 }
 leaf portname {
 type string;
 }
 }
}

get-egress-actions-for-interface

This RPC is used to retrieve group actions to use from interface name.

rpc get-egress-actions-for-interface {
 description "used to retrieve group actions to use from interface name";
 input {
 leaf intf-name {
 type string;
 mandatory true;
 }
 leaf tunnel-key {
 description "It can be VNI for VxLAN tunnel ifaces, Gre Key for GRE tunnels, etc.";
 type uint32;
 mandatory false;
 }
 }
 output {
 uses action:action-list;
 }
}

get-egress-instructions-for-interface

This RPC is used to retrieve flow instructions to use from interface
name.

rpc get-egress-instructions-for-interface {
 description "used to retrieve flow instructions to use from interface name";
 input {
 leaf intf-name {
 type string;
 mandatory true;
 }
 leaf tunnel-key {
 description "It can be VNI for VxLAN tunnel ifaces, Gre Key for GRE tunnels, etc.";
 type uint32;
 mandatory false;
 }
 }
 output {
 uses offlow:instruction-list;
 }
}

get-endpoint-ip-for-dpn

This RPC is used to get the local ip of the tunnel/trunk interface on a
particular DPN (Data Plane Node).

rpc get-endpoint-ip-for-dpn {
 description "to get the local ip of the tunnel/trunk interface";
 input {
 leaf dpid {
 type uint64;
 }
 }
 output {
 leaf-list local-ips {
 type inet:ip-address;
 }
 }
}

get-interface-type

This RPC is used to get the type of the interface (vlan/vxlan or gre).

rpc get-interface-type {
description "to get the type of the interface (vlan/vxlan or gre)";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf interface-type {
 type identityref {
 base if:interface-type;
 }
 }
 }
}

get-tunnel-type

This RPC is used to get the type of the tunnel interface(vxlan or gre).

rpc get-tunnel-type {
description "to get the type of the tunnel interface (vxlan or gre)";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf tunnel-type {
 type identityref {
 base odlif:tunnel-type-base;
 }
 }
 }
}

get-nodeconnector-id-from-interface

This RPC is used to get node-connector-id associated with an interface.

rpc get-nodeconnector-id-from-interface {
description "to get nodeconnector id associated with an interface";
 input {
 leaf intf-name {
 type string;
 }
 }
 output {
 leaf nodeconnector-id {
 type inv:node-connector-id;
 }
 }
}

get-interface-from-if-index

This RPC is used to get interface associated with an if-index (dataplane
interface id).

rpc get-interface-from-if-index {
 description "to get interface associated with an if-index";
 input {
 leaf if-index {
 type int32;
 }
 }
 output {
 leaf interface-name {
 type string;
 }
 }
 }

create-terminating-service-actions

This RPC is used to create the tunnel termination service table entries.

rpc create-terminating-service-actions {
description "create the ingress terminating service table entries";
 input {
 leaf dpid {
 type uint64;
 }
 leaf tunnel-key {
 type uint64;
 }
 leaf interface-name {
 type string;
 }
 uses offlow:instruction-list;
 }
}

remove-terminating-service-actions

This RPC is used to remove the tunnel termination service table entries.

rpc remove-terminating-service-actions {
description "remove the ingress terminating service table entries";
 input {
 leaf dpid {
 type uint64;
 }
 leaf interface-name {
 type string;
 }
 leaf tunnel-key {
 type uint64;
 }
 }
}

ID Manager

TBD.

Group Based Policy User Guide

Overview

OpenDaylight Group Based Policy allows users to express network
configuration in a declarative versus imperative way.

This is often described as asking for “what you want”, rather than
“how to do it”.

In order to achieve this Group Based Policy (herein referred to as
GBP) is an implementation of an Intent System.

An Intent System:

	is a process around an intent driven data model

	contains no domain specifics

	is capable of addressing multiple semantic definitions of intent

To this end, GBP Policy views an Intent System visually as:

[image: Intent System Process and Policy Surfaces]
Intent System Process and Policy Surfaces

	expressed intent is the entry point into the system.

	operational constraints provide policy for the usage of the
system which modulates how the system is consumed. For instance “All
Financial applications must use a specific encryption standard”.

	capabilities and state are provided by renderers. Renderers
dynamically provide their capabilities to the core model, allowing
the core model to remain non-domain specific.

	governance provides feedback on the delivery of the expressed
intent. i.e. “Did we do what you asked us?”

In summary GBP is about the Automation of Intent.

By thinking of Intent Systems in this way, it enables:

	automation of intent

By focusing on Model. Process. Automation, a consistent policy
resolution process enables for mapping between the expressed
intent and renderers responsible for providing the capabilities of
implementing that intent.

	recursive/intent level-independent behaviour.

Where one person’s concrete is another’s abstract, intent can be
fulfilled through a hierarchical implementation of non-domain
specific policy resolution. Domain specifics are provided by the
renderers, and exposed via the API, at each policy resolution
instance. For example:

	To DNS: The name “www.foo.com” is abstract, and it’s IPv4
address 10.0.0.10 is concrete,

	To an IP stack: 10.0.0.10 is abstract and the MAC
08:05:04:03:02:01 is concrete,

	To an Ethernet switch: The MAC 08:05:04:03:02:01 is abstract,
the resolution to a port in it’s CAM table is concrete,

	To an optical network: The port maybe abstract, yet the optical
wavelength is concrete.

Note

This is a very domain specific analogy, tied to something most
readers will understand. It in no way implies the **GBP* should be
implemented in an OSI type fashion. The premise is that by
implementing a full Intent System, the user is freed from a lot
of the constraints of how the expressed intent is realised.*

It is important to show the overall philosophy of GBP as it sets the
project’s direction.

In this release of OpenDaylight, GBP focused on expressed
intent, refactoring of how renderers consume and publish Subject
Feature Definitions for multi-renderer support.

GBP Base Architecture and Value Proposition

Terminology

In order to explain the fundamental value proposition of GBP, an
illustrated example is given. In order to do that some terminology must
be defined.

The Access Model is the core of the GBP Intent System policy
resolution process.

[image: GBP Access Model Terminology - Endpoints, EndpointGroups, Contract]
GBP Access Model Terminology - Endpoints, EndpointGroups, Contract

[image: GBP Access Model Terminology - Subject, Classifier, Action]
GBP Access Model Terminology - Subject, Classifier, Action

[image: GBP Forwarding Model Terminology - L3 Context, L2 Bridge Context, L2 Flood Context/Domain, Subnet]
GBP Forwarding Model Terminology - L3 Context, L2 Bridge Context, L2
Flood Context/Domain, Subnet

	Endpoints:

Define concrete uniquely identifiable entities. In this release,
examples could be a Docker container, or a Neutron port

	EndpointGroups:

EndpointGroups are sets of endpoints that share a common set of
policies. EndpointGroups can participate in contracts that determine
the kinds of communication that are allowed. EndpointGroups consume
and provide contracts. They also expose both requirements and
capabilities, which are labels that help to determine how contracts
will be applied. An EndpointGroup can specify a parent EndpointGroup
from which it inherits.

	Contracts:

Contracts determine which endpoints can communicate and in what way.
Contracts between pairs of EndpointGroups are selected by the
contract selectors defined by the EndpointGroup. Contracts expose
qualities, which are labels that can help EndpointGroups to select
contracts. Once the contract is selected, contracts have clauses that
can match against requirements and capabilities exposed by
EndpointGroups, as well as any conditions that may be set on
endpoints, in order to activate subjects that can allow specific
kinds of communication. A contract is allowed to specify a parent
contract from which it inherits.

	Subject

Subjects describe some aspect of how two endpoints are allowed to
communicate. Subjects define an ordered list of rules that will match
against the traffic and perform any necessary actions on that
traffic. No communication is allowed unless a subject allows that
communication.

	Clause

Clauses are defined as part of a contract. Clauses determine how a
contract should be applied to particular endpoints and
EndpointGroups. Clauses can match against requirements and
capabilities exposed by EndpointGroups, as well as any conditions
that may be set on endpoints. Matching clauses define some set of
subjects which can be applied to the communication between the pairs
of endpoints.

Architecture and Value Proposition

GBP offers an intent based interface, accessed via the UX,
via the REST API or directly from a domain-specific-language
such as Neutron through a mapping interface.

There are two models in GBP:

	the access (or core) model

	the forwarding model

[image: GBP Access (or Core) Model]
GBP Access (or Core) Model

The classifier and action portions of the model can be thought of as
hooks, with their definition provided by each renderer about its
domain specific capabilities. In GBP for this release, there is one
renderer, the OpenFlow Overlay renderer (OfOverlay).

These hooks are filled with definitions of the types of features the
renderer can provide the subject, and are called
subject-feature-definitions.

This means an expressed intent can be fulfilled by, and across,
multiple renderers simultaneously, without any specific provisioning
from the consumer of GBP.

Since GBP is implemented in OpenDaylight, which is an SDN
controller, it also must address networking. This is done via the
forwarding model, which is domain specific to networking, but could be
applied to many different types of networking.

[image: GBP Forwarding Model]
GBP Forwarding Model

Each endpoint is provisioned with a network-containment. This can be
a:

	subnet
	normal IP stack behaviour, where ARP is performed in subnet, and
for out of subnet, traffic is sent to default gateway.

	a subnet can be a child of any of the below forwarding model
contexts, but typically would be a child of a flood-domain

	L2 flood-domain
	allows flooding behaviour.

	is a n:1 child of a bridge-domain

	can have multiple children

	L2 bridge-domain
	is a layer2 namespace

	is the realm where traffic can be sent at layer 2

	is a n:1 child of a L3 context

	can have multiple children

	L3 context
	is a layer3 namespace

	is the realm where traffic is passed at layer 3

	is a n:1 child of a tenant

	can have multiple children

A simple example of how the access and forwarding models work is as
follows:

[image: GBP Endpoints, EndpointGroups and Contracts]
GBP Endpoints, EndpointGroups and Contracts

In this example, the EPG:webservers is providing the web and
ssh contracts. The EPG:client is consuming those contracts.
EPG:client is providing the any contract, which is consumed by
EPG:webservers.

The direction keyword is always from the perspective of the provider
of the contract. In this case contract web, being provided by
EPG:webservers, with the classifier to match TCP destination port
80, means:

	packets with a TCP destination port of 80

	sent to (in) endpoints in the EPG:webservers

	will be allowed.

[image: GBP Endpoints and the Forwarding Model]
GBP Endpoints and the Forwarding Model

When the forwarding model is considered in the figure above, it can be
seen that even though all endpoints are communicating using a common set
of contracts, their forwarding is contained by the forwarding model
contexts or namespaces. In the example shown, the endpoints associated
with a network-containment that has an ultimate parent of
L3Context:Sales can only communicate with other endpoints within this
L3Context. In this way L3VPN services can be implemented without any
impact to the Intent of the contract.

High-level implementation Architecture

The overall architecture, including Neutron domain
specific mapping, and the OpenFlow Overlay renderer
looks as so:

[image: GBP High Level Architecture]
GBP High Level Architecture

The major benefit of this architecture is that the mapping of the
domain-specific-language is completely separate and independent of the
underlying renderer implementation.

For instance, using the Neutron Mapper, which maps the
Neutron API to the GBP core model, any contract automatically
generated from this mapping can be augmented via the UX to use
Service Function Chaining, a capability not currently
available in OpenStack Neutron.

When another renderer is added, for instance, NetConf, the same policy
can now be leveraged across NetConf devices simultaneously:

[image: GBP High Level Architecture - adding a renderer]
GBP High Level Architecture - adding a renderer

As other domain-specific mappings occur, they too can leverage the same
renderers, as the renderers only need to implement the GBP access
and forwarding models, and the domain-specific mapping need only manage
mapping to the access and forwarding models. For instance:

[image: GBP High Level Architecture - adding a renderer]
GBP High Level Architecture - adding a renderer

In summary, the GBP architecture:

	separates concerns: the Expressed Intent is kept completely separated
from the underlying renderers.

	is cohesive: each part does it’s part and it’s part only

	is scalable: code can be optimised around model
mapping/implementation, and functionality re-used

Policy Resolution

Contract Selection

The first step in policy resolution is to select the contracts that are
in scope.

EndpointGroups participate in contracts either as a provider or as a
consumer of a contract. Each EndpointGroup can participate in many
contracts at the same time, but for each contract it can be in only one
role at a time. In addition, there are two ways for an EndpointGroup to
select a contract: either with either a:

	named selector

Named selectors simply select a specific contract by its contract ID.

	target selector.

Target selectors allow for additional flexibility by matching against
qualities of the contract’s target.

Thus, there are a total of 4 kinds of contract selector:

	provider named selector

Select a contract by contract ID, and participate as a provider.

	provider target selector

Match against a contract’s target with a quality matcher, and
participate as a provider.

	consumer named selector

Select a contract by contract ID, and participate as a consumer.

	consumer target selector

Match against a contract’s target with a quality matcher, and
participate as a consumer.

To determine which contracts are in scope, contracts are found where
either the source EndpointGroup selects a contract as either a provider
or consumer, while the destination EndpointGroup matches against the
same contract in the corresponding role. So if endpoint x in
EndpointGroup X is communicating with endpoint y in EndpointGroup
Y, a contract C is in scope if either X selects C as a provider
and Y selects C as a consumer, or vice versa.

The details of how quality matchers work are described further in
Matchers. Quality matchers provide a flexible mechanism
for contract selection based on labels.

The end result of the contract selection phase can be thought of as a
set of tuples representing selected contract scopes. The fields of the
tuple are:

	Contract ID

	The provider EndpointGroup ID

	The name of the selector in the provider EndpointGroup that was used
to select the contract, called the matching provider selector.

	The consumer EndpointGroup ID

	The name of the selector in the consumer EndpointGroup that was used
to select the contract, called the matching consumer selector.

The result is then stored in the datastore under Resolved Policy.

Subject Selection

The second phase in policy resolution is to determine which subjects are
in scope. The subjects define what kinds of communication are allowed
between endpoints in the EndpointGroups. For each of the selected
contract scopes from the contract selection phase, the subject selection
procedure is applied.

Labels called, capabilities, requirements and conditions are matched
against to bring a Subject into scope. EndpointGroups have
capabilities and requirements, while endpoints have conditions.

Requirements and Capabilities

When acting as a provider, EndpointGroups expose capabilities, which
are labels representing specific pieces of functionality that can be
exposed to other EndpointGroups that may meet functional requirements of
those EndpointGroups.

When acting as a consumer, EndpointGroups expose requirements, which
are labels that represent that the EndpointGroup requires some specific
piece of functionality.

As an example, we might create a capability called “user-database” which
indicates that an EndpointGroup contains endpoints that implement a
database of users.

We might create a requirement also called “user-database” to indicate an
EndpointGroup contains endpoints that will need to communicate with the
endpoints that expose this service.

Note that in this example the requirement and capability have the same
name, but the user need not follow this convention.

The matching provider selector (that was used by the provider
EndpointGroup to select the contract) is examined to determine the
capabilities exposed by the provider EndpointGroup for this contract
scope.

The provider selector will have a list of capabilities either directly
included in the provider selector or inherited from a parent selector or
parent EndpointGroup. (See Inheritance).

Similarly, the matching consumer selector will expose a set of
requirements.

Conditions

Endpoints can have conditions, which are labels representing some
relevant piece of operational state related to the endpoint.

An example of a condition might be “malware-detected,” or
“authentication-succeeded.” Conditions are used to affect how that
particular endpoint can communicate.

To continue with our example, the “malware-detected” condition might
cause an endpoint’s connectivity to be cut off, while
“authentication-succeeded” might open up communication with services
that require an endpoint to be first authenticated and then forward its
authentication credentials.

Clauses

Clauses perform the actual selection of subjects. A clause has lists of
matchers in two categories. In order for a clause to become active, all
lists of matchers must match. A matching clause will select all the
subjects referenced by the clause. Note that an empty list of matchers
counts as a match.

The first category is the consumer matchers, which match against the
consumer EndpointGroup and endpoints. The consumer matchers are:

	Group Idenfication Constraint: Requirement matchers

Matches against requirements in the matching consumer selector.

	Group Identification Constraint: GroupName

Matches against the group name

	Consumer condition matchers

Matches against conditions on endpoints in the consumer EndpointGroup

	Consumer Endpoint Identification Constraint

Label based criteria for matching against endpoints. In this release
this can be used to label endpoints based on IpPrefix.

The second category is the provider matchers, which match against the
provider EndpointGroup and endpoints. The provider matchers are:

	Group Idenfication Constraint: Capability matchers

Matches against capabilities in the matching provider selector.

	Group Identification Constraint: GroupName

Matches against the group name

	Consumer condition matchers

Matches against conditions on endpoints in the provider EndpointGroup

	Consumer Endpoint Identification Constraint

Label based criteria for matching against endpoints. In this release
this can be used to label endpoints based on IpPrefix.

Clauses have a list of subjects that apply when all the matchers in the
clause match. The output of the subject selection phase logically is a
set of subjects that are in scope for any particular pair of endpoints.

Rule Application

Now subjects have been selected that apply to the traffic between a
particular set of endpoints, policy can be applied to allow endpoints to
communicate. The applicable subjects from the previous step will each
contain a set of rules.

Rules consist of a set of classifiers and a set of actions.
Classifiers match against traffic between two endpoints. An example of a
classifier would be something that matches against all TCP traffic on
port 80, or one that matches against HTTP traffic containing a
particular cookie. Actions are specific actions that need to be taken on
the traffic before it reaches its destination. Actions could include
tagging or encapsulating the traffic in some way, redirecting the
traffic, or applying a service function chain.

Rules, subjects, and actions have an order parameter, where a lower
order value means that a particular item will be applied first. All
rules from a particular subject will be applied before the rules of any
other subject, and all actions from a particular rule will be applied
before the actions from another rule. If more than item has the same
order parameter, ties are broken with a lexicographic ordering of their
names, with earlier names having logically lower order.

Matchers

Matchers specify a set of labels (which include requirements,
capabilities, conditions, and qualities) to match against. There are
several kinds of matchers that operate similarly:

	Quality matchers

used in target selectors during the contract selection phase. Quality
matchers provide a more advanced and flexible way to select contracts
compared to a named selector.

	Requirement and capability matchers

used in clauses during the subject selection phase to match against
requirements and capabilities on EndpointGroups

	Condition matchers

used in clauses during the subject selection phase to match against
conditions on endpoints

A matcher is, at its heart, fairly simple. It will contain a list of
label names, along with a match type. The match type can be either:

	“all”

which means the matcher matches when all of its labels match

	“any”

which means the matcher matches when any of its labels match,

	“none”

which means the matcher matches when none of its labels match.

Note a match all matcher can be made by matching against an empty set
of labels with a match type of “all.”

Additionally each label to match can optionally include a relevant name
field. For quality matchers, this is a target name. For capability and
requirement matchers, this is a selector name. If the name field is
specified, then the matcher will only match against targets or selectors
with that name, rather than any targets or selectors.

Inheritance

Some objects in the system include references to parents, from which
they will inherit definitions. The graph of parent references must be
loop free. When resolving names, the resolution system must detect loops
and raise an exception. Objects that are part of these loops may be
considered as though they are not defined at all. Generally, inheritance
works by simply importing the objects in the parent into the child
object. When there are objects with the same name in the child object,
then the child object will override the parent object according to rules
which are specific to the type of object. We’ll next explore the
detailed rules for inheritance for each type of object

EndpointGroups

EndpointGroups will inherit all their selectors from their parent
EndpointGroups. Selectors with the same names as selectors in the parent
EndpointGroups will inherit their behavior as defined below.

Selectors

Selectors include provider named selectors, provider target selectors,
consumer named selectors, and consumer target selectors. Selectors
cannot themselves have parent selectors, but when selectors have the
same name as a selector of the same type in the parent EndpointGroup,
then they will inherit from and override the behavior of the selector in
the parent EndpointGroup.

Named Selectors

Named selectors will add to the set of contract IDs that are selected by
the parent named selector.

Target Selectors

A target selector in the child EndpointGroup with the same name as a
target selector in the parent EndpointGroup will inherit quality
matchers from the parent. If a quality matcher in the child has the same
name as a quality matcher in the parent, then it will inherit as
described below under Matchers.

Contracts

Contracts will inherit all their targets, clauses and subjects from
their parent contracts. When any of these objects have the same name as
in the parent contract, then the behavior will be as defined below.

Targets

Targets cannot themselves have a parent target, but it may inherit from
targets with the same name as the target in a parent contract. Qualities
in the target will be inherited from the parent. If a quality with the
same name is defined in the child, then this does not have any semantic
effect except if the quality has its inclusion-rule parameter set to
“exclude.” In this case, then the label should be ignored for the
purpose of matching against this target.

Subjects

Subjects cannot themselves have a parent subject, but it may inherit
from a subject with the same name as the subject in a parent contract.
The order parameter in the child subject, if present, will override the
order parameter in the parent subject. The rules in the parent subject
will be added to the rules in the child subject. However, the rules will
not override rules of the same name. Instead, all rules in the parent
subject will be considered to run with a higher order than all rules in
the child; that is all rules in the child will run before any rules in
the parent. This has the effect of overriding any rules in the parent
without the potentially-problematic semantics of merging the ordering.

Clauses

Clauses cannot themselves have a parent clause, but it may inherit from
a clause with the same name as the clause in a parent contract. The list
of subject references in the parent clause will be added to the list of
subject references in the child clause. This is just a union operation.
A subject reference that refers to a subject name in the parent contract
might have that name overridden in the child contract. Each of the
matchers in the clause are also inherited by the child clause. Matchers
in the child of the same name and type as a matcher from the parent will
inherit from and override the parent matcher. See below under Matchers
for more information.

Matchers

Matchers include quality matchers, condition matchers, requirement
matchers, and capability matchers. Matchers cannot themselves have
parent matchers, but when there is a matcher of the same name and type
in the parent object, then the matcher in the child object will inherit
and override the behavior of the matcher in the parent object. The match
type, if specified in the child, overrides the value specified in the
parent. Labels are also inherited from the parent object. If there is a
label with the same name in the child object, this does not have any
semantic effect except if the label has its inclusion-rule parameter set
to “exclude.” In this case, then the label should be ignored for the
purpose of matching. Otherwise, the label with the same name will
completely override the label from the parent.

Using the GBP UX interface

Overview

These following components make up this application and are described in
more detail in following sections:

	Basic view

	Governance view

	Policy Expression view

	Wizard view

The GBP UX is access via:

http://<odl controller>:8181/index.html

Basic view

Basic view contains 5 navigation buttons which switch user to the
desired section of application:

	Governance – switch to the Governance view (middle of graphic has the
same function)

	Renderer configuration – switch to the Policy expression view with
Renderers section expanded

	Policy expression – switch to the Policy expression view with Policy
section expanded

	Operational constraints – placeholder for development in next release

[image: Basic view]
Basic view

Governance view

Governance view consists from three columns.

[image: Governance view]
Governance view

Governance view – Basic view – Left column

In the left column is Health section with Exception and Conflict buttons
with no functionality yet. This is a placeholder for development in
further releases.

Governance view – Basic view – Middle column

In the top half of this section is select box with list of tenants for
select. Once the tenant is selected, all sub sections in application
operate and display data with actual selected tenant.

Below the select box are buttons which display Expressed or Delivered
policy of Governance section. In the bottom half of this section is
select box with list of renderers for select. There is currently only
OfOverlay renderer available.

Below the select box is Renderer configuration button, which switch the
app into the Policy expression view with Renderers section expanded for
performing CRUD operations. Renderer state button display Renderer state
view.

Governance view – Basic view – Right column

In the bottom part of the right section of Governance view is Home
button which switch the app to the Basic view.

In the top part is situated navigation menu with four main sections.

Policy expression button expand/collapse sub menu with three main parts
of Policy expression. By clicking on sub menu buttons, user will be
switched into the Policy expressions view with appropriate section
expanded for performing CRUD operations.

Renderer configuration button switches user into the Policy expressions
view.

Governance button expand/collapse sub menu with four main parts of
Governance section. Sub menu buttons of Governance section display
appropriate section of Governance view.

Operational constraints have no functionality yet, and is a placeholder
for development in further releases.

Below the menu is place for view info section which displays info about
actual selected element from the topology (explained below).

Governance view – Expressed policy

In this view are displayed contracts with their consumed and provided
EndpointGroups of actual selected tenant, which can be changed in select
box in the upper left corner.

By single-clicking on any contract or EPG, the data of actual selected
element will be shown in the right column below the menu. A Manage
button launches a display wizard window for managing configuration of
items such as Service Function Chaining.

[image: Expressed policy]
Expressed policy

Governance view – Delivered policy In this view are displayed
subjects with their consumed and provided EndpointGroups of actual
selected tenant, which can be changed in select box in the upper left
corner.

By single-clicking on any subject or EPG, the data of actual selected
element will be shown in the right column below the menu.

By double-click on subject the subject detail view will be displayed
with subject’s rules of actual selected subject, which can be changed in
select box in the upper left corner.

By single-clicking on rule or subject, the data of actual selected
element will be shown in the right column below the menu.

By double-clicking on EPG in Delivered policy view, the EPG detail view
will be displayed with EPG’s endpoints of actual selected EPG, which can
be changed in select box in the upper left corner.

By single-clicking on EPG or endpoint the data of actual selected
element will be shown in the right column below the menu.

[image: Delivered policy]
Delivered policy

[image: Subject detail]
Subject detail

[image: EPG detail]
EPG detail

Governance view – Renderer state

In this part are displayed Subject feature definition data with two main
parts: Action definition and Classifier definition.

By clicking on the down/right arrow in the circle is possible to
expand/hide data of appropriate container or list. Next to the list node
are displayed names of list’s elements where one is always selected and
element’s data are shown (blue line under the name).

By clicking on names of children nodes is possible to select desired
node and node’s data will be displayed.

[image: Renderer state]
Renderer state

Policy expression view

In the left part of this view is placed topology of actual selected
elements with the buttons for switching between types of topology at the
bottom.

Right column of this view contains four parts. At the top of this column
are displayed breadcrumbs with actual position in the application.

Below the breadcrumbs is select box with list of tenants for select. In
the middle part is situated navigation menu, which allows switch to the
desired section for performing CRUD operations.

At the bottom is quick navigation menu with Access Model Wizard button
which display Wizard view, Home button which switch application to the
Basic view and occasionally Back button, which switch application to the
upper section.

Policy expression - Navigation menu

To open Policy expression, select Policy expression from the GBP Home
screen.

In the top of navigation box you can select the tenant from the tenants
list to activate features addicted to selected tenant.

In the right menu, by default, the Policy menu section is expanded.
Subitems of this section are modules for CRUD (creating, reading,
updating and deleting) of tenants, EndpointGroups, contracts, L2/L3
objects.

	Section Renderers contains CRUD forms for Classifiers and Actions.

	Section Endpoints contains CRUD forms for Endpoint and L3 prefix
endpoint.

[image: Navigation menu]
Navigation menu

[image: CRUD operations]
CRUD operations

Policy expression - Types of topology

There are three different types of topology:

	Configured topology - EndpointGroups and contracts between them from
CONFIG datastore

	Operational topology - displays same information but is based on
operational data.

	L2/L3 - displays relationships between L3Contexts, L2 Bridge domains,
L2 Flood domains and Subnets.

[image: L2/L3 Topology]
L2/L3 Topology

[image: Config Topology]
Config Topology

Policy expression - CRUD operations

In this part are described basic flows for viewing, adding, editing and
deleting system elements like tenants, EndpointGroups etc.

Tenants

To edit tenant objects click the Tenants button in the right menu. You
can see the CRUD form containing tenants list and control buttons.

To add new tenant, click the Add button This will display the form for
adding a new tenant. After filling tenant attributes Name and
Description click Save button. Saving of any object can be performed
only if all the object attributes are filled correctly. If some
attribute doesn’t have correct value, exclamation mark with mouse-over
tooltip will be displayed next to the label for the attribute. After
saving of tenant the form will be closed and the tenants list will be
set to default value.

To view an existing tenant, select the tenant from the select box
Tenants list. The view form is read-only and can be closed by clicking
cross mark in the top right of the form.

To edit selected tenant, click the Edit button, which will display the
edit form for selected tenant. After editing the Name and Description of
selected tenant click the Save button to save selected tenant. After
saving of tenant the edit form will be closed and the tenants list will
be set to default value.

To delete tenant select the tenant from the Tenants list and click
Delete button.

To return to the Policy expression click Back button on the bottom of
window.

EndpointGroups

For managing EndpointGroups (EPG) the tenant from the top Tenants list
must be selected.

To add new EPG click Add button and after filling required attributes
click Save button. After adding the EPG you can edit it and assign
Consumer named selector or Provider named selector to it.

To edit EPG click the Edit button after selecting the EPG from Group
list.

To add new Consumer named selector (CNS) click the Add button next to
the Consumer named selectors list. While CNS editing you can set one or
more contracts for current CNS pressing the Plus button and selecting
the contract from the Contracts list. To remove the contract, click on
the cross mark next to the contract. Added CNS can be viewed, edited or
deleted by selecting from the Consumer named selectors list and clicking
the Edit and Delete buttons like with the EPG or tenants.

To add new Provider named selector (PNS) click the Add button next to
the Provider named selectors list. While PNS editing you can set one or
more contracts for current PNS pressing the Plus button and selecting
the contract from the Contracts list. To remove the contract, click on
the cross mark next to the contract. Added PNS can be viewed, edited or
deleted by selecting from the Provider named selectors list and clicking
the Edit and Delete buttons like with the EPG or tenants.

To delete EPG, CNS or PNS select it in selectbox and click the Delete
button next to the selectbox.

Contracts

For managing contracts the tenant from the top Tenants list must be
selected.

To add new Contract click Add button and after filling required fields
click Save button.

After adding the Contract user can edit it by selecting in the Contracts
list and clicking Edit button.

To add new Clause click Add button next to the Clause list while editing
the contract. While editing the Clause after selecting clause from the
Clause list user can assign clause subjects by clicking the Plus button
next to the Clause subjects label. Adding and editing action must be
submitted by pressing Save button. To manage Subjects you can use CRUD
form like with the Clause list.

L2/L3

For managing L2/L3 the tenant from the top Tenants list must be
selected.

To add L3 Context click the Add button next to the L3 Context list
,which will display the form for adding a new L3 Context. After filling
L3 Context attributes click Save button. After saving of L3 Context,
form will be closed and the L3 Context list will be set to default
value.

To view an existing L3 Context, select the L3 Context from the select
box L3 Context list. The view form is read-only and can be closed by
clicking cross mark in the top right of the form.

If user wants to edit selected L3 Context, click the Edit button, which
will display the edit form for selected L3 Context. After editing click
the Save button to save selected L3 Context. After saving of L3 Context,
the edit form will be closed and the L3 Context list will be set to
default value.

To delete L3 Context, select it from the L3 Context list and click
Delete button.

To add L2 Bridge Domain, click the Add button next to the L2 Bridge
Domain list. This will display the form for adding a new L2 Bridge
Domain. After filling L2 Bridge Domain attributes click Save button.
After saving of L2 Bridge Domain, form will be closed and the L2 Bridge
Domain list will be set to default value.

To view an existing L2 Bridge Domain, select the L2 Bridge Domain from
the select box L2 Bridge Domain list. The view form is read-only and can
be closed by clicking cross mark in the top right of the form.

If user wants to edit selected L2 Bridge Domain, click the Edit button,
which will display the edit form for selected L2 Bridge Domain. After
editing click the Save button to save selected L2 Bridge Domain. After
saving of L2 Bridge Domain the edit form will be closed and the L2
Bridge Domain list will be set to default value.

To delete L2 Bridge Domain select it from the L2 Bridge Domain list and
click Delete button.

To add L3 Flood Domain, click the Add button next to the L3 Flood Domain
list. This will display the form for adding a new L3 Flood Domain. After
filling L3 Flood Domain attributes click Save button. After saving of L3
Flood Domain, form will be closed and the L3 Flood Domain list will be
set to default value.

To view an existing L3 Flood Domain, select the L3 Flood Domain from the
select box L3 Flood Domain list. The view form is read-only and can be
closed by clicking cross mark in the top right of the form.

If user wants to edit selected L3 Flood Domain, click the Edit button,
which will display the edit form for selected L3 Flood Domain. After
editing click the Save button to save selected L3 Flood Domain. After
saving of L3 Flood Domain the edit form will be closed and the L3 Flood
Domain list will be set to default value.

To delete L3 Flood Domain select it from the L3 Flood Domain list and
click Delete button.

To add Subnet click the Add button next to the Subnet list. This will
display the form for adding a new Subnet. After filling Subnet
attributes click Save button. After saving of Subnet, form will be
closed and the Subnet list will be set to default value.

To view an existing Subnet, select the Subnet from the select box Subnet
list. The view form is read-only and can be closed by clicking cross
mark in the top right of the form.

If user wants to edit selected Subnet, click the Edit button, which will
display the edit form for selected Subnet. After editing click the Save
button to save selected Subnet. After saving of Subnet the edit form
will be closed and the Subnet list will be set to default value.

To delete Subnet select it from the Subnet list and click Delete button.

Classifiers

To add Classifier, click the Add button next to the Classifier list.
This will display the form for adding a new Classifier. After filling
Classifier attributes click Save button. After saving of Classifier,
form will be closed and the Classifier list will be set to default
value.

To view an existing Classifier, select the Classifier from the select
box Classifier list. The view form is read-only and can be closed by
clicking cross mark in the top right of the form.

If you want to edit selected Classifier, click the Edit button, which
will display the edit form for selected Classifier. After editing click
the Save button to save selected Classifier. After saving of Classifier
the edit form will be closed and the Classifier list will be set to
default value.

To delete Classifier select it from the Classifier list and click Delete
button.

Actions

To add Action, click the Add button next to the Action list. This will
display the form for adding a new Action. After filling Action
attributes click Save button. After saving of Action, form will be
closed and the Action list will be set to default value.

To view an existing Action, select the Action from the select box Action
list. The view form is read-only and can be closed by clicking cross
mark in the top right of the form.

If user wants to edit selected Action, click the Edit button, which will
display the edit form for selected Action. After editing click the Save
button to save selected Action. After saving of Action the edit form
will be closed and the Action list will be set to default value.

To delete Action select it from the Action list and click Delete button.

Endpoint

To add Endpoint, click the Add button next to the Endpoint list. This
will display the form for adding a new Endpoint. To add EndpointGroup
assignment click the Plus button next to the label EndpointGroups. To
add Condition click Plus button next to the label Condition. To add L3
Address click the Plus button next to the L3 Addresses label. After
filling Endpoint attributes click Save button. After saving of Endpoint,
form will be closed and the Endpoint list will be set to default value.

To view an existing Endpoint just, the Endpoint from the select box
Endpoint list. The view form is read-only and can be closed by clicking
cross mark in the top right of the form.

If you want to edit selected Endpoint, click the Edit button, which will
display the edit form for selected Endpoint. After editing click the
Save button to save selected Endpoint. After saving of Endpoint the edit
form will be closed and the Endpoint list will be set to default value.

To delete Endpoint select it from the Endpoint list and click Delete
button.

L3 prefix endpoint

To add L3 prefix endpoint, click the Add button next to the L3 prefix
endpoint list. This will display the form for adding a new Endpoint. To
add EndpointGroup assignment, click the Plus button next to the label
EndpointGroups. To add Condition, click Plus button next to the label
Condition. To add L2 gateway click the Plus button next to the L2
gateways label. To add L3 gateway, click the Plus button next to the L3
gateways label. After filling L3 prefix endpoint attributes click Save
button. After saving of L3 prefix endpoint, form will be closed and the
Endpoint list will be set to default value.

To view an existing L3 prefix endpoint, select the Endpoint from the
select box L3 prefix endpoint list. The view form is read-only and can
be closed by clicking cross mark in the top right of the form.

If you want to edit selected L3 prefix endpoint, click the Edit button,
which will display the edit form for selected L3 prefix endpoint. After
editing click the Save button to save selected L3 prefix endpoint. After
saving of Endpoint the edit form will be closed and the Endpoint list
will be set to default value.

To delete Endpoint select it from the L3 prefix endpoint list and click
Delete button.

Wizard

Wizard provides quick method to send basic data to controller necessary
for basic usage of GBP application. It is useful in the case that there
aren’t any data in controller. In the first tab is form for create
tenant. The second tab is for CRUD operations with contracts and their
sub elements such as subjects, rules, clauses, action refs and
classifier refs. The last tab is for CRUD operations with EndpointGroups
and their CNS and PNS. Created structure of data is possible to send by
clicking on Submit button.

[image: Wizard]
Wizard

Using the GBP API

Please see:

	Using the GBP OpenFlow Overlay (OfOverlay) renderer

	Policy Resolution

	Forwarding Model

	the **GBP** demo and development environments for tips

It is recommended to use either:

	Neutron mapper <gbp-neutron>

	the UX

If the REST API must be used, and the above resources are not
sufficient:

	feature:install odl-dlux-yangui

	browse to:
http://<odl-controller>:8181/index.html
and select YangUI from the left menu.

to explore the various GBP REST options

Using OpenStack with GBP

Overview

This section is for Application Developers and Network Administrators
who are looking to integrate Group Based Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the Karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically
loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0
API [http://developer.openstack.org/api-ref-networking-v2.html].

Features

List of supported Neutron entities:

	Port

	Network
	Standard Internal

	External provider L2/L3 network

	Subnet

	Security-groups

	Routers
	Distributed functionality with local routing per compute

	External gateway access per compute node (dedicated port required)

	Multiple routers per tenant

	FloatingIP NAT

	IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

[image: Neutron Port]
Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

An endpoint and L3-endpoint belong to multiple EndpointGroups if the
Neutron port is in multiple Neutron Security Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of
L2-flood-domain representing Neutron network. The MAC address is from
the Neutron port. An L3-endpoint is created based on L3-context (the
parent of the L2-bridge-domain) and IP address of Neutron Port.

Neutron Network

[image: Neutron Network]
Neutron Network

A Neutron network has the following characteristics:

	defines a broadcast domain

	defines a L2 transmission domain

	defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP
entities. The first mapping is to an L2 flood-domain to reflect that the
Neutron network is one flooding or broadcast domain. An L2-bridge-domain
is then associated as the parent of L2 flood-domain. This reflects both
the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3
address space. The L3-context is the parent of L2-bridge-domain.

Neutron Subnet

[image: Neutron Subnet]
Neutron Subnet

Neutron subnet is associated with a Neutron network. The Neutron subnet
is mapped to a GBP subnet where the parent of the subnet is
L2-flood-domain representing the Neutron network.

Neutron Security Group

[image: Neutron Security Group and Rules]
Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key
infrastructure items such as:

	DHCP EndpointGroup - contains endpoints representing Neutron DHCP
ports

	Router EndpointGroup - contains endpoints representing Neutron router
interfaces

	External EndpointGroup - holds L3-endpoints representing Neutron
router gateway ports, also associated with FloatingIP ports.

Neutron Security Group Rules

This is the most involved amongst all the mappings because Neutron
security-group-rules are mapped to contracts with clauses, subjects,
rules, action-refs, classifier-refs, etc. Contracts are used between
EndpointGroups representing Neutron Security Groups. For simplification
it is important to note that Neutron security-group-rules are similar to
a GBP rule containing:

	classifier with direction

	action of allow.

Neutron Routers

[image: Neutron Router]
Neutron Router

Neutron router is represented as a L3-context. This treats a router as a
Layer3 namespace, and hence every network attached to it a part of that
Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s
interface or gateway port.

The mapping to an EndpointGroup represents the internal infrastructure
EndpointGroups created by the GBP Neutron Mapper

When a Neutron router interface is attached to a network/subnet, that
network/subnet and its associated endpoints or Neutron Ports are
seamlessly added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the
OfOverlay renderer’s NAT capabilities.

A dedicated external interface on each Nova compute host allows for
disitributed external access. Each Nova instance associated with a
FloatingIP address can access the external network directly without
having to route via the Neutron controller, or having to enable any form
of Neutron distributed routing functionality.

Assuming the gateway provisioned in the Neutron Subnet command for the
external network is reachable, the combination of GBP Neutron Mapper
and OfOverlay renderer will automatically ARP for this
default gateway, requiring no user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package
org.opendaylight.groupbasedpolicy.neutron.mapper. An example of enabling
TRACE logging level on Karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

Neutron mapping example

As an example for mapping can be used creation of Neutron network,
subnet and port. When a Neutron network is created 3 GBP entities
are created: l2-flood-domain, l2-bridge-domain, l3-context.

[image: Neutron network mapping]
Neutron network mapping

After an subnet is created in the network mapping looks like this.

[image: Neutron subnet mapping]
Neutron subnet mapping

If an Neutron port is created in the subnet an endpoint and l3-endpoint
are created. The endpoint has key composed from l2-bridge-domain and MAC
address from Neutron port. A key of l3-endpoint is compesed from
l3-context and IP address. The network containment of endpoint and
l3-endpoint points to the subnet.

[image: Neutron port mapping]
Neutron port mapping

Configuring GBP Neutron

No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo
environment on the GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

Administering or Managing GBP Neutron

For consistencies sake, all provisioning should be performed via the
Neutron API. (CLI or Horizon).

The mapped policies can be augmented via the GBP UX, to:

	Enable Service Function Chaining

	Add endpoints from outside of Neutron i.e. VMs/containers not
provisioned in OpenStack

	Augment policies/contracts derived from Security Group Rules

	Overlay additional contracts or groupings

Tutorials

A DevStack demo environment can be found on the GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

GBP Renderer manager

Overview

The GBP Renderer manager is an integral part of GBP base module.
It dispatches information about endpoints’
policy configuration to specific device renderer
by writing a renderer policy configuration into the
registered renderer’s policy store.

Installing and Pre-requisites

Renderer manager is integrated into GBP base module,
so no additional installation is required.

Architecture

Renderer manager gets data notifications about:

	Endoints (base-endpoint.yang)

	EndpointLocations (base-endpoint.yang)

	ResolvedPolicies (resolved-policy.yang)

	Forwarding (forwarding.yang)

Based on data from notifications it creates a configuration task for
specific renderers by writing a renderer policy configuration into the
registered renderer’s policy store.
Configuration is stored to CONF data store as Renderers (renderer.yang).

Configuration is signed with version number which is incremented by every change.
All renderers are supposed to be on the same version. Renderer manager waits
for all renderers to respond with version update in OPER data store.
After a version of every renderer in OPER data store has the same value
as the one in CONF data store,
renderer manager moves to the next configuration with incremented version.

GBP Location manager

Overview

Location manager monitors information about Endpoint Location providers
(see endpoint-location-provider.yang) and manages Endpoint locations in OPER data store accordingly.

Installing and Pre-requisites

Location manager is integrated into GBP base module,
so no additional installation is required.

Architecture

The endpoint-locations container in OPER data store (see base-endpoint.yang)
contains two lists for two types of EP location,
namely address-endpoint-location and containment-endpoint-location.
LocationResolver is a class that processes Location providers in CONF data store
and puts location information to OPER data store.

When a new Location provider is created in CONF data store, its Address EP locations
are being processed first, and their info is stored locally in accordance with processed
Location provider’s priority. Then a location of type “absolute” with the highest priority
is selected for an EP, and is put in OPER data store. If Address EP locations contain
locations of type “relative”, those are put to OPER data store.

If current Location provider contains Containment EP locations of type “relative”,
then those are put to OPER data store.

Similarly, when a Location provider is deleted, information of its locations
is removed from the OPER data store.

Using the GBP OpenFlow Overlay (OfOverlay) renderer

Overview

The OpenFlow Overlay (OfOverlay) feature enables the OpenFlow Overlay
renderer, which creates a network virtualization solution across nodes
that host Open vSwitch software switches.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-ofoverlay

This renderer is designed to work with OpenVSwitch (OVS) 2.1+ (although
2.3 is strongly recommended) and OpenFlow 1.3.

When used in conjunction with the Neutron Mapper feature
no extra OfOverlay specific setup is required.

When this feature is loaded “standalone”, the user is required to
configure infrastructure, such as

	instantiating OVS bridges,

	attaching hosts to the bridges,

	and creating the VXLAN/VXLAN-GPE tunnel ports on the bridges.

The GBP OfOverlay renderer also supports a table offset option, to
offset the pipeline post-table 0. The value of table offset is stored in
the config datastore and it may be rewritten at runtime.

PUT http://{{controllerIp}}:8181/restconf/config/ofoverlay:of-overlay-config
{
 "of-overlay-config": {
 "gbp-ofoverlay-table-offset": 6
 }
}

The default value is set by changing:
<gbp-ofoverlay-table-offset>0</gbp-ofoverlay-table-offset>

in file:
distribution-karaf/target/assembly/etc/opendaylight/karaf/15-groupbasedpolicy-ofoverlay.xml

To avoid overwriting runtime changes, the default value is used only
when the OfOverlay renderer starts and no other value has been written
before.

OpenFlow Overlay Architecture

These are the primary components of GBP. The OfOverlay components
are highlighted in red.

[image: OfOverlay within **GBP**]
OfOverlay within GBP

In terms of the inner components of the GBP OfOverlay renderer:

[image: OfOverlay expanded view:]
OfOverlay expanded view:

OfOverlay Renderer

Launches components below:

Policy Resolver

Policy resolution is completely domain independent, and the OfOverlay
leverages process policy information internally. See Policy Resolution
process.

It listens to inputs to the Tenants configuration datastore, validates
tenant input, then writes this to the Tenants operational datastore.

From there an internal notification is generated to the PolicyManager.

In the next release, this will be moving to a non-renderer specific
location.

Endpoint Manager

The endpoint repository operates in orchestrated mode. This means
the user is responsible for the provisioning of endpoints via:

	UX/GUI

	REST API

Note

When using the Neutron mapper feature, everything is
managed transparently via Neutron.

The Endpoint Manager is responsible for listening to Endpoint repository
updates and notifying the Switch Manager when a valid Endpoint has been
registered.

It also supplies utility functions to the flow pipeline process.

Switch Manager

The Switch Manager is purely a state manager.

Switches are in one of 3 states:

	DISCONNECTED

	PREPARING

	READY

Ready is denoted by a connected switch:

	having a tunnel interface

	having at least one endpoint connected.

In this way GBP is not writing to switches it has no business to.

Preparing simply means the switch has a controller connection but is
missing one of the above complete and necessary conditions

Disconnected means a previously connected switch is no longer
present in the Inventory operational datastore.

[image: OfOverlay Flow Pipeline]
OfOverlay Flow Pipeline

The OfOverlay leverages Nicira registers as follows:

	REG0 = Source EndpointGroup + Tenant ordinal

	REG1 = Source Conditions + Tenant ordinal

	REG2 = Destination EndpointGroup + Tenant ordinal

	REG3 = Destination Conditions + Tenant ordinal

	REG4 = Bridge Domain + Tenant ordinal

	REG5 = Flood Domain + Tenant ordinal

	REG6 = Layer 3 Context + Tenant ordinal

Port Security

Table 0 of the OpenFlow pipeline. Responsible for ensuring that only
valid connections can send packets into the pipeline:

cookie=0x0, <snip> , priority=200,in_port=3 actions=goto_table:2
cookie=0x0, <snip> , priority=200,in_port=1 actions=goto_table:1
cookie=0x0, <snip> , priority=121,arp,in_port=5,dl_src=fa:16:3e:d5:b9:8d,arp_spa=10.1.1.3 actions=goto_table:2
cookie=0x0, <snip> , priority=120,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_src=10.1.1.3 actions=goto_table:2
cookie=0x0, <snip> , priority=115,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_dst=255.255.255.255 actions=goto_table:2
cookie=0x0, <snip> , priority=112,ipv6 actions=drop
cookie=0x0, <snip> , priority=111, ip actions=drop
cookie=0x0, <snip> , priority=110,arp actions=drop
cookie=0x0, <snip> ,in_port=5,dl_src=fa:16:3e:d5:b9:8d actions=goto_table:2
cookie=0x0, <snip> , priority=1 actions=drop

Ingress from tunnel interface, go to Table Source Mapper:

cookie=0x0, <snip> , priority=200,in_port=3 actions=goto_table:2

Ingress from outside, goto Table Ingress NAT Mapper:

cookie=0x0, <snip> , priority=200,in_port=1 actions=goto_table:1

ARP from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=121,arp,in_port=5,dl_src=fa:16:3e:d5:b9:8d,arp_spa=10.1.1.3 actions=goto_table:2

IPv4 from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=120,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_src=10.1.1.3 actions=goto_table:2

DHCP DORA from Endpoint, go to Table Source Mapper:

cookie=0x0, <snip> , priority=115,ip,in_port=5,dl_src=fa:16:3e:d5:b9:8d,nw_dst=255.255.255.255 actions=goto_table:2

Series of DROP tables with priority set to capture any non-specific
traffic that should have matched above:

cookie=0x0, <snip> , priority=112,ipv6 actions=drop
cookie=0x0, <snip> , priority=111, ip actions=drop
cookie=0x0, <snip> , priority=110,arp actions=drop

“L2” catch all traffic not identified above:

cookie=0x0, <snip> ,in_port=5,dl_src=fa:16:3e:d5:b9:8d actions=goto_table:2

Drop Flow:

cookie=0x0, <snip> , priority=1 actions=drop

Ingress NAT Mapper

Table offset +1.

ARP responder for external NAT address:

cookie=0x0, <snip> , priority=150,arp,arp_tpa=192.168.111.51,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:fa:16:3e:58:c3:dd->eth_src,load:0x2->NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],load:0xfa163e58c3dd->NXM_NX_ARP_SHA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xc0a86f33->NXM_OF_ARP_SPA[],IN_PORT

Translate from Outside to Inside and perform same functions as
SourceMapper.

cookie=0x0, <snip> , priority=100,ip,nw_dst=192.168.111.51 actions=set_field:10.1.1.2->ip_dst,set_field:fa:16:3e:58:c3:dd->eth_dst,load:0x2->NXM_NX_REG0[],load:0x1->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],load:0x3->NXM_NX_TUN_ID[0..31],goto_table:3

Source Mapper

Table offset +2.

Determines based on characteristics from the ingress port, which:

	EndpointGroup(s) it belongs to

	Forwarding context

	Tunnel VNID ordinal

Establishes tunnels at valid destination switches for ingress.

Ingress Tunnel established at remote node with VNID Ordinal that maps to
Source EPG, Forwarding Context etc:

cookie=0x0, <snip>, priority=150,tun_id=0xd,in_port=3 actions=load:0xc->NXM_NX_REG0[],load:0xffffff->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],goto_table:3

Maps endpoint to Source EPG, Forwarding Context based on ingress port,
and MAC:

cookie=0x0, <snip> , priority=100,in_port=5,dl_src=fa:16:3e:b4:b4:b1 actions=load:0xc->NXM_NX_REG0[],load:0x1->NXM_NX_REG1[],load:0x4->NXM_NX_REG4[],load:0x5->NXM_NX_REG5[],load:0x7->NXM_NX_REG6[],load:0xd->NXM_NX_TUN_ID[0..31],goto_table:3

Generic drop:

cookie=0x0, duration=197.622s, table=2, n_packets=0, n_bytes=0, priority=1 actions=drop

Destination Mapper

Table offset +3.

Determines based on characteristics of the endpoint:

	EndpointGroup(s) it belongs to

	Forwarding context

	Tunnel Destination value

Manages routing based on valid ingress nodes ARP’ing for their default
gateway, and matches on either gateway MAC or destination endpoint MAC.

ARP for default gateway for the 10.1.1.0/24 subnet:

cookie=0x0, <snip> , priority=150,arp,reg6=0x7,arp_tpa=10.1.1.1,arp_op=1 actions=move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],set_field:fa:16:3e:28:4c:82->eth_src,load:0x2->NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],load:0xfa163e284c82->NXM_NX_ARP_SHA[],move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],load:0xa010101->NXM_OF_ARP_SPA[],IN_PORT

Broadcast traffic destined for GroupTable:

cookie=0x0, <snip> , priority=140,reg5=0x5,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00 actions=load:0x5->NXM_NX_TUN_ID[0..31],group:5

Layer3 destination matching flows, where priority=100+masklength. Since
GBP now support L3Prefix endpoint, we can set default routes etc:

cookie=0x0, <snip>, priority=132,ip,reg6=0x7,dl_dst=fa:16:3e:b4:b4:b1,nw_dst=10.1.1.3 actions=load:0xc->NXM_NX_REG2[],load:0x1->NXM_NX_REG3[],load:0x5->NXM_NX_REG7[],set_field:fa:16:3e:b4:b4:b1->eth_dst,dec_ttl,goto_table:4

Layer2 destination matching flows, designed to be caught only after last
IP flow (lowest priority IP flow is 100):

cookie=0x0, duration=323.203s, table=3, n_packets=4, n_bytes=168, priority=50,reg4=0x4,dl_dst=fa:16:3e:58:c3:dd actions=load:0x2->NXM_NX_REG2[],load:0x1->NXM_NX_REG3[],load:0x2->NXM_NX_REG7[],goto_table:4

General drop flow: cookie=0x0, duration=323.207s, table=3, n_packets=6,
n_bytes=588, priority=1 actions=drop

Policy Enforcer

Table offset +4.

Once the Source and Destination EndpointGroups are assigned, policy is
enforced based on resolved rules.

In the case of Service Function Chaining, the encapsulation
and destination for traffic destined to a chain, is discovered and
enforced.

Policy flow, allowing IP traffic between EndpointGroups:

cookie=0x0, <snip> , priority=64998,ip,reg0=0x8,reg1=0x1,reg2=0xc,reg3=0x1 actions=goto_table:5

Egress NAT Mapper

Table offset +5.

Performs NAT function before Egressing OVS instance to the underlay
network.

Inside to Outside NAT translation before sending to underlay:

cookie=0x0, <snip> , priority=100,ip,reg6=0x7,nw_src=10.1.1.2 actions=set_field:192.168.111.51->ip_src,goto_table:6

External Mapper

Table offset +6.

Manages post-policy enforcement for endpoint specific destination
effects. Specifically for Service Function Chaining, which is
why we can support both symmetric and asymmetric chains and distributed
ingress/egress classification.

Generic allow:

cookie=0x0, <snip>, priority=100 actions=output:NXM_NX_REG7[]

Configuring OpenFlow Overlay via REST

Note

Please see the UX section on how to configure GBP via
the GUI.

Endpoint

POST http://{{controllerIp}}:8181/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "<epg0>",
 "endpoint-groups" : ["<epg1>","<epg2>"],
 "network-containment" : "<fowarding-model-context1>",
 "l2-context": "<bridge-domain1>",
 "mac-address": "<mac1>",
 "l3-address": [
 {
 "ip-address": "<ipaddress1>",
 "l3-context": "<l3_context1>"
 }
],
 "*ofoverlay:port-name*": "<ovs port name>",
 "tenant": "<tenant1>"
 }
}

Note

The usage of “port-name” preceded by “ofoverlay”. In OpenDaylight,
base datastore objects can be augmented. In GBP, the base
endpoint model has no renderer specifics, hence can be leveraged
across multiple renderers.

OVS Augmentations to Inventory

PUT http://{{controllerIp}}:8181/restconf/config/opendaylight-inventory:nodes/
{
 "opendaylight-inventory:nodes": {
 "node": [
 {
 "id": "openflow:123456",
 "ofoverlay:tunnel": [
 {
 "tunnel-type": "overlay:tunnel-type-vxlan",
 "ip": "<ip_address_of_ovs>",
 "port": 4789,
 "node-connector-id": "openflow:123456:1"
 }
]
 },
 {
 "id": "openflow:654321",
 "ofoverlay:tunnel": [
 {
 "tunnel-type": "overlay:tunnel-type-vxlan",
 "ip": "<ip_address_of_ovs>",
 "port": 4789,
 "node-connector-id": "openflow:654321:1"
 }
]
 }
]
 }
}

Tenants see Policy Resolution and
Forwarding Model for details:

{
 "policy:tenant": {
 "contract": [
 {
 "clause": [
 {
 "name": "allow-http-clause",
 "subject-refs": [
 "allow-http-subject",
 "allow-icmp-subject"
]
 }
],
 "id": "<id>",
 "subject": [
 {
 "name": "allow-http-subject",
 "rule": [
 {
 "classifier-ref": [
 {
 "direction": "in",
 "name": "http-dest"
 },
 {
 "direction": "out",
 "name": "http-src"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
],
 "name": "allow-http-rule"
 }
]
 },
 {
 "name": "allow-icmp-subject",
 "rule": [
 {
 "classifier-ref": [
 {
 "name": "icmp"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
],
 "name": "allow-icmp-rule"
 }
]
 }
]
 }
],
 "endpoint-group": [
 {
 "consumer-named-selector": [
 {
 "contract": [
 "<id>"
],
 "name": "<name>"
 }
],
 "id": "<id>",
 "provider-named-selector": []
 },
 {
 "consumer-named-selector": [],
 "id": "<id>",
 "provider-named-selector": [
 {
 "contract": [
 "<id>"
],
 "name": "<name>"
 }
]
 }
],
 "id": "<id>",
 "l2-bridge-domain": [
 {
 "id": "<id>",
 "parent": "<id>"
 }
],
 "l2-flood-domain": [
 {
 "id": "<id>",
 "parent": "<id>"
 },
 {
 "id": "<id>",
 "parent": "<id>"
 }
],
 "l3-context": [
 {
 "id": "<id>"
 }
],
 "name": "GBPPOC",
 "subject-feature-instances": {
 "classifier-instance": [
 {
 "classifier-definition-id": "<id>",
 "name": "http-dest",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "destport"
 }
]
 },
 {
 "classifier-definition-id": "<id>",
 "name": "http-src",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "sourceport"
 }
]
 },
 {
 "classifier-definition-id": "<id>",
 "name": "icmp",
 "parameter-value": [
 {
 "int-value": "1",
 "name": "proto"
 }
]
 }
],
 "action-instance": [
 {
 "name": "allow1",
 "action-definition-id": "<id>"
 }
]
 },
 "subnet": [
 {
 "id": "<id>",
 "ip-prefix": "<ip_prefix>",
 "parent": "<id>",
 "virtual-router-ip": "<ip address>"
 },
 {
 "id": "<id>",
 "ip-prefix": "<ip prefix>",
 "parent": "<id>",
 "virtual-router-ip": "<ip address>"
 }
]
 }
}

Tutorials

Comprehensive tutorials, along with a demonstration environment
leveraging Vagrant can be found on the GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)]

Using the GBP eBPF IO Visor Agent renderer

Overview

The IO Visor renderer feature enables container endpoints (e.g. Docker,
LXC) to leverage GBP policies.

The renderer interacts with a IO Visor module from the Linux Foundation
IO Visor project.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-iovisor odl-restconf

Installation details, usage, and other information for the IO Visor GBP
module can be found here: IO Visor github repo for IO
Modules [https://github.com/iovisor/iomodules]

Using the GBP FaaS renderer

Overview

The FaaS renderer feature enables leveraging the FaaS project as a GBP
renderer.

Installing and Pre-requisites

From the Karaf console in OpenDaylight:

feature:install odl-groupbasedpolicy-faas

More information about FaaS can be found here:
https://wiki.opendaylight.org/view/FaaS:GBPIntegration

Using Service Function Chaining (SFC) with GBP Neutron Mapper and OfOverlay

Overview

Please refer to the Service Function Chaining project for specifics on
SFC provisioning and theory.

GBP allows for the use of a chain, by name, in policy.

This takes the form of an action in GBP.

Using the GBP demo and development environment as an
example:

[image: GBP and SFC integration environment]
GBP and SFC integration environment

In the topology above, a symmetrical chain between H35_2 and H36_3
could take path:

H35_2 to sw1 to sff1 to sf1 to sff1 to sff2 to sf2 to sff2 to sw6 to
H36_3

If symmetric chaining was desired, the return path is:

[image: GBP and SFC symmetric chain environment]
GBP and SFC symmetric chain environment

If asymmetric chaining was desired, the return path could be direct, or
an entirely different chain.

[image: GBP and SFC assymmetric chain environment]
GBP and SFC assymmetric chain environment

All these scenarios are supported by the integration.

In the Subject Feature Instance section of the tenant config, we
define the instances of the classifier definitions for ICMP and HTTP:

"subject-feature-instances": {
 "classifier-instance": [
 {
 "name": "icmp",
 "parameter-value": [
 {
 "name": "proto",
 "int-value": 1
 }
]
 },
 {
 "name": "http-dest",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "destport"
 }
]
 },
 {
 "name": "http-src",
 "parameter-value": [
 {
 "int-value": "6",
 "name": "proto"
 },
 {
 "int-value": "80",
 "name": "sourceport"
 }
]
 }
],

Then the action instances to associate to traffic that matches
classifiers are defined.

Note the SFC chain name must exist in SFC, and is validated against
the datastore once the tenant configuration is entered, before entering
a valid tenant configuration into the operational datastore (which
triggers policy resolution).

 "action-instance": [
 {
 "name": "chain1",
 "parameter-value": [
 {
 "name": "sfc-chain-name",
 "string-value": "SFCGBP"
 }
]
 },
 {
 "name": "allow1",
 }
]
},

When ICMP is matched, allow the traffic:

"contract": [
 {
 "subject": [
 {
 "name": "icmp-subject",
 "rule": [
 {
 "name": "allow-icmp-rule",
 "order" : 0,
 "classifier-ref": [
 {
 "name": "icmp"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
]
 }

]
 },

When HTTP is matched, in to the provider of the contract with a TCP
destination port of 80 (HTTP) or the HTTP request. The chain action is
triggered, and similarly out from the provider for traffic with TCP
source port of 80 (HTTP), or the HTTP response.

{
 "name": "http-subject",
 "rule": [
 {
 "name": "http-chain-rule-in",
 "classifier-ref": [
 {
 "name": "http-dest",
 "direction": "in"
 }
],
 "action-ref": [
 {
 "name": "chain1",
 "order": 0
 }
]
 },
 {
 "name": "http-chain-rule-out",
 "classifier-ref": [
 {
 "name": "http-src",
 "direction": "out"
 }
],
 "action-ref": [
 {
 "name": "chain1",
 "order": 0
 }
]
 }
]
}

To enable asymmetrical chaining, for instance, the user desires that
HTTP requests traverse the chain, but the HTTP response does not, the
HTTP response is set to allow instead of chain:

{
 "name": "http-chain-rule-out",
 "classifier-ref": [
 {
 "name": "http-src",
 "direction": "out"
 }
],
 "action-ref": [
 {
 "name": "allow1",
 "order": 0
 }
]
}

Demo/Development environment

The GBP project for this release has two demo/development environments.

	Docker based GBP and GBP+SFC integration Vagrant environment

	DevStack based GBP+Neutron integration Vagrant environment

Demo @ GBP
wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)/Consumability/Demo]

L2 Switch User Guide

Overview

The L2 Switch project provides Layer2 switch functionality.

L2 Switch Architecture

	Packet Handler
	Decodes the packets coming to the controller and dispatches them
appropriately

	Loop Remover
	Removes loops in the network

	Arp Handler
	Handles the decoded ARP packets

	Address Tracker
	Learns the Addresses (MAC and IP) of entities in the network

	Host Tracker
	Tracks the locations of hosts in the network

	L2 Switch Main
	Installs flows on each switch based on network traffic

Configurable parameters in L2 Switch

The sections below give details about the configuration settings for
the components that can be configured.

The process to change the configuration has been changed with
the introduction of Blueprint in the Boron release. Please
refer to Change configuration in L2 Switch for an
example illustrating how to change the configurations.

Configurable parameters in Loop Remover

	l2switch/loopremover/implementation/src/main/yang/loop-remover-config.yang
	is-install-lldp-flow
	“true” means a flow that sends all LLDP packets to the
controller will be installed on each switch

	“false” means this flow will not be installed

	default value is true

	lldp-flow-table-id
	The LLDP flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 0

	lldp-flow-priority
	The LLDP flow will be installed with the specified priority

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 100

	lldp-flow-idle-timeout
	The LLDP flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 0

	lldp-flow-hard-timeout
	The LLDP flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-install-lldp-flow” is set
to “true”

	default value is 0

	graph-refresh-delay
	A graph of the network is maintained and gets updated as
network elements go up/down (i.e. links go up/down and switches
go up/down)

	After a network element going up/down, it waits
graph-refresh-delay seconds before recomputing the graph

	A higher value has the advantage of doing less graph updates,
at the potential cost of losing some packets because the graph
didn’t update immediately.

	A lower value has the advantage of handling network topology
changes quicker, at the cost of doing more computation.

	default value is 1000

Configurable parameters in Arp Handler

	l2switch/arphandler/src/main/yang/arp-handler-config.yang
	is-proactive-flood-mode
	“true” means that flood flows will be installed on each switch.
With this flood flow, each switch will flood a packet that
doesn’t match any other flows.
	Advantage: Fewer packets are sent to the controller because
those packets are flooded to the network.

	Disadvantage: A lot of network traffic is generated.

	“false” means the previously mentioned flood flows will not be
installed. Instead an ARP flow will be installed on each switch
that sends all ARP packets to the controller.
	Advantage: Less network traffic is generated.

	Disadvantage: The controller handles more packets (ARP
requests & replies) and the ARP process takes longer than if
there were flood flows.

	default value is true

	flood-flow-table-id
	The flood flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 0

	flood-flow-priority
	The flood flow will be installed with the specified priority

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 2

	flood-flow-idle-timeout
	The flood flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 0

	flood-flow-hard-timeout
	The flood flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-proactive-flood-mode” is
set to “true”

	default value is 0

	arp-flow-table-id
	The ARP flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 0

	arp-flow-priority
	The ARP flow will be installed with the specified priority

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 1

	arp-flow-idle-timeout
	The ARP flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 0

	arp-flow-hard-timeout
	The ARP flow will timeout (removed from the switch) after
arp-flow-hard-timeout seconds, regardless of how many packets
it is forwarding

	This field is only relevant when “is-proactive-flood-mode” is
set to “false”

	default value is 0

Configurable parameters in Address Tracker

	l2switch/addresstracker/implementation/src/main/yang/address-tracker-config.yang
	timestamp-update-interval
	A last-seen timestamp is associated with each address. This
last-seen timestamp will only be updated after
timestamp-update-interval milliseconds.

	A higher value has the advantage of performing less writes to
the database.

	A lower value has the advantage of knowing how fresh an address
is.

	default value is 600000

	observe-addresses-from
	IP and MAC addresses can be observed/learned from ARP, IPv4,
and IPv6 packets. Set which packets to make these observations
from.

	default value is arp

Configurable parameters in L2 Switch Main

	l2switch/l2switch-main/src/main/yang/l2switch-config.yang
	is-install-dropall-flow
	“true” means a drop-all flow will be installed on each switch,
so the default action will be to drop a packet instead of
sending it to the controller

	“false” means this flow will not be installed

	default value is true

	dropall-flow-table-id
	The dropall flow will be installed on the specified flow table
of each switch

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	dropall-flow-priority
	The dropall flow will be installed with the specified priority

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	dropall-flow-idle-timeout
	The dropall flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	dropall-flow-hard-timeout
	The dropall flow will timeout (removed from the switch) after
x seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-install-dropall-flow” is
set to “true”

	default value is 0

	is-learning-only-mode
	“true” means that the L2 Switch will only be learning addresses.
No additional flows to optimize network traffic will be
installed.

	“false” means that the L2 Switch will react to network traffic
and install flows on the switches to optimize traffic.
Currently, MAC-to-MAC flows are installed.

	default value is false

	reactive-flow-table-id
	The reactive flow will be installed on the specified flow table
of each switch

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 0

	reactive-flow-priority
	The reactive flow will be installed with the specified priority

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 10

	reactive-flow-idle-timeout
	The reactive flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 600

	reactive-flow-hard-timeout
	The reactive flow will timeout (removed from the switch) after
x seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-learning-only-mode” is set
to “false”

	default value is 300

Change configuration in L2 Switch

Note

For more information on Blueprint in OpenDaylight, see this wiki page [https://wiki.opendaylight.org/view/Using_Blueprint].

The following is an example on how to change the configurations of the L2 Switch components.

Use Case: Change the L2 switch from proactive flood mode to reactive mode.

Option 1: (external xml file)

	Navigate to etc folder under download distribution

	Create following directory structure:

mkdir - p opendaylight/datastore/initial/config

	Create a new xml file corresponding to <yang module name>_<container name>.xml:

vi arp-handler-config_arp-handler-config.xml

	Add following contents to the created file:

<?xml version="1.0" encoding="UTF-8"?>
 <arp-handler-config xmlns="urn:opendaylight:packet:arp-handler-config">
 <is-proactive-flood-mode>false</is-proactive-flood-mode>
</arp-handler-config>

	Restart the controller which injects the configurations.

Option 2: (REST URL)

	Make the following REST call

	URL: http://{{LOCALIP}}:8181/restconf/config/arp-handler-config:arp-handler-config/

	Content-Type: application/json

	Body:

{
 "arp-handler-config":
 {
 "is-proactive-flood-mode":false
 }
}

	Expected Result: 201 Created

	Restart the controller to see updated configurations. With out a restart
new configurations will be merged with old configurations which is not desirable.

Running the L2 Switch

To run the L2 Switch inside the OpenDaylight distribution simply
install the odl-l2switch-switch-ui feature;

feature:install odl-l2switch-switch-ui

Create a network using mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch ovsk,protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of 3
switches. Each switch will connect to the controller located at the
specified IP, i.e. 127.0.0.1

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command has the “mac” option, which makes it easier to
distinguish between Host MAC addresses and Switch MAC addresses.

Generating network traffic using mininet

h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Checking Address Observations

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a
browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:1

[image: Address Observations]
Address Observations

Checking Hosts

Host information is added to the Topology data tree.

	Host address

	Attachment point (link) to a node/switch

This host information and attachment point information can be checked
through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/network-topology:network-topology/topology/flow:1/

[image: Hosts]
Hosts

Checking STP status of each link

STP Status information is added to the Inventory data tree.

	A status of “forwarding” means the link is active and packets are
flowing on it.

	A status of “discarding” means the link is inactive and packets are
not sent over it.

The STP status of a link can be checked through a browser or a REST
Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:2

[image: STP status]
STP status

Miscellaneous mininet commands

link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

Link Aggregation Control Protocol User Guide

Overview

This section contains information about how to use the LACP plugin
project with OpenDaylight, including configurations.

Link Aggregation Control Protocol Architecture

The LACP Project within OpenDaylight implements Link Aggregation Control
Protocol (LACP) as an MD-SAL service module and will be used to
auto-discover and aggregate multiple links between an OpenDaylight
controlled network and LACP-enabled endpoints or switches. The result is
the creation of a logical channel, which represents the aggregation of
the links. Link aggregation provides link resiliency and bandwidth
aggregation. This implementation adheres to IEEE Ethernet specification
802.3ad [http://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf].

Configuring Link Aggregation Control Protocol

This feature can be enabled in the Karaf console of the OpenDaylight
Karaf distribution by issuing the following command:

feature:install odl-lacp-ui

Note

	Ensure that legacy (non-OpenFlow) switches are configured with
LACP mode active with a long timeout to allow for the LACP plugin
in OpenDaylight to respond to its messages.

	Flows that want to take advantage of LACP-configured Link
Aggregation Groups (LAGs) must explicitly use a OpenFlow group
table entry created by the LACP plugin. The plugin only creates
group table entries, it does not program any flows on its own.

Administering or Managing Link Aggregation Control Protocol

LACP-discovered network inventory and network statistics can be viewed
using the following REST APIs.

	List of aggregators available for a node:

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/<node-id>

Aggregator information will appear within the <lacp-aggregators>
XML tag.

	To view only the information of an aggregator:

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/<node-id>/lacp-aggregators/<agg-id>

The group ID associated with the aggregator can be found inside the
<lag-groupid> XML tag.

The group table entry information for the <lag-groupid> added for
the aggregator is also available in the opendaylight-inventory
node database.

	To view physical port information.

http://<ControllerIP>:8181/restconf/operational/opendaylight-inventory:nodes/node/<node-id>/node-connector/<node-connector-id>

Ports that are associated with an aggregator will have the tag
<lacp-agg-ref> updated with valid aggregator information.

Tutorials

The below tutorial demonstrates LACP LAG creation for a sample mininet
topology.

Sample LACP Topology creation on Mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,1 --switch ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of a switch
and a host. The switch will be connected to the controller.

Once the topology is discovered, verify the presence of a flow entry
with “dl_type” set to “0x8809” to handle LACP packets using the below
ovs-ofctl command:

ovs-ofctl -O OpenFlow13 dump-flows s1
 OFPST_FLOW reply (OF1.3) (xid=0x2):
 cookie=0x300000000000001e, duration=60.067s, table=0, n_packets=0, n_bytes=0, priority=5,dl_dst=01:80:c2:00:00:02,dl_type=0x8809 actions=CONTROLLER:65535

Configure an additional link between the switch (s1) and host (h1) using
the below command on mininet shell to aggregate 2 links:

mininet> py net.addLink(s1, net.get('h1'))
mininet> py s1.attach('s1-eth2')

The LACP module will listen for LACP control packets that are generated
from legacy switch (non-OpenFlow enabled). In our example, host (h1)
will act as a LACP packet generator. In order to generate the LACP
control packets, a bond interface has to be created on the host (h1)
with mode type set to LACP with long-timeout. To configure bond
interface, create a new file bonding.conf under the /etc/modprobe.d/
directory and insert the below lines in this new file:

alias bond0 bonding
options bonding mode=4

Here mode=4 is referred to LACP and the default timeout is set to long.

Enable bond interface and associate both physical interface h1-eth0 &
h1-eth1 as members of the bond interface on host (h1) using the below
commands on the mininet shell:

mininet> py net.get('h1').cmd('modprobe bonding')
mininet> py net.get('h1').cmd('ip link add bond0 type bond')
mininet> py net.get('h1').cmd('ip link set bond0 address <bond-mac-address>')
mininet> py net.get('h1').cmd('ip link set h1-eth0 down')
mininet> py net.get('h1').cmd('ip link set h1-eth0 master bond0')
mininet> py net.get('h1').cmd('ip link set h1-eth1 down')
mininet> py net.get('h1').cmd('ip link set h1-eth1 master bond0')
mininet> py net.get('h1').cmd('ip link set bond0 up')

Once the bond0 interface is up, the host (h1) will send LACP packets to
the switch (s1). The LACP Module will then create a LAG through exchange
of LACP packets between the host (h1) and switch (s1). To view the bond
interface output on the host (h1) side:

mininet> py net.get('h1').cmd('cat /proc/net/bonding/bond0')
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)
Bonding Mode: IEEE 802.3ad Dynamic link aggregation
Transmit Hash Policy: layer2 (0)
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0
802.3ad info
LACP rate: slow
Min links: 0
Aggregator selection policy (ad_select): stable
Active Aggregator Info:
 Aggregator ID: 1
 Number of ports: 2
 Actor Key: 33
 Partner Key: 27
 Partner Mac Address: 00:00:00:00:01:01

Slave Interface: h1-eth0
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:00:00:00:00:11
Aggregator ID: 1
Slave queue ID: 0

Slave Interface: h1-eth1
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:00:00:00:00:12
Aggregator ID: 1
Slave queue ID: 0

A corresponding group table entry would be created on the OpenFlow
switch (s1) with “type” set to “select” to perform the LAG
functionality. To view the group entries:

mininet>ovs-ofctl -O Openflow13 dump-groups s1
OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):
 group_id=60169,type=select,bucket=weight:0,actions=output:1,output:2

To apply the LAG functionality on the switches, the flows should be
configured with action set to GroupId instead of output port. A sample
add-flow configuration with output action set to GroupId:

sudo ovs-ofctl -O Openflow13 add-flow s1 dl_type=0x0806,dl_src=SRC_MAC,dl_dst=DST_MAC,actions=group:60169

LISP Flow Mapping User Guide

Overview

Locator/ID Separation Protocol

Locator/ID Separation Protocol
(LISP) [http://tools.ietf.org/html/rfc6830] is a technology that
provides a flexible map-and-encap framework that can be used for overlay
network applications such as data center network virtualization and
Network Function Virtualization (NFV).

LISP provides the following name spaces:

	Endpoint Identifiers
(EIDs) [http://tools.ietf.org/html/rfc6830#page-6]

	Routing Locators
(RLOCs) [http://tools.ietf.org/html/rfc6830#section-3]

In a virtualization environment EIDs can be viewed as virtual address
space and RLOCs can be viewed as physical network address space.

The LISP framework decouples network control plane from the forwarding
plane by providing:

	A data plane that specifies how the virtualized network addresses are
encapsulated in addresses from the underlying physical network.

	A control plane that stores the mapping of the virtual-to-physical
address spaces, the associated forwarding policies and serves this
information to the data plane on demand.

Network programmability is achieved by programming forwarding policies
such as transparent mobility, service chaining, and traffic engineering
in the mapping system; where the data plane elements can fetch these
policies on demand as new flows arrive. This chapter describes the LISP
Flow Mapping project in OpenDaylight and how it can be used to enable
advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at
OpenOverlayRouter.org [http://www.openoverlayrouter.org/] in the open source community on
the following platforms:

	Linux

	Android

	OpenWRT

For more details and support for LISP data plane software please visit
the OOR web site [http://www.openoverlayrouter.org/].

LISP Flow Mapping Service

The LISP Flow Mapping service provides LISP Mapping System services.
This includes LISP Map-Server and LISP Map-Resolver services to store
and serve mapping data to data plane nodes as well as to OpenDaylight
applications. Mapping data can include mapping of virtual addresses to
physical network address where the virtual nodes are reachable or hosted
at. Mapping data can also include a variety of routing policies
including traffic engineering and load balancing. To leverage this
service, OpenDaylight applications and services can use the northbound
REST API to define the mappings and policies in the LISP Mapping
Service. Data plane devices capable of LISP control protocol can
leverage this service through a southbound LISP plugin. LISP-enabled
devices must be configured to use this OpenDaylight service as their Map
Server and/or Map Resolver.

The southbound LISP plugin supports the LISP control protocol
(Map-Register, Map-Request, Map-Reply messages), and can also be used to
register mappings in the OpenDaylight mapping service.

LISP Flow Mapping Architecture

The following figure shows the various LISP Flow Mapping modules.

[image: LISP Mapping Service Internal Architecture]
LISP Mapping Service Internal Architecture

A brief description of each module is as follows:

	DAO (Data Access Object): This layer separates the LISP logic
from the database, so that we can separate the map server and map
resolver from the specific implementation of the mapping database.
Currently we have an implementation of this layer with an in-memory
HashMap, but it can be switched to any other key/value store and you
only need to implement the ILispDAO interface.

	Map Server: This module processes the adding or registration of
authentication tokens (keys) and mappings. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	Map Resolver: This module receives and processes the mapping
lookup queries and provides the mappings to requester. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	RPC/RESTCONF: This is the auto-generated RESTCONF-based
northbound API. This module enables defining key-EID associations as
well as adding mapping information through the Map Server. Key-EID
associations and mappings can also be queried via this API.

	GUI: This module enables adding and querying the mapping service
through a GUI based on ODL DLUX.

	Neutron: This module implements the OpenDaylight Neutron Service
APIs. It provides integration between the LISP service and the
OpenDaylight Neutron service, and thus OpenStack.

	Java API: The API module exposes the Map Server and Map Resolver
capabilities via a Java API.

	LISP Proto: This module includes LISP protocol dependent data
types and associated processing.

	In Memory DB: This module includes the in memory database
implementation of the mapping service.

	LISP Southbound Plugin: This plugin enables data plane devices
that support LISP control plane protocol (see
LISP [http://tools.ietf.org/search/rfc6830]) to register and
query mappings to the LISP Flow Mapping via the LISP control plane
protocol.

Configuring LISP Flow Mapping

In order to use the LISP mapping service for registering EID to RLOC
mappings from northbound or southbound, keys have to be defined for the
EID prefixes first. Once a key is defined for an EID prefix, it can be
used to add mappings for that EID prefix multiple times. If the service
is going to be used to process Map-Register messages from the southbound
LISP plugin, the same key must be used by the data plane device to
create the authentication data in the Map-Register messages for the
associated EID prefix.

The etc/custom.properties file in the Karaf distribution allows
configuration of several OpenDaylight parameters. The LISP service has
the following properties that can be adjusted:

	lisp.mappingOverwrite (default: true)

	Configures handling of mapping updates. When set to true (default)
a mapping update (either through the southbound plugin via a
Map-Register message or through a northbound API PUT REST call) the
existing RLOC set associated to an EID prefix is overwritten. When
set to false, the RLOCs of the update are merged to the existing
set.

	lisp.smr (default: false)

	Enables/disables the Solicit-Map-Request
(SMR) [http://tools.ietf.org/html/rfc6830#section-6.6.2]
functionality. SMR is a method to notify changes in an EID-to-RLOC
mapping to “subscribers”. The LISP service considers all
Map-Request’s source RLOC as a subscriber to the requested EID
prefix, and will send an SMR control message to that RLOC if the
mapping changes.

	lisp.elpPolicy (default: default)

	Configures how to build a Map-Reply southbound message from a
mapping containing an Explicit Locator Path (ELP) RLOC. It is used
for compatibility with dataplane devices that don’t understand the
ELP LCAF format. The default setting doesn’t alter the mapping,
returning all RLOCs unmodified. The both setting adds a new RLOC
to the mapping, with a lower priority than the ELP, that is the next
hop in the service chain. To determine the next hop, it searches the
source RLOC of the Map-Request in the ELP, and chooses the next hop,
if it exists, otherwise it chooses the first hop. The replace
setting adds a new RLOC using the same algorithm as the both
setting, but using the origin priority of the ELP RLOC, which is
removed from the mapping.

	lisp.lookupPolicy (default: northboundFirst)

	Configures the mapping lookup algorithm. When set to
northboundFirst mappings programmed through the northbound API
will take precedence. If no northbound programmed mappings exist,
then the mapping service will return mappings registered through the
southbound plugin, if any exists. When set to
northboundAndSouthbound the mapping programmed by the northbound
is returned, updated by the up/down status of these mappings as
reported by the southbound (if existing).

	lisp.mappingMerge (default: false)

	Configures the merge policy on the southbound registrations through
the LISP SB Plugin. When set to false, only the latest mapping
registered through the SB plugin is valid in the southbound mapping
database, independent of which device it came from. When set to
true, mappings for the same EID registered by different devices
are merged together and a union of the locators is maintained as the
valid mapping for that EID.

Textual Conventions for LISP Address Formats

In addition to the more common IPv4, IPv6 and MAC address data types,
the LISP control plane supports arbitrary Address Family
Identifiers [http://www.iana.org/assignments/address-family-numbers]
assigned by IANA, and in addition to those the LISP Canoncal Address
Format (LCAF) [https://tools.ietf.org/html/draft-ietf-lisp-lcaf].

The LISP Flow Mapping project in OpenDaylight implements support for
many of these different address formats, the full list being summarized
in the following table. While some of the address formats have well
defined and widely used textual representation, many don’t. It became
necessary to define a convention to use for text rendering of all
implemented address types in logs, URLs, input fields, etc. The below
table lists the supported formats, along with their AFI number and LCAF
type, including the prefix used for disambiguation of potential overlap,
and examples output.

	Name
	AFI
	LCAF
	Prefix
	Text Rendering

	No Address
	0
	
	

	no:
	No Address Present

	IPv4 Prefix
	1
	
	

	ipv4:
	192.0.2.0/24

	IPv6 Prefix
	2
	
	

	ipv6:
	2001:db8::/32

	MAC Address
	16389
	
	

	mac:
	00:00:5E:00:53:00

	Distinguished
Name
	17
	
	

	dn:
	stringAsIs

	AS Number
	18
	
	

	as:
	AS64500

	AFI List
	16387
	1
	list:
	{192.0.2.1,192.0.2.2,2001:db8::1
}

	Instance ID
	16387
	2
	
	

	[223] 192.0.2.0/24

	Application
Data
	16387
	4
	appdata:
	192.0.2.1!128!17!80-81!6667-7000

	Explicit
Locator Path
	16387
	10
	elp:
	{192.0.2.1→192.0.2.2|lps→192.0.
2.3}

	Source/Destina
tion
Key
	16387
	12
	srcdst:
	192.0.2.1/32|192.0.2.2/32

	Key/Value
Address Pair
	16387
	15
	kv:
	192.0.2.1⇒192.0.2.2

	Service Path
	16387
	N/A
	sp:
	42(3)

Table: LISP Address Formats

Please note that the forward slash character / typically separating
IPv4 and IPv6 addresses from the mask length is transformed into %2f
when used in a URL.

Karaf commands

In this section we will discuss two types of Karaf commands: built-in,
and LISP specific. Some built-in commands are quite useful, and are
needed for the tutorial, so they will be discussed here. A reference of
all LISP specific commands, added by the LISP Flow Mapping project is
also included. They are useful mostly for debugging.

Useful built-in commands

	help

	Lists all available command, with a short description of each.

	help <command_name>

	Show detailed help about a specific command.

	feature:list [-i]

	Show all locally available features in the Karaf container. The
-i option lists only features that are currently installed. It
is possible to use | grep to filter the output (for all
commands, not just this one).

	feature:install <feature_name>

	Install feature feature_name.

	log:set <level> <class>

	Set the log level for class to level. The default log level
for all classes is INFO. For debugging, or learning about LISP
internals it is useful to run
log:set TRACE org.opendaylight.lispflowmapping right after Karaf
starts up.

	log:display

	Outputs the log file to the console, and returns control to the
user.

	log:tail

	Continuously shows log output, requires Ctrl+C to return to the
console.

LISP specific commands

The available lisp commands can always be obtained by
help mappingservice. Currently they are:

	mappingservice:addkey

	Add the default password password for the IPv4 EID prefix
0.0.0.0/0 (all addresses). This is useful when experimenting with
southbound devices, and using the REST interface would be combersome
for whatever reason.

	mappingservice:mappings

	Show the list of all mappings stored in the internal non-persistent
data store (the DAO), listing the full data structure. The output is
not human friendly, but can be used for debugging.

LISP Flow Mapping Karaf Features

LISP Flow Mapping has the following Karaf features that can be installed
from the Karaf console:

	odl-lispflowmapping-msmr

	This includes the core features required to use the LISP Flow
Mapping Service such as mapping service and the LISP southbound
plugin.

	odl-lispflowmapping-ui

	This includes the GUI module for the LISP Mapping Service.

	odl-lispflowmapping-neutron

	This is the experimental Neutron provider module for LISP mapping
service.

Tutorials

This section provides a tutorial demonstrating various features in this
service. We have included tutorials using two forwarding platforms:

	Using Open Overlay Router (OOR) [https://github.com/OpenOverlayRouter/oor#overview]

	Using FD.io [https://wiki.fd.io/view/ONE]

Both have different approaches to create the overlay but ultimately do the
same job. Details of both approaches have been explained below.

Creating a LISP overlay with OOR

This section provides instructions to set up a LISP network of three
nodes (one “client” node and two “server” nodes) using OOR as data
plane LISP nodes and the LISP Flow Mapping project from OpenDaylight as
the LISP programmable mapping system for the LISP network.

Overview

The steps shown below will demonstrate setting up a LISP network between
a client and two servers, then performing a failover between the two
“server” nodes.

Prerequisites

	OpenDaylight Boron

	The Postman Chrome App: the most convenient way to follow along
this tutorial is to use the Postman
App [https://www.getpostman.com/apps]
to edit and send the requests. The project git repository hosts a
collection of the requests that are used in this tutorial in the
resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection
file. You can import this file to Postman by clicking Import at the
top, choosing Download from link and then entering the following
URL:
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/boron.
Alternatively, you can save the file on your machine, or if you have
the repository checked out, you can import from there. You will need
to create a new Postman Environment and define some variables within:
controllerHost set to the hostname or IP address of the machine
running the OpenDaylight instance, and restconfPort to 8181, if you didn’t
modify the default controller settings.

	OOR version 1.0 or later The README.md lists the dependencies needed
to build it from source.

	A virtualization platform

Target Environment

The three LISP data plane nodes and the LISP mapping system are assumed
to be running in Linux virtual machines, which have the eth0
interface in NAT mode to allow outside internet access and eth1
connected to a host-only network, with the following IP addresses
(please adjust configuration files, JSON examples, etc. accordingly if
you’re using another addressing scheme):

	Node
	Node Type
	IP Address

	controller
	OpenDaylight
	192.168.16.11

	client
	OOR
	192.168.16.30

	server1
	OOR
	192.168.16.31

	server2
	OOR
	192.168.16.32

	service-node
	OOR
	192.168.16.33

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial]

In LISP terminology client, server1 and server2 are mobile nodes (MN in OOR),
controller is a MS/MR and service-node is a RTR.

Note

While the tutorial uses OOR as the data plane, it could be any
LISP-enabled hardware or software router (commercial/open source).

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow
Mapping RPC REST API. This is so that you can see the actual request
URLs and body content on the page.

	Install and run OpenDaylight Boron release on the controller VM.
Please follow the general OpenDaylight Boron Installation Guide
for this step. Once the OpenDaylight controller is running install
the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	Install OOR on the client, server1, server2, and
service-node VMs following the installation instructions from
the OOR README
file [https://github.com/OpenOverlayRouter/oor#software-prerequisites].

	Configure the OOR installations from the previous step. Take a look
at the oor.conf.example to get a general idea of the structure
of the conf file. First, check if the file /etc/oor.conf exists.
If the file doesn’t exist, create the file /etc/oor.conf. Set the
EID in /etc/oor.conf file from the IP address space selected
for your virtual/LISP network. In this tutorial the EID of the
client is set to 1.1.1.1/32, and that of server1 and
server2 to 2.2.2.2/32.

	Set the RLOC interface to eth1 in each oor.conf file. LISP
will determine the RLOC (IP address of the corresponding VM) based
on this interface.

	Set the Map-Resolver address to the IP address of the
controller, and on the client the Map-Server too. On
server1 and server2 remove the Map-Server configuration, so
that it doesn’t interfere with the mappings on the controller, since
we’re going to program them manually.

	Modify the “key” parameter in each oor.conf file to a
key/password of your choice (password in this tutorial).

Note

The resources/tutorial/OOR directory in the stable/boron
branch of the project git repository has the files used in the
tutorial checked
in [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/OOR;hb=refs/heads/stable/boron],
so you can just copy the files to /etc/oor.conf on the
respective VMs. You will also find the JSON files referenced
below in the same directory.

	Define a key and EID prefix association in OpenDaylight using the
RPC REST API for the client EID (1.1.1.1/32) to allow
registration from the southbound. Since the mappings for the server
EID will be configured from the REST API, no such association is
necessary. Run the below command on the controller (or any
machine that can reach controller, by replacing localhost with
the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
 --data @add-key.json

where the content of the add-key.json file is the following:

{
 "authentication-key": {
 "eid-uri": "ipv4:1.1.1.1/32",
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "1.1.1.1/32"
 },
 "mapping-authkey": {
 "key-string": "password",
 "key-type": 1
 }
 }
}

	Verify that the key is added properly by requesting the following
URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
 "authentication-key":[
 {
 "eid-uri":"ipv4:1.1.1.1/32",
 "eid":{
 "ipv4-prefix":"1.1.1.1/32",
 "address-type":"ietf-lisp-address-types:ipv4-prefix-afi"
 },
 "mapping-authkey":{
 "key-string":"password"
 ,"key-type":1
 }
 }
]
}

	Run the oor OOR daemon on all VMs:

oor -f /etc/oor.conf

For more information on accessing OOR logs, take a look at
OOR README [https://github.com/OpenOverlayRouter/oor#readme]

	The client OOR node should now register its EID-to-RLOC
mapping in OpenDaylight. To verify you can lookup the corresponding
EIDs via the REST API

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the
southbound interface is using the
`lig <https://github.com/davidmeyer/lig>`__ open source tool.

	Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the
controller, pointing to server1 and server2 with a higher
priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @mapping.json

where the mapping.json file looks like this:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "server1",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.31"
 }
 },
 {
 "locator-id": "server2",
 "priority": 2,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.32"
 }
 }
]
 }
 }
}

Here the priority of the second RLOC (192.168.16.32 - server2)
is 2, a higher numeric value than the priority of 192.168.16.31,
which is 1. This policy is saying that server1 is preferred to
server2 for reaching EID 2.2.2.2/32. Note that lower priority
value has higher preference in LISP.

	Verify the correct registration of the 2.2.2.2/32 EID:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/

	Now the LISP network is up. To verify, log into the client VM
and ping the server EID:

ping 2.2.2.2

	Let’s test fail-over now. Suppose you had a service on server1
which became unavailable, but server1 itself is still reachable.
LISP will not automatically fail over, even if the mapping for
2.2.2.2/32 has two locators, since both locators are still reachable
and uses the one with the higher priority (lowest priority value).
To force a failover, we need to set the priority of server2 to a
lower value. Using the file mapping.json above, swap the priority
values between the two locators (lines 14 and 28 in mapping.json)
and repeat the request from step 11. You can also repeat step 12 to
see if the mapping is correctly registered. If you leave the ping
on, and monitor the traffic using wireshark, you can see that the
ping traffic to 2.2.2.2 will be diverted from the server1 RLOC
to the server2 RLOC.

With the default OpenDaylight configuration the failover should be
near instantaneous (we observed 3 lost pings in the worst case),
because of the LISP Solicit-Map-Request (SMR)
mechanism [http://tools.ietf.org/html/rfc6830#section-6.6.2] that
can ask a LISP data plane element to update its mapping for a
certain EID (enabled by default). It is controlled by the
lisp.smr variable in etc/custom.porperties. When enabled,
any mapping change from the RPC interface will trigger an SMR packet
to all data plane elements that have requested the mapping in the
last 24 hours (this value was chosen because it’s the default TTL of
Cisco IOS xTR mapping registrations). If disabled, ITRs keep their
mappings until the TTL specified in the Map-Reply expires.

	To add a service chain into the path from the client to the server,
we can use an Explicit Locator Path, specifying the service-node
as the first hop and server1 (or server2) as the second hop.
The following will achieve that:

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @elp.json

where the elp.json file is as follows:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "service-node",
 "address": "192.168.16.33",
 "lrs-bits": "strict"
 },
 {
 "hop-id": "server1",
 "address": "192.168.16.31",
 "lrs-bits": "strict"
 }
]
 }
 }
 }
]
 }
 }
}

After the mapping for 2.2.2.2/32 is updated with the above, the ICMP
traffic from client to server1 will flow through the
service-node. You can confirm this in the OOR logs, or by
sniffing the traffic on either the service-node or server1.
Note that service chains are unidirectional, so unless another ELP
mapping is added for the return traffic, packets will go from
server1 to client directly.

	Suppose the service-node is actually a firewall, and traffic is
diverted there to support access control lists (ACLs). In this
tutorial that can be emulated by using iptables firewall rules
in the service-node VM. To deny traffic on the service chain
defined above, the following rule can be added:

iptables -A OUTPUT --dst 192.168.16.31 -j DROP

The ping from the client should now have stopped.

In this case the ACL is done on the destination RLOC. There is an
effort underway in the OOR community to allow filtering on EIDs,
which is the more logical place to apply ACLs.

	To delete the rule and restore connectivity on the service chain,
delete the ACL by issuing the following command:

iptables -D OUTPUT --dst 192.168.16.31 -j DROP

which should restore connectivity.

Creating a simple LISP overlay with FD.io

In this section, we use the Overlay Network Engine (ONE) project in FD.io
to facilitate fully scripted setup and testing of a LISP/VXLAN-GPE network.
Overlay Network Engine (ONE) is a FD.io [https://fd.io/] project that enables programmable
dynamic software defined overlays. Details about this project can be
found in ONE wiki [https://wiki.fd.io/view/ONE].

The steps shown below will demonstrate setting up a LISP network between
a client and a server using VPP. We demonstrate how to use VPP lite to
build a IP4 LISP overlay on an Ubuntu host using namespaces and af_packet
interfaces. All configuration files used in the tutorials can be found
here [https://gerrit.fd.io/r/gitweb?p=one.git;a=tree;f=tutorial;hb=HEAD].

Prerequisites

	OpenDaylight Boron

	The Postman Chrome App: Please follow the instructions and import
postman collection from the following URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=HEAD.

	Vagrant (optional): Download it from Vagrant website [https://www.vagrantup.com/downloads.html]
and follow the setup instructions.

Target Environment

Unlike the case with OOR, we use network namespace functionality of Linux
to create the overlay in this case. The following table contains ip addresses
of nodes in the overlay topology used in the tutorial. Our objective will be to
create this topology and be able to ping from client to server through an
intermediary hop, service node, which is a rtr node providing the
service of re-encapsulation. So, all the packets from client to server
will be through this service node.

	Node
	Node Type
	IP Address

	controller
	OpenDaylight
	6.0.3.100

	client
	VPP
	6.0.2.2

	server
	VPP
	6.0.4.4

	service node
	VPP
	6.0.3.3

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial for FD.io]

Instructions

Follow the instructions below sequentially.

	Pull the VPP code anonymously using:

git clone https://gerrit.fd.io/r/vpp

	Then, use the vagrant file from repository to build virtual machine
with proper environment.

cd vpp/build-root/vagrant/
vagrant up
vagrant ssh

	In case there is any error from vagrant up, try vargant ssh. if
it works, no worries. If it still doesn’t work, you can try any Ubuntu virtual
machine. Or sometimes there is an issue with the Vagrant properly copying
the VPP repo code from the host VM after the first installation. In that
case /vpp doesn’t exist. In both cases, follow the instructions
from below.

	Clone the code in / directory. So, the codes will be in /vpp.

	
	Run the following commands:

	cd /vpp/build-root
make distclean
./bootstrap.sh
make V=0 PLATFORM=vpp TAG=vpp install-deb
sudo dpkg -i /vpp/build-root/*.deb

Alternative and more detailed build instructions can be found in
VPP’s wiki [https://wiki.fd.io/view/VPP/Build,_install,_and_test_images]

	By now, you should have a Ubuntu VM with VPP repository in /vpp
with sudo access. Now, we need VPP Lite build. The following commands
builds VPP Lite.

cd /vpp
export PLATFORM=vpp_lite
make build

Successful build create the binary in /vpp/build-root/install-vpp_lite_debug-native/vpp/bin

	Install bridge-utils and ethtool if needed by using following commands:

sudo apt-get install bridge-utils ethtool

	Now, install and run OpenDaylight Boron release on the VM. Please
follow the general OpenDaylight Boron Installation Guide for this
step from Installing OpenDaylight. Before running OpenDaylight, we need
to change the configuration for RTR to work. Update etc/custom.properties
with the lisp.elpPolicy to be replace.

lisp.elpPolicy = replace

Then, run OpenDaylight. For details regarding configuring LISP
Flow Mapping, please take a look at Configuring LISP Flow Mapping.
Once the OpenDaylight controller is running install the odl-lispflowmapping-msmr
feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It may take quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	For setting up VPP, get the files from resources/tutorial/FD_io
folder of the lispflowmapping repo. The files can also be found here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/boron].
Copy the vpp1.config, vpp2.config and rtr.config files in
/etc/vpp/lite/.

	In this example, VPP doesn’t make any southbound map registers to OpenDaylight.
So, we add the mappings directly from northbound. For that, we need
to add the mappings to OpenDaylight via RESTCONF API.

Register EID-to-RLOC mapping of the Client EID 6.0.2.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.2.0%2f24/northbound/ \
 --data @epl1.json

Content of epl1.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.2.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.2.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.1",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

Similarly add EID-to-RLOC mapping of the Server EID 6.0.4.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.4.0%2f24/northbound/ \
 --data @epl2.json

Content of elp2.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.4.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.4.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.2",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

The JSON files regarding these can be found in here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/boron].
Even though there is no southbound registration for mapping to OpenDaylight, using
northbound policy we can specify mappings, when Client requests for
the Server eid, Client gets a reply from OpenDaylight.

	Assuming all files have been created and OpenDaylight has been configured as
explained above, execute the host script you’ve created or the topology_setup.sh
script from here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/boron].

	If all goes well, you can now test connectivity between the namespaces with:

sudo ip netns exec vpp-ns1 ping 6.0.4.4

	Traffic and control plane message exchanges can be checked with a wireshark
listening on the odl interface.

	
Important

Delete the topology by running the topology_setup.sh with clean argument.

sudo ./topology_setup.sh clean

LISP Flow Mapping Support

For support the lispflowmapping project can be reached by emailing the
developer mailing list: lispflowmapping-dev@lists.opendaylight.org or on
the #opendaylight-lispflowmapping IRC channel on irc.freenode.net.

Additional information is also available on the Lisp Flow Mapping
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main]

Clustering in LISP Flow Mapping

Documentation regarding setting up a 3-node OpenDaylight cluster is
described at following odl wiki
page [https://wiki.opendaylight.org/view/Running_and_testing_an_OpenDaylight_Cluster#Three-node_cluster].

To turn on clustering in LISP Flow Mapping it is necessary:

	run script deploy.py script. This script is in
integration-test [https://git.opendaylight.org/gerrit/integration/test]
project placed at tools/clustering/cluster-deployer/deploy.py. A
whole deploy.py command can looks like:

{path_to_integration_test_project}/tools/clustering/cluster-deployer/deploy.py

–distribution {path_to_distribution_in_zip_format}

–rootdir {dir_at_remote_host_where_copy_odl_distribution}

–hosts {ip1},{ip2},{ip3}

–clean

–template lispflowmapping

–rf 3

–user {user_name_of_remote_hosts}

–password {password_to_remote_hosts}

Running this script will cause that specified distribution to be
deployed to remote hosts specified through their IP adresses with
using credentials (user and password). The distribution will
be copied to specified rootdir. As part of the deployment, a
template which contains a set of controller files which are
different from standard ones. In this case it is specified in

{path_to_integration_test_project}/tools/clustering/cluster-deployer/lispflowmapping
directory.

Lispflowmapping templates are part of integration-test project. There
are 5 template files:

	akka.conf.template

	jolokia.xml.template

	module-shards.conf.template

	modules.conf.template

	org.apache.karaf.features.cfg.template

After copying the distribution, it is unzipped and started on all of
specified hosts in cluster aware manner.

Remarks

It is necessary to have:

	unzip program installed on all of the host

	set all remote hosts /etc/sudoers files to not requiretty (should
only matter on debian hosts)

NATApp User Guide

The NATApp User Guide contains information about configuration,
administration, management, using and troubleshooting the feature.

Overview

NATApp provides network different types of address translation
functionality for OpenDaylight. After installing this feature, network
administrators can select the type of NAT functionality they want to
enable by sending a REST API command. Subsequently, the user may enter
the gloabl IP addresses to the YANG Data Store through REST APIs. When
an OpenDaylight managed enterprise network with local IPs tries to
connect to external networks such as Internet, NATApp comes into play
and installs appropriate flow rules at the OpenFlow switch for
bidirectional NAT translation.

NATApp Architecture

NATApp listens on OpenFlow southbound interface for Packet_In messages.
The application parses the message for header information. If the
received message has a local IP address the application installs rules
on the OpenFlow switch for network address translation from local to
global IP addresses. NATApp has NATPacketHandler class that implements
the PacketProcessing interface to override the OnPacketReceived
notification by which the application is notified of Packet_In
messages.

Configuring NATApp

REST APIs are available at the following URI:
http://localhost:8181/apidoc/explorer/index.html#!/natapp(2016-01-25)

Mininet Topology

sudo mn --mac --topo=single,10 --controller=remote,ip=127.0.0.1,port=6653

Install a flow to flood the ARP packets.

sh ovs-ofctl add-flow s1 dl_type=0x0806,actions=FLOOD

Check the flow for ARP Flooding

sh ovs-ofctl dump-flows s1

Administering or Managing NATApp

Static NAT and Dynamic NAT

First user has to select the type of NAT he wants by using the following
URI:

	POST URI

	http://localhost:8181/restconf/operations/natapp:nat-type

	Sample Input

	{“natapp:input”: { “type:static”:”“}}

	Sample Input

	{“natapp:input”: { “type:dynamic”:”“}}

Then user can inject the Global IPs using the following URI

	PUT URI

	http://localhost:8181/restconf/config/natapp:staticNat/

	Sample Input

	{“natapp:staticNat”: {“globalIP”:[“172.0.0.1/32”,”172.0.0.2/32”,
“172.0.0.3/32”, “172.0.0.4/32”, “172.0.0.5/32”, “172.0.0.6/32”,
“172.0.0.7/32”, “172.0.0.8/32”, “172.0.0.9/32”, “172.0.0.10/32”] }}

From mininet verify any pair of hosts can ping each other. The NATApp
modifies the destination IP address of the ICMP Echo request with the
global IP address. Check the mininet flows for this modification.

sh ovs-ofctl dump-flows s1

Port Address Translation (PAT)

User can select PAT by using the following URI.

	POST URI

	http://localhost:8181/restconf/operations/natapp:nat-type

	Sample Input

	{“natapp:input”: { “type:pat”:”“}}

Then user can inject the Global IPs using the following URI

	PUT URI

	http://localhost:8181/restconf/config/natapp:patNat/

	Sample Input

	{“natapp:patNat”: {“globalIP”:”172.0.0.1/32”}}

From Mininet use the command as xterm h1 h5. At h5 give the following
commands

$ ip r add 172.0.0.1/32 dev h5-eth0
$ arp -s 172.0.0.1 00:00:00:00:00:01
$ nc -l 5000

At h1, Give the following command

$ echo "TCS" | nc -p 8000 10.0.0.5 5000

mininet> sh ovs-ofctl dump-flows s1
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=811.272s, table=0, n_packets=5, n_bytes=342, idle_age=13, priority=210,tcp,in_port=1,tp_src=8000 actions=mod_nw_src:172.0.0.1,mod_tp_src:2000,output:5
 cookie=0x0, duration=499.843s, table=0, n_packets=2, n_bytes=84, idle_age=13, arp actions=FLOOD
 cookie=0x0, duration=811.203s, table=0, n_packets=3, n_bytes=206, idle_age=13, priority=209,tcp,in_port=5,tp_dst=2000 actions=mod_nw_dst:10.0.0.1,mod_tp_dst:8000,output:1

NEtwork MOdeling (NEMO)

This section describes how to use the NEMO feature in OpenDaylight
and contains contains configuration, administration, and management
sections for the feature.

Overview

With the network becoming more complicated, users and applications must handle
more complex configurations to deploy new services. NEMO project aims to simplify
the usage of network by providing a new intent northbound interface (NBI). Instead
of tons of APIs, users/applications just need to describe their intent without
caring about complex physical devices and implementation means. The intent will
be translated into detailed configurations on the devices in the NEMO engine. A
typical scenario is user just need to assign which nodes to implement an VPN,
without considering which technique is used.

NEMO Engine Architecture

	NEMO API
* The NEMO API provide users the NEMO model, which guides users how to construct the
instance of intent, and how to construct the instance of predefined types.

	NEMO REST
* The NEMO REST provides users REST APIs to access NEMO engine, that is, user could
transmit the intent instance to NEMO engine through basic REST methods.

	NEMO UI
* The NEMO UI provides users a visual interface to deploy service with NEMO model,
and display the state in DLUX UI.

Installing NEMO engine

To install NEMO engine, download OpenDaylight and use the Karaf console
to install the following feature:

odl-nemo-engine-ui

Administering or Managing NEMO Engine

After install features NEMO engine used, user could use NEMO to express his intent
with NEMO UI or REST APIs in apidoc.

Go to http://{controller-ip}:8181/index.html. In this interface, user could go to
NEMO UI, and use the tabs and input box to input intent, and see the state of intent
deployment with the image.

Go to http://{controller-ip}:8181/apidoc/explorer/index.html. In this interface, user
could REST methods “POST”, “PUT”,”GET” and “DELETE” to deploy intent or query the state
of deployment.

Tutorials

Below are tutorials for NEMO Engine.

Using NEMO Engine

The purpose of the tutorial is to describe how to use use UI to deploy intent.

Overview

This tutorial will describe how to use the NEMO UI to check the operated resources, the steps
to deploy service, and the ultimate state.

Prerequisites

To understand the tutorial well, we hope there are a physical or virtual network exist, and
OpenDaylight with NEMO engine must be deployed in one host.

Target Environment

The intent expressed by NEMO model is depended on network resources, so user need to have enough
resources to use, or else, the deployment of intent will fail.

Instructions

	Run the OpenDaylight distribution and install odl-nemo-engine-ui from the Karaf console.

	Go to http://{controller-ip}:8181/index.html, and sign in.

	Go the NEMO UI interface. And Register a new user with user name, password, and tenant.

	Check the existing resources to see if it is consistent with yours.

	Deploy service with NEMO model by the create intent menu.

NETCONF User Guide

Overview

NETCONF is an XML-based protocol used for configuration and monitoring
devices in the network. The base NETCONF protocol is described in
RFC-6241 [http://tools.ietf.org/html/rfc6241].

NETCONF in OpenDaylight:.

OpenDaylight supports the NETCONF protocol as a northbound server as
well as a southbound plugin. It also includes a set of test tools for
simulating NETCONF devices and clients.

Southbound (netconf-connector)

The NETCONF southbound plugin is capable of connecting to remote NETCONF
devices and exposing their configuration/operational datastores, RPCs
and notifications as MD-SAL mount points. These mount points allow
applications and remote users (over RESTCONF) to interact with the
mounted devices.

In terms of RFCs, the connector supports:

	RFC-6241 [http://tools.ietf.org/html/rfc6241]

	RFC-5277 [https://tools.ietf.org/html/rfc5277]

	RFC-6022 [https://tools.ietf.org/html/rfc6022]

	draft-ietf-netconf-yang-library-06 [https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06]

Netconf-connector is fully model-driven (utilizing the YANG modeling
language) so in addition to the above RFCs, it supports any
data/RPC/notifications described by a YANG model that is implemented by
the device.

Tip

NETCONF southbound can be activated by installing
odl-netconf-connector-all Karaf feature.

Netconf-connector configuration

There are 2 ways for configuring netconf-connector: NETCONF or RESTCONF.
This guide focuses on using RESTCONF.

Default configuration

The default configuration contains all the necessary dependencies (file:
01-netconf.xml) and a single instance of netconf-connector (file:
99-netconf-connector.xml) called controller-config which connects
itself to the NETCONF northbound in OpenDaylight in a loopback fashion.
The connector mounts the NETCONF server for config-subsystem in order to
enable RESTCONF protocol for config-subsystem. This RESTCONF still goes
via NETCONF, but using RESTCONF is much more user friendly than using
NETCONF.

Spawning additional netconf-connectors while the controller is running

Preconditions:

	OpenDaylight is running

	In Karaf, you must have the netconf-connector installed (at the Karaf
prompt, type: feature:install odl-netconf-connector-all); the
loopback NETCONF mountpoint will be automatically configured and
activated

	Wait until log displays following entry:
RemoteDevice{controller-config}: NETCONF connector initialized
successfully

To configure a new netconf-connector you need to send following request
to RESTCONF:

POST
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

Headers:

	Accept application/xml

	Content-Type application/xml

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type>
 <name>new-netconf-device</name>
 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">127.0.0.1</address>
 <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">830</port>
 <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">admin</username>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">admin</password>
 <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only>
 <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type>
 <name>global-event-executor</name>
 </event-executor>
 <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-registry>
 <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type>
 <name>dom-broker</name>
 </dom-registry>
 <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type>
 <name>global-netconf-dispatcher</name>
 </client-dispatcher>
 <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadpool</type>
 <name>global-netconf-processing-executor</name>
 </processing-executor>
 <keepalive-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:scheduled-threadpool</type>
 <name>global-netconf-ssh-scheduled-executor</name>
 </keepalive-executor>
</module>

This spawns a new netconf-connector which tries to connect to (or mount)
a NETCONF device at 127.0.0.1 and port 830. You can check the
configuration of config-subsystem’s configuration datastore. The new
netconf-connector will now be present there. Just invoke:

GET
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

The response will contain the module for new-netconf-device.

Right after the new netconf-connector is created, it writes some useful
metadata into the datastore of MD-SAL under the network-topology
subtree. This metadata can be found at:

GET
http://localhost:8181/restconf/operational/network-topology:network-topology/

Information about connection status, device capabilities, etc. can be
found there.

Connecting to a device not supporting NETCONF monitoring

The netconf-connector in OpenDaylight relies on ietf-netconf-monitoring
support when connecting to remote NETCONF device. The
ietf-netconf-monitoring support allows netconf-connector to list and
download all YANG schemas that are used by the device. NETCONF connector
can only communicate with a device if it knows the set of used schemas
(or at least a subset). However, some devices use YANG models internally
but do not support NETCONF monitoring. Netconf-connector can also
communicate with these devices, but you have to side load the necessary
yang models into OpenDaylight’s YANG model cache for netconf-connector.
In general there are 2 situations you might encounter:

1. NETCONF device does not support ietf-netconf-monitoring but it does
list all its YANG models as capabilities in HELLO message

This could be a device that internally uses only ietf-inet-types YANG
model with revision 2010-09-24. In the HELLO message that is sent from
this device there is this capability reported:

urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24

For such devices you only need to put the schema into folder
cache/schema inside your Karaf distribution.

Important

The file with YANG schema for ietf-inet-types has to be called
ietf-inet-types@2010-09-24.yang. It is the required naming format of
the cache.

2. NETCONF device does not support ietf-netconf-monitoring and it does
NOT list its YANG models as capabilities in HELLO message

Compared to device that lists its YANG models in HELLO message, in this
case there would be no capability with ietf-inet-types in the HELLO
message. This type of device basically provides no information about the
YANG schemas it uses so its up to the user of OpenDaylight to properly
configure netconf-connector for this device.

Netconf-connector has an optional configuration attribute called
yang-module-capabilities and this attribute can contain a list of “YANG
module based” capabilities. So by setting this configuration attribute,
it is possible to override the “yang-module-based” capabilities reported
in HELLO message of the device. To do this, we need to modify the
configuration of netconf-connector by adding this XML (It needs to be
added next to the address, port, username etc. configuration elements):

<yang-module-capabilities xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <capability xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2010-09-24
 </capability>
</yang-module-capabilities>

Remember to also put the YANG schemas into the cache folder.

Note

For putting multiple capabilities, you just need to replicate the
capability xml element inside yang-module-capability element.
Capability element is modeled as a leaf-list. With this
configuration, we would make the remote device report usage of
ietf-inet-types in the eyes of netconf-connector.

Reconfiguring Netconf-Connector While the Controller is Running

It is possible to change the configuration of a running module while the
whole controller is running. This example will continue where the last
left off and will change the configuration for the brand new
netconf-connector after it was spawned. Using one RESTCONF request, we
will change both username and password for the netconf-connector.

To update an existing netconf-connector you need to send following
request to RESTCONF:

PUT
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type>
 <name>new-netconf-device</name>
 <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">bob</username>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">passwd</password>
 <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only>
 <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type>
 <name>global-event-executor</name>
 </event-executor>
 <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-registry>
 <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type>
 <name>dom-broker</name>
 </dom-registry>
 <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type>
 <name>global-netconf-dispatcher</name>
 </client-dispatcher>
 <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadpool</type>
 <name>global-netconf-processing-executor</name>
 </processing-executor>
 <keepalive-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:scheduled-threadpool</type>
 <name>global-netconf-ssh-scheduled-executor</name>
 </keepalive-executor>
</module>

Since a PUT is a replace operation, the whole configuration must be
specified along with the new values for username and password. This
should result in a 2xx response and the instance of netconf-connector
called new-netconf-device will be reconfigured to use username bob and
password passwd. New configuration can be verified by executing:

GET
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

With new configuration, the old connection will be closed and a new one
established.

Destroying Netconf-Connector While the Controller is Running

Using RESTCONF one can also destroy an instance of a module. In case of
netconf-connector, the module will be destroyed, NETCONF connection
dropped and all resources will be cleaned. To do this, simply issue a
request to following URL:

DELETE
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/new-netconf-device

The last element of the URL is the name of the instance and its
predecessor is the type of that module (In our case the type is
sal-netconf-connector and name new-netconf-device). The type and
name are actually the keys of the module list.

Netconf-connector configuration with MD-SAL

It is also possible to configure new NETCONF connectors directly through
MD-SAL with the usage of the network-topology model. You can configure
new NETCONF connectors both through the NETCONF server for MD-SAL (port
2830) or RESTCONF. This guide focuses on RESTCONF.

Tip

To enable NETCONF connector configuration through MD-SAL install
either the odl-netconf-topology or
odl-netconf-clustered-topology feature. We will explain the
difference between these features later.

Preconditions

	OpenDaylight is running

	In Karaf, you must have the odl-netconf-topology or
odl-netconf-clustered-topology feature installed.

	Feature odl-restconf must be installed

	Wait until log displays following entry:

Successfully pushed configuration snapshot 02-netconf-topology.xml(odl-netconf-topology,odl-netconf-topology)

or until

GET http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/

returns a non-empty response, for example:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>topology-netconf</topology-id>
</topology>

Spawning new NETCONF connectors

To create a new NETCONF connector you need to send the following request
to RESTCONF:

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device

Headers:

	Accept: application/xml

	Content-Type: application/xml

Payload:

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <node-id>new-netconf-device</node-id>
 <host xmlns="urn:opendaylight:netconf-node-topology">127.0.0.1</host>
 <port xmlns="urn:opendaylight:netconf-node-topology">17830</port>
 <username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
 <tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
 <!-- non-mandatory fields with default values, you can safely remove these if you do not wish to override any of these values-->
 <reconnect-on-changed-schema xmlns="urn:opendaylight:netconf-node-topology">false</reconnect-on-changed-schema>
 <connection-timeout-millis xmlns="urn:opendaylight:netconf-node-topology">20000</connection-timeout-millis>
 <max-connection-attempts xmlns="urn:opendaylight:netconf-node-topology">0</max-connection-attempts>
 <between-attempts-timeout-millis xmlns="urn:opendaylight:netconf-node-topology">2000</between-attempts-timeout-millis>
 <sleep-factor xmlns="urn:opendaylight:netconf-node-topology">1.5</sleep-factor>
 <!-- keepalive-delay set to 0 turns off keepalives-->
 <keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">120</keepalive-delay>
</node>

Note that the device name in <node-id> element must match the last
element of the restconf URL.

Reconfiguring an existing connector

The steps to reconfigure an existing connector are exactly the same as
when spawning a new connector. The old connection will be disconnected
and a new connector with the new configuration will be created.

Deleting an existing connector

To remove an already configured NETCONF connector you need to send the
following:

DELETE http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device

Connecting to a device supporting only NETCONF 1.0

OpenDaylight is schema-based distribution and heavily depends on YANG
models. However some legacy NETCONF devices are not schema-based and
implement just RFC 4741. This type of device does not utilize YANG
models internally and OpenDaylight does not know how to communicate
with such devices, how to validate data, or what the semantics of data
are.

NETCONF connector can communicate also with these devices, but the
trade-offs are worsened possibilities in utilization of NETCONF
mountpoints. Using RESTCONF with such devices is not suported. Also
communicating with schemaless devices from application code is slightly
different.

To connect to schemaless device, there is a optional configuration option
in netconf-node-topology model called schemaless. You have to set this
option to true.

Clustered NETCONF connector

To spawn NETCONF connectors that are cluster-aware you need to install
the odl-netconf-clustered-topology karaf feature.

Warning

The odl-netconf-topology and odl-netconf-clustered-topology
features are considered INCOMPATIBLE. They both manage the same
space in the datastore and would issue conflicting writes if
installed together.

Configuration of clustered NETCONF connectors works the same as the
configuration through the topology model in the previous section.

When a new clustered connector is configured the configuration gets
distributed among the member nodes and a NETCONF connector is spawned on
each node. From these nodes a master is chosen which handles the schema
download from the device and all the communication with the device. You
will be able to read/write to/from the device from all slave nodes due
to the proxy data brokers implemented.

You can use the odl-netconf-clustered-topology feature in a single
node scenario as well but the code that uses akka will be used, so for a
scenario where only a single node is used, odl-netconf-topology
might be preferred.

Netconf-connector utilization

Once the connector is up and running, users can utilize the new mount
point instance. By using RESTCONF or from their application code. This
chapter deals with using RESTCONF and more information for app
developers can be found in the developers guide or in the official
tutorial application ncmount that can be found in the coretutorials
project:

	https://github.com/opendaylight/coretutorials/tree/stable/beryllum/ncmount

Reading data from the device

Just invoke (no body needed):

GET
http://localhost:8080/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/

This will return the entire content of operation datastore from the
device. To view just the configuration datastore, change operational
in this URL to config.

Writing configuration data to the device

In general, you cannot simply write any data you want to the device. The
data have to conform to the YANG models implemented by the device. In
this example we are adding a new interface-configuration to the mounted
device (assuming the device supports Cisco-IOS-XR-ifmgr-cfg YANG model).
In fact this request comes from the tutorial dedicated to the
ncmount tutorial app.

POST
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/Cisco-IOS-XR-ifmgr-cfg:interface-configurations

<interface-configuration xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">
 <active>act</active>
 <interface-name>mpls</interface-name>
 <description>Interface description</description>
 <bandwidth>32</bandwidth>
 <link-status></link-status>
</interface-configuration>

Should return 200 response code with no body.

Tip

This call is transformed into a couple of NETCONF RPCs. Resulting
NETCONF RPCs that go directly to the device can be found in the
OpenDaylight logs after invoking log:set TRACE
org.opendaylight.controller.sal.connect.netconf in the Karaf
shell. Seeing the NETCONF RPCs might help with debugging.

This request is very similar to the one where we spawned a new netconf
device. That’s because we used the loopback netconf-connector to write
configuration data into config-subsystem datastore and config-subsystem
picked it up from there.

Invoking custom RPC

Devices can implement any additional RPC and as long as it provides YANG
models for it, it can be invoked from OpenDaylight. Following example
shows how to invoke the get-schema RPC (get-schema is quite common among
netconf devices). Invoke:

POST
http://localhost:8181/restconf/operations/network-topology:network-topology/topology/topology-netconf/node/new-netconf-device/yang-ext:mount/ietf-netconf-monitoring:get-schema

<input xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <identifier>ietf-yang-types</identifier>
 <version>2013-07-15</version>
</input>

This call should fetch the source for ietf-yang-types YANG model from
the mounted device.

Netconf-connector + Netopeer

Netopeer [https://github.com/cesnet/netopeer] (an open-source
NETCONF server) can be used for testing/exploring NETCONF southbound in
OpenDaylight.

Netopeer installation

A Docker [https://www.docker.com/] container with netopeer will be
used in this guide. To install Docker and start the netopeer
image [https://index.docker.io/u/dockeruser/netopeer/] perform
following steps:

	Install docker http://docs.docker.com/linux/step_one/

	Start the netopeer image:

docker run -rm -t -p 1831:830 dockeruser/netopeer

	Verify netopeer is running by invoking (netopeer should send its
HELLO message right away:

ssh root@localhost -p 1831 -s netconf
(password root)

Mounting netopeer NETCONF server

Preconditions:

	OpenDaylight is started with features odl-restconf-all and
odl-netconf-connector-all.

	Netopeer is up and running in docker

Now just follow the chapter: Spawning
netconf-connector.
In the payload change the:

	name, e.g., to netopeer

	username/password to your system credentials

	ip to localhost

	port to 1831.

After netopeer is mounted successfully, its configuration can be read
using RESTCONF by invoking:

GET
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/netopeer/yang-ext:mount/

Northbound (NETCONF servers)

OpenDaylight provides 2 types of NETCONF servers:

	NETCONF server for config-subsystem (listening by default on port
1830)
	Serves as a default interface for config-subsystem and allows
users to spawn/reconfigure/destroy modules (or applications) in
OpenDaylight

	NETCONF server for MD-SAL (listening by default on port 2830)
	Serves as an alternative interface for MD-SAL (besides RESTCONF)
and allows users to read/write data from MD-SAL’s datastore and to
invoke its rpcs (NETCONF notifications are not available in the
Boron release of OpenDaylight)

Note

The reason for having 2 NETCONF servers is that config-subsystem and
MD-SAL are 2 different components of OpenDaylight and require
different approach for NETCONF message handling and data
translation. These 2 components will probably merge in the future.

NETCONF server for config-subsystem

This NETCONF server is the primary interface for config-subsystem. It
allows the users to interact with config-subsystem in a standardized
NETCONF manner.

In terms of RFCs, these are supported:

	RFC-6241 [http://tools.ietf.org/html/rfc6241]

	RFC-5277 [https://tools.ietf.org/html/rfc5277]

	RFC-6470 [https://tools.ietf.org/html/rfc6470]
	(partially, only the schema-change notification is available in
Boron release)

	RFC-6022 [https://tools.ietf.org/html/rfc6022]

For regular users it is recommended to use RESTCONF + the
controller-config loopback mountpoint instead of using pure NETCONF. How
to do that is spesific for each component/module/application in
OpenDaylight and can be found in their dedicated user guides.

NETCONF server for MD-SAL

This NETCONF server is just a generic interface to MD-SAL in
OpenDaylight. It uses the stadard MD-SAL APIs and serves as an
alternative to RESTCONF. It is fully model driven and supports any data
and rpcs that are supported by MD-SAL.

In terms of RFCs, these are supported:

	RFC-6241 [http://tools.ietf.org/html/rfc6241]

	RFC-6022 [https://tools.ietf.org/html/rfc6022]

	draft-ietf-netconf-yang-library-06 [https://tools.ietf.org/html/draft-ietf-netconf-yang-library-06]

Notifications over NETCONF are not supported in the Boron release.

Tip

Install NETCONF northbound for MD-SAL by installing feature:
odl-netconf-mdsal in karaf. Default binding port is 2830.

Configuration

The default configuration can be found in file: 08-netconf-mdsal.xml.
The file contains the configuration for all necessary dependencies and a
single SSH endpoint starting on port 2830. There is also a (by default
disabled) TCP endpoint. It is possible to start multiple endpoints at
the same time either in the initial configuration file or while
OpenDaylight is running.

The credentials for SSH endpoint can also be configured here, the
defaults are admin/admin. Credentials in the SSH endpoint are not yet
managed by the centralized AAA component and have to be configured
separately.

Verifying MD-SAL’s NETCONF server

After the NETCONF server is available it can be examined by a command
line ssh tool:

ssh admin@localhost -p 2830 -s netconf

The server will respond by sending its HELLO message and can be used as
a regular NETCONF server from then on.

Mounting the MD-SAL’s NETCONF server

To perform this operation, just spawn a new netconf-connector as
described in Spawning
netconf-connector.
Just change the ip to “127.0.0.1” port to “2830” and its name to
“controller-mdsal”.

Now the MD-SAL’s datastore can be read over RESTCONF via NETCONF by
invoking:

GET
http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/controller-mdsal/yang-ext:mount

Note

This might not seem very useful, since MD-SAL can be accessed
directly from RESTCONF or from Application code, but the same method
can be used to mount and control other OpenDaylight instances by the
“master OpenDaylight”.

NETCONF testtool

NETCONF testtool is a set of standalone runnable jars that can:

	Simulate NETCONF devices (suitable for scale testing)

	Stress/Performance test NETCONF devices

	Stress/Performance test RESTCONF devices

These jars are part of OpenDaylight’s controller project and are built
from the NETCONF codebase in OpenDaylight.

Tip

Download testtool from OpenDaylight Nexus at:
https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/

Nexus contains 3 executable tools:

	executable.jar - device simulator

	stress.client.tar.gz - NETCONF stress/performance measuring tool

	perf-client.jar - RESTCONF stress/performance measuring tool

Tip

Each executable tool provides help. Just invoke java -jar
<name-of-the-tool.jar> --help

NETCONF device simulator

NETCONF testtool (or NETCONF device simulator) is a tool that

	Simulates 1 or more NETCONF devices

	Is suitable for scale, performance or crud testing

	Uses core implementation of NETCONF server from OpenDaylight

	Generates configuration files for controller so that the OpenDaylight
distribution (Karaf) can easily connect to all simulated devices

	Provides broad configuration options

	Can start a fully fledged MD-SAL datastore

	Supports notifications

Building testtool

	Check out latest NETCONF repository from
git [https://git.opendaylight.org/gerrit/#/admin/projects/netconf]

	Move into the opendaylight/netconf/tools/netconf-testtool/ folder

	Build testtool using the mvn clean install command

Downloading testtool

Netconf-testtool is now part of default maven build profile for
controller and can be also downloaded from nexus. The executable jar for
testtool can be found at:
nexus-artifacts [https://nexus.opendaylight.org/content/repositories/public/org/opendaylight/netconf/netconf-testtool/1.1.0-Boron/]

Running testtool

	After successfully building or downloading, move into the
opendaylight/netconf/tools/netconf-testtool/target/ folder and
there is file netconf-testtool-1.1.0-SNAPSHOT-executable.jar (or
if downloaded from nexus just take that jar file)

	Execute this file using, e.g.:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar

This execution runs the testtool with default for all parameters and
you should see this log output from the testtool :

10:31:08.206 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - Starting 1, SSH simulated devices starting on port 17830
10:31:08.675 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - All simulated devices started successfully from port 17830 to 17830

Default Parameters

The default parameters for testtool are:

	Use SSH

	Run 1 simulated device

	Device port is 17830

	YANG modules used by device are only: ietf-netconf-monitoring,
ietf-yang-types, ietf-inet-types (these modules are required for
device in order to support NETCONF monitoring and are included in the
netconf-testtool)

	Connection timeout is set to 30 minutes (quite high, but when testing
with 10000 devices it might take some time for all of them to fully
establish a connection)

	Debug level is set to false

	No distribution is modified to connect automatically to the NETCONF
testtool

Verifying testtool

To verify that the simulated device is up and running, we can try to
connect to it using command line ssh tool. Execute this command to
connect to the device:

ssh admin@localhost -p 17830 -s netconf

Just accept the server with yes (if required) and provide any password
(testtool accepts all users with all passwords). You should see the
hello message sent by simulated device.

Testtool help

usage: netconf testool [-h] [--device-count DEVICES-COUNT] [--devices-per-port DEVICES-PER-PORT] [--schemas-dir SCHEMAS-DIR] [--notification-file NOTIFICATION-FILE]
 [--initial-config-xml-file INITIAL-CONFIG-XML-FILE] [--starting-port STARTING-PORT] [--generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT]
 [--generate-config-address GENERATE-CONFIG-ADDRESS] [--generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE] [--distribution-folder DISTRO-FOLDER] [--ssh SSH] [--exi EXI]
 [--debug DEBUG] [--md-sal MD-SAL]

NETCONF device simulator. Detailed info can be found at https://wiki.opendaylight.org/view/OpenDaylight_Controller:Netconf:Testtool#Building_testtool

optional arguments:
 -h, --help show this help message and exit
 --device-count DEVICES-COUNT
 Number of simulated netconf devices to spin. This is the number of actual ports open for the devices.
 --devices-per-port DEVICES-PER-PORT
 Amount of config files generated per port to spoof more devices then are actually running
 --schemas-dir SCHEMAS-DIR
 Directory containing yang schemas to describe simulated devices. Some schemas e.g. netconf monitoring and inet types are included by default
 --notification-file NOTIFICATION-FILE
 Xml file containing notifications that should be sent to clients after create subscription is called
 --initial-config-xml-file INITIAL-CONFIG-XML-FILE
 Xml file containing initial simulatted configuration to be returned via get-config rpc
 --starting-port STARTING-PORT
 First port for simulated device. Each other device will have previous+1 port number
 --generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT
 Timeout to be generated in initial config files
 --generate-config-address GENERATE-CONFIG-ADDRESS
 Address to be placed in generated configs
 --generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE
 Number of connector configs per generated file
 --distribution-folder DISTRO-FOLDER
 Directory where the karaf distribution for controller is located
 --ssh SSH Whether to use ssh for transport or just pure tcp
 --exi EXI Whether to use exi to transport xml content
 --debug DEBUG Whether to use debug log level instead of INFO
 --md-sal MD-SAL Whether to use md-sal datastore instead of default simulated datastore.

Supported operations

Testtool default simple datastore supported operations:

	get-schema

	returns YANG schemas loaded from user specified directory,

	edit-config

	always returns OK and stores the XML from the input in a local
variable available for get-config and get RPC. Every edit-config
replaces the previous data,

	commit

	always returns OK, but does not actually commit the data,

	get-config

	returns local XML stored by edit-config,

	get

	returns local XML stored by edit-config with netconf-state subtree,
but also supports filtering.

	(un)lock

	returns always OK with no lock guarantee

	create-subscription

	returns always OK and after the operation is triggered, provided
NETCONF notifications (if any) are fed to the client. No filtering
or stream recognition is supported.

Note: when operation=”delete” is present in the payload for edit-config,
it will wipe its local store to simulate the removal of data.

When using the MD-SAL datastore testtool behaves more like normal
NETCONF server and is suitable for crud testing. create-subscription is
not supported when testtool is running with the MD-SAL datastore.

Notification support

Testtool supports notifications via the –notification-file switch. To
trigger the notification feed, create-subscription operation has to be
invoked. The XML file provided should look like this example file:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<notifications>

<!-- Notifications are processed in the order they are defined in XML -->

<!-- Notification that is sent only once right after create-subscription is called -->
<notification>
 <!-- Content of each notification entry must contain the entire notification with event time. Event time can be hardcoded, or generated by testtool if XXXX is set as eventtime in this XML -->
 <content><![CDATA[
 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2011-01-04T12:30:46</eventTime>
 <random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0">
 <random-content>single no delay</random-content>
 </random-notification>
 </notification>
]]></content>
</notification>

<!-- Repeated Notification that is sent 5 times with 2 second delay inbetween -->
<notification>
 <!-- Delay in seconds from previous notification -->
 <delay>2</delay>
 <!-- Number of times this notification should be repeated -->
 <times>5</times>
 <content><![CDATA[
 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>XXXX</eventTime>
 <random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0">
 <random-content>scheduled 5 times 10 seconds each</random-content>
 </random-notification>
 </notification>
]]></content>
</notification>

<!-- Single notification that is sent only once right after the previous notification -->
<notification>
 <delay>2</delay>
 <content><![CDATA[
 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>XXXX</eventTime>
 <random-notification xmlns="http://www.opendaylight.org/netconf/event:1.0">
 <random-content>single with delay</random-content>
 </random-notification>
 </notification>
]]></content>
</notification>

</notifications>

Connecting testtool with controller Karaf distribution

Auto connect to OpenDaylight

It is possible to make OpenDaylight auto connect to the simulated
devices spawned by testtool (so user does not have to post a
configuration for every NETCONF connector via RESTCONF). The testtool is
able to modify the OpenDaylight distribution to auto connect to the
simulated devices after feature odl-netconf-connector-all is
installed. When running testtool, issue this command (just point the
testool to the distribution:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar --device-count 10 --distribution-folder ~/distribution-karaf-0.4.0-SNAPSHOT/ --debug true

With the distribution-folder parameter, the testtool will modify the
distribution to include configuration for netconf-connector to connect
to all simulated devices. So there is no need to spawn
netconf-connectors via RESTCONF.

Running testtool and OpenDaylight on different machines

The testtool binds by default to 0.0.0.0 so it should be accessible from
remote machines. However you need to set the parameter
“generate-config-address” (when using autoconnect) to the address of
machine where testtool will be run so OpenDaylight can connect. The
default value is localhost.

Executing operations via RESTCONF on a mounted simulated device

Simulated devices support basic RPCs for editing their config. This part
shows how to edit data for simulated device via RESTCONF.

Test YANG schema

The controller and RESTCONF assume that the data that can be manipulated
for mounted device is described by a YANG schema. For demonstration, we
will define a simple YANG model:

module test {
 yang-version 1;
 namespace "urn:opendaylight:test";
 prefix "tt";

 revision "2014-10-17";

 container cont {

 leaf l {
 type string;
 }
 }
}

Save this schema in file called test@2014-10-17.yang and store it a
directory called test-schemas/, e.g., your home folder.

Editing data for simulated device

	Start the device with following command:

java -jar netconf-testtool-1.1.0-SNAPSHOT-executable.jar --device-count 10 --distribution-folder ~/distribution-karaf-0.4.0-SNAPSHOT/ --debug true --schemas-dir ~/test-schemas/

	Start OpenDaylight

	Install odl-netconf-connector-all feature

	Install odl-restconf feature

	Check that you can see config data for simulated device by executing
GET request to

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

	The data should be just and empty data container

	Now execute edit-config request by executing a POST request to:

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount

with headers:

Accept application/xml
Content-Type application/xml

and payload:

<cont xmlns="urn:opendaylight:test">
 <l>Content</l>
</cont>

	Check that you can see modified config data for simulated device by
executing GET request to

http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

	Check that you can see the same modified data in operational for
simulated device by executing GET request to

http://localhost:8181/restconf/operational/network-topology:network-topology/topology/topology-netconf/node/17830-sim-device/yang-ext:mount/

Warning

Data will be mirrored in operational datastore only when using the
default simple datastore.

Known problems

Slow creation of devices on virtual machines

When testtool seems to take unusually long time to create the devices
use this flag when running it:

-Dorg.apache.sshd.registerBouncyCastle=false

Too many files open

When testtool or OpenDaylight starts to fail with TooManyFilesOpen
exception, you need to increase the limit of open files in your OS. To
find out the limit in linux execute:

ulimit -a

Example sufficient configuration in linux:

core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 63338
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 500000
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 63338
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

To set these limits edit file: /etc/security/limits.conf, for example:

* hard nofile 500000
* soft nofile 500000
root hard nofile 500000
root soft nofile 500000

“Killed”

The testtool might end unexpectedly with a simple message: “Killed”.
This means that the OS killed the tool due to too much memory consumed
or too many threads spawned. To find out the reason on linux you can use
following command:

dmesg | egrep -i -B100 'killed process'

Also take a look at this file: /proc/sys/kernel/threads-max. It limits
the number of threads spawned by a process. Sufficient (but probably
much more than enough) value is, e.g., 126676

NETCONF stress/performance measuring tool

This is basically a NETCONF client that puts NETCONF servers under heavy
load of NETCONF RPCs and measures the time until a configurable amount
of them is processed.

RESTCONF stress-performance measuring tool

Very similar to NETCONF stress tool with the difference of using
RESTCONF protocol instead of NETCONF.

YANGLIB remote repository

There are scenarios in NETCONF deployment, that require for a centralized
YANG models repository. YANGLIB plugin provides such remote repository.

To start this plugin, you have to install odl-yanglib feature. Then you
have to configure YANGLIB either through RESTCONF or NETCONF. We will
show how to configure YANGLIB through RESTCONF.

YANGLIB configuration through RESTCONF

You have to specify what local YANG modules directory you want to provide.
Then you have to specify address and port whre you want to provide YANG
sources. For example, we want to serve yang sources from folder /sources
on localhost:5000 adress. The configuration for this scenario will be
as follows:

PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/yanglib:yanglib/example

Headers:

	Accept: application/xml

	Content-Type: application/xml

Payload:

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <name>example</name>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">prefix:yanglib</type>
 <broker xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </broker>
 <cache-folder xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">/sources</cache-folder>
 <binding-addr xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">localhost</binding-addr>
 <binding-port xmlns="urn:opendaylight:params:xml:ns:yang:controller:yanglib:impl">5000</binding-port>
</module>

This should result in a 2xx response and new YANGLIB instance should be
created. This YANGLIB takes all YANG sources from /sources folder and
for each generates URL in form:

http://localhost:5000/schemas/{modelName}/{revision}

On this URL will be hosted YANG source for particular module.

YANGLIB instance also write this URL along with source identifier to
ietf-netconf-yang-library/modules-state/module list.

Netconf-connector with YANG library as fallback

There is an optional configuration in netconf-connector called
yang-library. You can specify YANG library to be plugged as additional
source provider into the mount’s schema repository. Since YANGLIB
plugin is advertising provided modules through yang-library model, we
can use it in mount point’s configuration as YANG library. To do this,
we need to modify the configuration of netconf-connector by adding this
XML

<yang-library xmlns="urn:opendaylight:netconf-node-topology">
 <yang-library-url xmlns="urn:opendaylight:netconf-node-topology">http://localhost:8181/restconf/operational/ietf-yang-library:modules-state</yang-library-url>
 <username xmlns="urn:opendaylight:netconf-node-topology">admin</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">admin</password>
</yang-library>

This will register YANGLIB provided sources as a fallback schemas for
particular mount point.

NetIDE User Guide

Overview

OpenDaylight’s NetIDE project allows users to run SDN applications
written for different SDN controllers, e.g., Floodlight or Ryu, on top
of OpenDaylight managed infrastructure. The NetIDE Network Engine
integrates a client controller layer that executes the modules that
compose a Network Application and interfaces with a server SDN
controller layer that drives the underlying infrastructure. In addition,
it provides a uniform interface to common tools that are intended to
allow the inspection/debug of the control channel and the management of
the network resources.

The Network Engine provides a compatibility layer capable of translating
calls of the network applications running on top of the client
controllers, into calls for the server controller framework. The
communication between the client and the server layers is achieved
through the NetIDE intermediate protocol, which is an application-layer
protocol on top of TCP that transmits the network control/management
messages from the client to the server controller and vice-versa.
Between client and server controller sits the Core Layer which also
speaks the intermediate protocol.

NetIDE API

Architecture and Design

The NetIDE engine follows the ONF’s proposed Client/Server SDN
Application architecture.

[image: NetIDE Network Engine Architecture]
NetIDE Network Engine Architecture

Core

The NetIDE Core is a message-based system that allows for the exchange
of messages between OpenDaylight and subscribed Client SDN Controllers

Handling reply messages correctly

When an application module sends a request to the network (e.g. flow
statistics, features, etc.), the Network Engine must be able to
correctly drive the corresponding reply to such a module. This is not a
trivial task, as many modules may compose the network application
running on top of the Network Engine, and there is no way for the Core
to pair replies and requests. The transaction IDs (xid) in the OpenFlow
header are unusable in this case, as it may happen that different
modules use the same values.

In the proposed approach, represented in the figure below, the task of
pairing replies with requests is performed by the Shim Layer which
replaces the original xid of the OpenFlow requests coming from the core
with new unique xid values. The Shim also saves the original OpenFlow
xid value and the module id it finds in the NetIDE header. As the
network elements must use the same xid values in the replies, the Shim
layer can easily pair a reply with the correct request as it is using
unique xid values.

The below figure shows how the Network Engine should handle the
controller-to-switch OpenFlow messages. The diagram shows the case of a
request message sent by an application module to a network element where
the Backend inserts the module id of the module in the NetIDE header (X
in the Figure). For other messages generated by the client controller
platform (e.g. echo requests) or by the Backend, the module id of the
Backend is used (Y in the Figure).

[image: NetIDE Communication Flow]
NetIDE Communication Flow

Configuration

Below are the configuration items which can be edited, including their
default values.

	core-address: This is the ip address of the NetIDE Core, default is
127.0.0.1

	core-port: The port of on which the NetIDE core is listening on

	address: IP address where the controller listens for switch
connections, default is 127.0.0.1

	port: Port where controller listens for switch connections, default:
6644

	transport-protocol: default is TCP

	switch-idle-timeout: default is 15000ms

NetVirt User Guide

	NetVirt Design Specifications
	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

	L3VPN Service: User Guide
	Overview

	Modules & Interfaces

	Provisioning Sequence & Sample Configurations

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

Table of Contents

	Title of the feature
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

	Primary assignee:

	<developer-a>

	Other contributors:

	<developer-b>
<developer-c>

Work Items

Break up work into individual items. This should be a checklist on
Trello card for this feature. Give link to trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc.] This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is impact on documentation for this change? If documentation
change is needed call out one of the <contributors> who will work with
Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :
	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

L3VPN Service: User Guide

Overview

L3VPN Service in OpenDaylight provides a framework to create L3VPN based
on BGP-MP. It also helps to create Network Virtualization for DC Cloud
environment.

Modules & Interfaces

L3VPN service can be realized using the following modules -

VPN Service Modules

	VPN Manager : Creates and manages VPNs and VPN Interfaces

	BGP Manager : Configures BGP routing stack and provides interface
to routing services

	FIB Manager : Provides interface to FIB, creates and manages
forwarding rules in Dataplane

	Nexthop Manager : Creates and manages nexthop egress pointer,
creates egress rules in Dataplane

	Interface Manager : Creates and manages different type of network
interfaces, e.g., VLAN, l3tunnel etc.,

	Id Manager : Provides cluster-wide unique ID for a given key.
Used by different modules to get unique IDs for different entities.

	MD-SAL Util : Provides interface to MD-SAL. Used by service
modules to access MD-SAL Datastore and services.

All the above modules can function independently and can be utilized by
other services as well.

Configuration Interfaces

The following modules expose configuration interfaces through which user
can configure L3VPN Service.

	BGP Manager

	VPN Manager

	Interface Manager

	FIB Manager

Configuration Interface Details

	Data Node Path : /config/bgp:bgp-router/
	Fields :
	local-as-identifier

	local-as-number

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/bgp:bgp-neighbors/
	Fields :
	List of bgp-neighbor

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path :
/config/bgp:bgp-neighbors/bgp-neighbor/``{as-number}``/
	Fields :
	as-number

	ip-address

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-instances/
	Fields :
	List of vpn-instance

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-interfaces/vpn-instance
	Fields :
	name

	route-distinguisher

	import-route-policy

	export-route-policy

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-interfaces/
	Fields :
	List of vpn-interface

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/l3vpn:vpn-interfaces/vpn-interface
	Fields :
	name

	vpn-instance-name

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path :
/config/l3vpn:vpn-interfaces/vpn-interface/``{name}``/adjacency
	Fields :
	ip-address

	mac-address

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/if:interfaces/interface
	Fields :
	name

	type

	enabled

	of-port-id

	tenant-id

	base-interface

	type specific fields
	when type = l2vlan
	vlan-id

	when type = stacked_vlan
	stacked-vlan-id

	when type = l3tunnel
	tunnel-type

	local-ip

	remote-ip

	gateway-ip

	when type = mpls
	list labelStack

	num-labels

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/odl-fib:fibEntries/vrfTables
	Fields :
	List of vrfTables

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path :
/config/odl-fib:fibEntries/vrfTables/``{routeDistinguisher}``/
	Fields :
	route-distinguisher

	list vrfEntries
	destPrefix

	label

	nexthopAddress

	REST Methods : GET, PUT, DELETE, POST

	Data Node Path : /config/odl-fib:fibEntries/ipv4Table
	Fields :
	list ipv4Entry
	destPrefix

	nexthopAddress

	REST Methods : GET, PUT, DELETE, POST

Provisioning Sequence & Sample Configurations

Installation

	Edit etc/custom.properties and set the following property:
vpnservice.bgpspeaker.host.name = <bgpserver-ip> <bgpserver-ip>
here refers to the IP address of the host where BGP is running.

	Run ODL and install VPN Service feature:install odl-vpnservice-core

Use REST interface to configure L3VPN service

Pre-requisites:

	BGP stack with VRF support needs to installed and configured
	Configure BGP as specified in Step 1 below.

	Create pairs of GRE/VxLAN Tunnels (using ovsdb/ovs-vsctl) between
each switch and between each switch to the Gateway node
	Create *l3tunnel interfaces corresponding to each tunnel in
interfaces DS as specified in Step 2 below.*

Step 1 : Configure BGP

1. Configure BGP Router

REST API : PUT /config/bgp:bgp-router/

Sample JSON Data

{
 "bgp-router": {
 "local-as-identifier": "10.10.10.10",
 "local-as-number": 108
 }
}

2. Configure BGP Neighbors

REST API : PUT /config/bgp:bgp-neighbors/

Sample JSON Data

{
 "bgp-neighbor" : [
 {
 "as-number": 105,
 "ip-address": "169.144.42.168"
 }
]
 }

Step 2 : Create Tunnel Interfaces

Create l3tunnel interfaces corresponding to all GRE/VxLAN tunnels
created with ovsdb (refer Prerequisites). Use following REST
Interface -

REST API : PUT /config/if:interfaces/if:interfacce

Sample JSON Data

{
 "interface": [
 {
 "name" : "GRE_192.168.57.101_192.168.57.102",
 "type" : "odl-interface:l3tunnel",
 "odl-interface:tunnel-type": "odl-interface:tunnel-type-gre",
 "odl-interface:local-ip" : "192.168.57.101",
 "odl-interface:remote-ip" : "192.168.57.102",
 "odl-interface:portId" : "openflow:1:3",
 "enabled" : "true"
 }
]
}

Following is expected as a result of these configurations

	Unique If-index is generated

	Interface-state operational DS is updated

	Corresponding Nexthop Group Entry is created

Step 3 : OS Create Neutron Ports and attach VMs

At this step user creates VMs.

Step 4 : Create VM Interfaces

Create l2vlan interfaces corresponding to VM created in step 3

REST API : PUT /config/if:interfaces/if:interface

Sample JSON Data

{
 "interface": [
 {
 "name" : "dpn1-dp1.2",
 "type" : "l2vlan",
 "odl-interface:of-port-id" : "openflow:1:2",
 "odl-interface:vlan-id" : "1",
 "enabled" : "true"
 }
]
}

Step 5: Create VPN Instance

REST API : PUT /config/l3vpn:vpn-instances/l3vpn:vpn-instance/

Sample JSON Data

{
 "vpn-instance": [
 {
 "description": "Test VPN Instance 1",
 "vpn-instance-name": "testVpn1",
 "ipv4-family": {
 "route-distinguisher": "4000:1",
 "export-route-policy": "4000:1,5000:1",
 "import-route-policy": "4000:1,5000:1",
 }
 }
]
}

Following is expected as a result of these configurations

	VPN ID is allocated and updated in data-store

	Corresponding VRF is created in BGP

	If there are vpn-interface configurations for this VPN, corresponding
action is taken as defined in step 5

Step 5 : Create VPN-Interface and Local Adjacency

this can be done in two steps as well

1. Create vpn-interface

REST API : PUT /config/l3vpn:vpn-interfaces/l3vpn:vpn-interface/

Sample JSON Data

{
 "vpn-interface": [
 {
 "vpn-instance-name": "testVpn1",
 "name": "dpn1-dp1.2",
 }
]
}

Note

name here is the name of VM interface created in step 3, 4

2. Add Adjacencies on vpn-interafce

REST API : PUT
/config/l3vpn:vpn-interfaces/l3vpn:vpn-interface/dpn1-dp1.3/adjacency

Sample JSON Data

 {
 "adjacency" : [
 {
 "ip-address" : "169.144.42.168",
 "mac-address" : "11:22:33:44:55:66"
 }
]
 }

its a list, user can define more than one adjacency on a
vpn_interface

Above steps can be carried out in a single step as following

{
 "vpn-interface": [
 {
 "vpn-instance-name": "testVpn1",
 "name": "dpn1-dp1.3",
 "odl-l3vpn:adjacency": [
 {
 "odl-l3vpn:mac_address": "11:22:33:44:55:66",
 "odl-l3vpn:ip_address": "11.11.11.2",
 }
]
 }
]
}

Following is expected as a result of these configurations

	Prefix label is generated and stored in DS

	Ingress table is programmed with flow corresponding to interface

	Local Egress Group is created

	Prefix is added to BGP for advertisement

	BGP pushes route update to FIB YANG Interface

	FIB Entry flow is added to FIB Table in OF pipeline

Neutron Service User Guide

Overview

This Karaf feature (odl-neutron-service) provides integration
support for OpenStack Neutron via the OpenDaylight ML2 mechanism driver.
The Neutron Service is only one of the components necessary for
OpenStack integration. For those related components please refer to
documentations of each component:

	https://wiki.openstack.org/wiki/Neutron

	https://launchpad.net/networking-odl

	http://git.openstack.org/cgit/openstack/networking-odl/

	https://wiki.opendaylight.org/view/NeutronNorthbound:Main

Use cases and who will use the feature

If you want OpenStack integration with OpenDaylight, you will need this
feature with an OpenDaylight provider feature like ovsdb/netvirt, group
based policy, VTN, and lisp mapper. For provider configuration, please
refer to each individual provider’s documentation. Since the Neutron
service only provides the northbound API for the OpenStack Neutron ML2
mechanism driver. Without those provider features, the Neutron service
itself isn’t useful.

Neutron Service feature Architecture

The Neutron service provides northbound API for OpenStack Neutron via
RESTCONF and also its dedicated REST API. It communicates through its
YANG model with providers.

[image: Neutron Service Architecture]
Neutron Service Architecture

Configuring Neutron Service feature

As the Karaf feature includes everything necessary for communicating
northbound, no special configuration is needed. Usually this feature is
used with an OpenDaylight southbound plugin that implements actual
network virtualization functionality and OpenStack Neutron. The user
wants to setup those configurations. Refer to each related
documentations for each configurations.

Administering or Managing odl-neutron-service

There is no specific configuration regarding to Neutron service itself.
For related configuration, please refer to OpenStack Neutron
configuration and OpenDaylight related services which are providers for
OpenStack.

installing odl-neutron-service while the controller running

	While OpenDaylight is running, in Karaf prompt, type:
feature:install odl-neutron-service.

	Wait a while until the initialization is done and the controller
stabilizes.

odl-neutron-service provides only a unified interface for OpenStack
Neutron. It doesn’t provide actual functionality for network
virtualization. Refer to each OpenDaylight project documentation for
actual configuration with OpenStack Neutron.

Neutron Logger

Another service, the Neutron Logger, is provided for debugging/logging
purposes. It logs changes on Neutron YANG models.

feature:install odl-neutron-logger

Network Intent Composition (NIC) User Guide

Overview

Network Intent Composition (NIC) is an interface that allows clients to
express a desired state in an implementation-neutral form that will be
enforced via modification of available resources under the control of
the OpenDaylight system.

This description is purposely abstract as an intent interface might
encompass network services, virtual devices, storage, etc.

The intent interface is meant to be a controller-agnostic interface so
that “intents” are portable across implementations, such as OpenDaylight
and ONOS. Thus an intent specification should not contain implementation
or technology specifics.

The intent specification will be implemented by decomposing the intent
and augmenting it with implementation specifics that are driven by local
implementation rules, policies, and/or settings.

Network Intent Composition (NIC) Architecture

The core of the NIC architecture is the intent model, which specifies
the details of the desired state. It is the responsibility of the NIC
implementation transforms this desired state to the resources under the
control of OpenDaylight. The component that transforms the intent to the
implementation is typically referred to as a renderer.

For the Boron release, multiple, simultaneous renderers will not be
supported. Instead either the VTN or GBP renderer feature can be
installed, but not both.

For the Boron release, the only actions supported are “ALLOW” and
“BLOCK”. The “ALLOW” action indicates that traffic can flow between the
source and destination end points, while “BLOCK” prevents that flow;
although it is possible that an given implementation may augment the
available actions with additional actions.

Besides transforming a desired state to an actual state it is the
responsibility of a renderer to update the operational state tree for
the NIC data model in OpenDaylight to reflect the intent which the
renderer implemented.

Configuring Network Intent Composition (NIC)

For the Boron release there is no default implementation of a renderer,
thus without an additional module installed the NIC will not function.

Administering or Managing Network Intent Composition (NIC)

There is no additional administration of management capabilities related
to the Network Intent Composition features.

Interactions

A user can interact with the Network Intent Composition (NIC) either
through the RESTful interface using standard RESTCONF operations and
syntax or via the Karaf console CLI.

REST

Configuration

The Network Intent Composition (NIC) feature supports the following REST
operations against the configuration data store.

	POST - creates a new instance of an intent in the configuration
store, which will trigger the realization of that intent. An ID
must be specified as part of this request as an attribute of the
intent.

	GET - fetches a list of all configured intents or a specific
configured intent.

	DELETE - removes a configured intent from the configuration store,
which triggers the removal of the intent from the network.

Operational

The Network Intent Composition (NIC) feature supports the following REST
operations against the operational data store.

	GET - fetches a list of all operational intents or a specific
operational intent.

Karaf Console CLI

This feature provides karaf console CLI command to manipulate the intent
data model. The CLI essentailly invokes the equivalent data operations.

intent:add

Creates a new intent in the configuration data tree

DESCRIPTION
 intent:add

 Adds an intent to the controller.

Examples: --actions [ALLOW] --from <subject> --to <subject>
 --actions [BLOCK] --from <subject>

SYNTAX
 intent:add [options]

OPTIONS
 -a, --actions
 Action to be performed.
 -a / --actions BLOCK/ALLOW
 (defaults to [BLOCK])
 --help
 Display this help message
 -t, --to
 Second Subject.
 -t / --to <subject>
 (defaults to any)
 -f, --from
 First subject.
 -f / --from <subject>
 (defaults to any)

intent:delete

Removes an existing intent from the system

DESCRIPTION
 intent:remove

 Removes an intent from the controller.

SYNTAX
 intent:remove id

ARGUMENTS
 id Intent Id

intent:list

Lists all the intents in the system

DESCRIPTION
 intent:list

 Lists all intents in the controller.

SYNTAX
 intent:list [options]

OPTIONS
 -c, --config
 List Configuration Data (optional).
 -c / --config <ENTER>
 --help
 Display this help message

intent:show

Displayes the details of a single intent

DESCRIPTION
 intent:show

 Shows detailed information about an intent.

SYNTAX
 intent:show id

ARGUMENTS
 id Intent Id

intent:map

List/Add/Delete current state from/to the mapping service.

DESCRIPTION
 intent:map

 List/Add/Delete current state from/to the mapping service.

SYNTAX
 intent:map [options]

 Examples: --list, -l [ENTER], to retrieve all keys.
 --add-key <key> [ENTER], to add a new key with empty contents.
 --del-key <key> [ENTER], to remove a key with it's values."
 --add-key <key> --value [<value 1>, <value 2>, ...] [ENTER],
 to add a new key with some values (json format).
OPTIONS
 --help
 Display this help message
 -l, --list
 List values associated with a particular key.
 -l / --filter <regular expression> [ENTER]
 --add-key
 Adds a new key to the mapping service.
 --add-key <key name> [ENTER]
 --value
 Specifies which value should be added/delete from the mapping service.
 --value "key=>value"... --value "key=>value" [ENTER]
 (defaults to [])
 --del-key
 Deletes a key from the mapping service.
 --del-key <key name> [ENTER]

NIC Usage Examples

Default Requirements

Start mininet, and create three switches (s1, s2, and s3) and four hosts
(h1, h2, h3, and h4) in it.

Replace <Controller IP> based on your environment.

$ sudo mn --mac --topo single,2 --controller=remote,ip=<Controller IP>

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

Downloading and deploy Karaf distribution

	Get the Boron distribution.

	Unzip the downloaded zip distribution.

	To run the Karaf.

./bin/karaf

	Once the console is up, type as below to install feature.

feature:install odl-nic-core-mdsal odl-nic-console odl-nic-listeners

Simple Mininet topology

!/usr/bin/python

from mininet.topo import Topo

class SimpleTopology(Topo):
 "Simple topology example."

 def __init__(self):
 "Create custom topo."

 Topo.__init__(self)

 Switch1 = self.addSwitch('s1')
 Switch2 = self.addSwitch('s2')
 Switch3 = self.addSwitch('s3')
 Switch4 = self.addSwitch('s4')
 Host11 = self.addHost('h1')
 Host12 = self.addHost('h2')
 Host21 = self.addHost('h3')
 Host22 = self.addHost('h4')
 Host23 = self.addHost('h5')
 Service1 = self.addHost('srvc1')

 self.addLink(Host11, Switch1)
 self.addLink(Host12, Switch1)
 self.addLink(Host21, Switch2)
 self.addLink(Host22, Switch2)
 self.addLink(Host23, Switch2)
 self.addLink(Switch1, Switch2)
 self.addLink(Switch2, Switch4)
 self.addLink(Switch4, Switch3)
 self.addLink(Switch3, Switch1)
 self.addLink(Switch3, Service1)
 self.addLink(Switch4, Service1)

topos = { 'simpletopology': (lambda: SimpleTopology()) }

	Initialize topology

	Add hosts and switches

	Host used to represent the service

	Add links

Source: https://gist.github.com/vinothgithub15/315d0a427d5afc39f2d7

How to configure VTN Renderer

The section demonstrates allow or block packets of the traffic within a
VTN Renderer, according to the specified flow conditions.

The table below lists the actions to be applied when a packet matches
the condition:

	Action
	Function

	Allow
	Permits the packet to be forwarded normally.

	Block
	Discards the packet preventing it from being forwarded.

Requirement

	Before execute the follow steps, please, use default requirements.
See section Default Requirements.

Configuration

Please execute the following curl commands to test network intent using
mininet:

Create Intent

To provision the network for the two hosts(h1 and h2) and demonstrates
the action allow.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436034 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436034", "intent:actions" : [{ "order" : 2, "allow" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.1"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.2"}}] } }'

To provision the network for the two hosts(h2 and h3) and demonstrates
the action allow.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436035 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436035", "intent:actions" : [{ "order" : 2, "allow" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.2"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.3"}}] } }'

Verification

As we have applied action type allow now ping should happen between
hosts (h1 and h2) and (h2 and h3).

mininet> pingall
Ping: testing ping reachability
h1 -> h2 X X
h2 -> h1 h3 X
h3 -> X h2 X
h4 -> X X X

Update the intent

To provision block action that indicates traffic is not allowed between
h1 and h2.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436034 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436034", "intent:actions" : [{ "order" : 2, "block" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"10.0.0.1"} }, { "order":2 , "end-point-group" : {"name":"10.0.0.2"}}] } }'

Verification

As we have applied action type block now ping should not happen between
hosts (h1 and h2).

mininet> pingall
Ping: testing ping reachability
h1 -> X X X
h2 -> X h3 X
h3 -> X h2 X
h4 -> X X X

Note

Old actions and hosts are replaced by the new action and hosts.

Delete the intent

Respective intent and the traffics will be deleted.

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X DELETE http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436035

Verification

Deletion of intent and flow.

mininet> pingall
Ping: testing ping reachability
h1 -> X X X
h2 -> X X X
h3 -> X X X
h4 -> X X X

Note

Ping between two hosts can also be done using MAC Address

To provision the network for the two hosts(h1 MAC address and h2 MAC
address).

curl -v --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X PUT http://localhost:8181/restconf/config/intent:intents/intent/b9a13232-525e-4d8c-be21-cd65e3436035 -d '{ "intent:intent" : { "intent:id": "b9a13232-525e-4d8c-be21-cd65e3436035", "intent:actions" : [{ "order" : 2, "allow" : {} }], "intent:subjects" : [{ "order":1 , "end-point-group" : {"name":"6e:4f:f7:27:15:c9"} }, { "order":2 , "end-point-group" : {"name":"aa:7d:1f:4a:70:81"}}] } }'

How to configure Redirect Action

The section explains the redirect action supported in NIC. The redirect
functionality supports forwarding (to redirect) the traffic to a service
configured in SFC before forwarding it to the destination.

[image: REDIRECT SERVICE]
REDIRECT SERVICE

Following steps explain Redirect action function:

	Configure the service in SFC using the SFC APIs.

	Configure the intent with redirect action and the service information
where the traffic needs to be redirected.

	The flows are computed as below
	First flow entry between the source host connected node and the
ingress node of the configured service.

	Second flow entry between the egress Node id the configured
service and the ID and destination host connected host.

	Third flow entry between the destination host node and the source
host node.

Requirement

	Save the mininet Simple Mininet
topology script as redirect_test.py

	Start mininet, and create switches in it.

Replace <Controller IP> based on your environment.

sudo mn --controller=remote,ip=<Controller IP>--custom redirect_test.py --topo mytopo2

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
h3 h3-eth0:s2-eth1
h4 h4-eth0:s2-eth2
h5 h5-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h3-eth0 s2-eth2:h4-eth0 s2-eth3:h5-eth0 s2-eth4:s1-eth3 s2-eth5:s4-eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1
c0

Starting the Karaf

	Before execute the following steps, please, use the default
requirements. See section Downloading and deploy Karaf
distribution.

Configuration

Mininet

[image: CONFIGURATION THE NETWORK IN MININET]
CONFIGURATION THE NETWORK IN MININET

	Configure srvc1 as service node in the mininet environment.

Please execute the following commands in the mininet console (where
mininet script is executed).

srvc1 ip addr del 10.0.0.6/8 dev srvc1-eth0
srvc1 brctl addbr br0
srvc1 brctl addif br0 srvc1-eth0
srvc1 brctl addif br0 srvc1-eth1
srvc1 ifconfig br0 up
srvc1 tc qdisc add dev srvc1-eth1 root netem delay 200ms

Configure service in SFC

The service (srvc1) is configured using SFC REST API. As part of the
configuration the ingress and egress node connected the service is
configured.

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
 "service-functions": {
 "service-function": [
 {
 "name": "srvc1",
 "sf-data-plane-locator": [
 {
 "name": "Egress",
 "service-function-forwarder": "openflow:4"
 },
 {
 "name": "Ingress",
 "service-function-forwarder": "openflow:3"
 }
],
 "nsh-aware": false,
 "type": "delay"
 }
]
 }
}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function:service-functions/

SFF RESTCONF Request

Configuring switch and port information for the service functions.

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "openflow:3",
 "service-node": "OVSDB2",
 "sff-data-plane-locator": [
 {
 "name": "Ingress",
 "data-plane-locator":
 {
 "vlan-id": 100,
 "mac": "11:11:11:11:11:11",
 "transport": "service-locator:mac"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "srvc1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name" : "openflow:3",
 "sff-dpl-name" : "Ingress"
 }
 }
]
 },
 {
 "name": "openflow:4",
 "service-node": "OVSDB3",
 "sff-data-plane-locator": [
 {
 "name": "Egress",
 "data-plane-locator":
 {
 "vlan-id": 200,
 "mac": "44:44:44:44:44:44",
 "transport": "service-locator:mac"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "srvc1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name" : "openflow:4",
 "sff-dpl-name" : "Egress"
 }
 }
]
 }
]
 }
}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

CLI Command

To provision the network for the two hosts (h1 and h5).

Demonstrates the redirect action with service name srvc1.

intent:add -f <SOURCE_MAC> -t <DESTINATION_MAC> -a REDIRECT -s <SERVICE_NAME>

Example:

intent:add -f 32:bc:ec:65:a7:d1 -t c2:80:1f:77:41:ed -a REDIRECT -s srvc1

Verification

	As we have applied action type redirect now ping should happen
between hosts h1 and h5.

mininet> h1 ping h5
PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=201 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=200 ms
64 bytes from 10.0.0.5: icmp_seq=4 ttl=64 time=200 ms

The redirect functionality can be verified by the time taken by the ping
operation (200ms). The service srvc1 configured using SFC introduces
200ms delay. As the traffic from h1 to h5 is redirected via the srvc1,
the time taken by the traffic from h1 to h5 will take about 200ms.

	Flow entries added to nodes for the redirect action.

mininet> dpctl dump-flows
*** s1 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.406s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=1,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:4
cookie=0x0, duration=9.475s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=3,dl_src=c2:80:1f:77:41:ed, dl_dst=32:bc:ec:65:a7:d1 actions=output:1
cookie=0x1, duration=362.315s, table=0, n_packets=144, n_bytes=12240, idle_age=4, priority=9500,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x1, duration=362.324s, table=0, n_packets=4, n_bytes=168, idle_age=3, priority=10000,arp actions=CONTROLLER:65535,NORMAL
*** s2 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.503s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=3,dl_src=c2:80:1f:77:41:ed, dl_dst=32:bc:ec:65:a7:d1 actions=output:4
cookie=0x0, duration=9.437s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=5,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:3
cookie=0x3, duration=362.317s, table=0, n_packets=144, n_bytes=12240, idle_age=4, priority=9500,dl_type=0x88cc actions=CONTROLLER:65535
cookie=0x3, duration=362.32s, table=0, n_packets=4, n_bytes=168, idle_age=3, priority=10000,arp actions=CONTROLLER:65535,NORMAL
*** s3 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.41s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=2,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:3
*** s4 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=9.486s, table=0, n_packets=6, n_bytes=588, idle_age=3, priority=9000,in_port=3,dl_src=32:bc:ec:65:a7:d1, dl_dst=c2:80:1f:77:41:ed actions=output:1

How to configure QoS Attribute Mapping

This section explains how to provision QoS attribute mapping constraint
using NIC OF-Renderer.

The QoS attribute mapping currently supports DiffServ. It uses a 6-bit
differentiated services code point (DSCP) in the 8-bit differentiated
services field (DS field) in the IP header.

	Action
	Function

	Allow
	Permits the packet to be forwarded normally, but allows
for packet header fields, e.g., DSCP, to be modified.

The following steps explain QoS Attribute Mapping function:

	Initially configure the QoS profile which contains profile name and
DSCP value.

	When a packet is transferred from a source to destination, the flow
builder evaluates whether the transferred packet matches the
condition such as action, endpoints in the flow.

	If the packet matches the endpoints, the flow builder applies the
flow matching action and DSCP value.

Requirement

	Before execute the following steps, please, use the default
requirements. See section Default
Requirements.

Configuration

Please execute the following CLI commands to test network intent using
mininet:

	To apply the QoS constraint, configure the QoS profile.

intent:qosConfig -p <qos_profile_name> -d <valid_dscp_value>

Example:

intent:qosConfig -p High_Quality -d 46

Note

Valid DSCP value ranges from 0-63.

	To provision the network for the two hosts (h1 and h3), add intents
that allows traffic in both directions by execute the following CLI
command.

Demonstrates the ALLOW action with constraint QoS and QoS profile name.

intent:add -a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC> -q QOS -p <qos_profile_name>

Example:

intent:add -a ALLOW -t 00:00:00:00:00:03 -f 00:00:00:00:00:01 -q QOS -p High_Quality
intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:03 -q QOS -p High_Quality

Verification

	As we have applied action type ALLOW now ping should happen between
hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

	Verification of the flow entry and ensuring the mod_nw_tos is part
of actions.

mininet> dpctl dump-flows
*** s1 --
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=21.873s, table=0, n_packets=3, n_bytes=294, idle_age=21, priority=9000,dl_src=00:00:00:00:00:03,dl_dst=00:00:00:00:00:01 actions=NORMAL,mod_nw_tos:184
cookie=0x0, duration=41.252s, table=0, n_packets=3, n_bytes=294, idle_age=41, priority=9000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:03 actions=NORMAL,mod_nw_tos:184

Requirement

	Before execute the follow steps, please, use default requirements.
See section Default Requirements.

How to configure Log Action

This section demonstrates log action in OF Renderer. This demonstration
aims at enabling communication between two hosts and logging the flow
statistics details of the particular traffic.

Configuration

Please execute the following CLI commands to test network intent using
mininet:

	To provision the network for the two hosts (h1 and h3), add intents
that allows traffic in both directions by execute the following CLI
command.

intent:add –a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC>

Example:

intent:add -a ALLOW -t 00:00:00:00:00:03 -f 00:00:00:00:00:01
intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:03

	To log the flow statistics details of the particular traffic.

intent:add –a LOG -t <DESTINATION_MAC> -f <SOURCE_MAC>

Example:

intent:add -a LOG -t 00:00:00:00:00:03 -f 00:00:00:00:00:01

Verification

	As we have applied action type ALLOW now ping should happen between
hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

	To view the flow statistics log details such as, byte count, packet
count and duration, check the karaf.log.

2015-12-15 22:56:20,256 | INFO | lt-dispatcher-23 | IntentFlowManager | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Creating block intent for endpoints: source00:00:00:00:00:01 destination 00:00:00:00:00:03
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Byte Count:Counter64 [_value=238]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Packet Count:Counter64 [_value=3]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Duration in Nano second:Counter32 [_value=678000000]
2015-12-15 22:56:20,252 | INFO | lt-dispatcher-29 | FlowStatisticsListener | 264 - org.opendaylight.nic.of-renderer - 1.1.0.SNAPSHOT | Flow Statistics gathering for Duration in Second:Counter32 [_value=49]

OCP Plugin User Guide

This document describes how to use the ORI Control & Management Protocol
(OCP) feature in OpenDaylight. This document contains overview, scope,
architecture and design, installation, configuration and tutorial
sections for the feature.

Overview

OCP is an ETSI standard protocol for control and management of Remote
Radio Head (RRH) equipment. The OCP Project addresses the need for a
southbound plugin that allows applications and controller services to
interact with RRHs using OCP. The OCP southbound plugin will allow
applications acting as a Radio Equipment Control (REC) to interact with
RRHs that support an OCP agent.

[image: OCP southbound plugin]
OCP southbound plugin

It is foreseen that, in 5G, C-RAN will use the packet-based
Transport-SDN (T-SDN) as the fronthaul network to transport both control
plane and user plane data between RRHs and BBUs. As a result, the
addition of the OCP plugin to OpenDaylight will make it possible to
build an RRH controller on top of OpenDaylight to centrally manage
deployed RRHs, as well as integrating the RRH controller with T-SDN on
one single platform, achieving the joint RRH and fronthaul network
provisioning in C-RAN.

Scope

The OCP Plugin project includes:

	OCP v4.1.1 support

	Integration of OCP protocol library

	Simple API invoked as a RPC

	Simple API that allows applications to perform elementary functions
of the following categories:
	Device management

	Config management

	Object lifecycle

	Object state management

	Fault management

	Software management (not implemented as of Boron)

	Indication processing

	Logging (not implemented as of Boron)

	AISG/Iuant interface message tunnelling (not implemented as of Boron)

	ALD connection management (not implemented as of Boron)

Architecture and Design

OCP is a vendor-neutral standard communications interface defined to
enable control and management between RE and REC of an ORI architecture.
The OCP Plugin supports the implementation of the OCP specification; it
is based on the Model Driven Service Abstraction Layer (MD-SAL)
architecture.

OCP Plugin will support the following functionality:

	Connection handling

	Session management

	State management

	Error handling

	Connection establishment will be handled by OCP library using
opensource netty.io library

	Message handling

	Event/indication handling and propagation to upper layers

Activities in OCP plugin module

	Integration with OCP protocol library

	Integration with corresponding MD-SAL infrastructure

OCP protocol library is a component in OpenDaylight that mediates
communication between OpenDaylight controller and RRHs supporting OCP
protocol. Its primary goal is to provide the OCP Plugin with
communication channel that can be used for managing RRHs.

Key objectives:

	Immutable transfer objects generation (transformation of OCP protocol
library’s POJO objects into OpenDaylight DTO objects)

	Scalable non-blocking implementation

	Pipeline processing

	Scatter buffer

	TLS support

OCP Service addresses the need for a northbound interface that allows
applications and other controller services to interact with RRHs using
OCP, by providing API for abstracting OCP operations.

[image: Overall architecture]
Overall architecture

Message Flow

[image: Message flow example]
Message flow example

Installation

The OCP Plugin project has two top level Karaf features,
odl-ocpplugin-all and odl-ocpjava-all, which contain the following
sub-features:

	odl-ocpplugin-southbound

	odl-ocpplugin-app-ocp-service

	odl-ocpjava-protocol

The OCP service (odl-ocpplugin-app-ocp-service), together with the OCP
southbound (odl-ocpplugin-southbound) and OCP protocol library
(odl-ocpjava-protocol), provides OpenDaylight with basic OCP v4.1.1
functionality.

There are two ways to interact with OCP service: one is via RESTCONF
(programmatic) and the other is using DLUX web interface (manual), so
you have to install the following features to enable RESTCONF and DLUX.

karaf#>feature:install odl-restconf odl-l2switch-switch odl-mdsal-apidocs odl-dlux-core odl-dlux-all

Then install the odl-ocpplugin-all feature which includes the
odl-ocpplugin-southbound and odl-ocpplugin-app-ocp-service features.
Note that the odl-ocpjava-all feature will be installed automatically as
the odl-ocpplugin-southbound feature is dependent on the
odl-ocpjava-protocol feature.

karaf#>feature:install odl-ocpplugin-all

After all required features are installed, use following command from
karaf console to check and make sure features are correctly installed
and initialized.

karaf#>feature:list | grep ocp

Configuration

Configuring the OCP plugin can be done via its configuration file,
62-ocpplugin.xml, which can be found in the
<odl-install-dir>/etc/opendaylight/karaf/ directory.

As of Boron, there are the following settings that are configurable:

	port specifies the port number on which the OCP plugin listens
for connection requests

	radioHead-idle-timeout determines the time duration (unit:
milliseconds) for which a radio head has been idle before the idle
event is triggered to perform health check

	ocp-version specifies the OCP protocol version supported by the
OCP plugin

	rpc-requests-quota sets the maximum number of concurrent rpc
requests allowed

	global-notification-quota sets the maximum number of concurrent
notifications allowed

[image: OCP plugin configuration]
OCP plugin configuration

Test Environment

The OCP Plugin project contains a simple OCP agent for testing purposes;
the agent has been designed specifically to act as a fake radio head
device, giving you an idea of what it would look like during the OCP
handshake taking place between the OCP agent and OpenDaylight (OCP
plugin).

To run the simple OCP agent, you have to first download its JAR file
from OpenDaylight Nexus Repository.

wget https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/ocpplugin/simple-agent/0.1.0-Boron/simple-agent-0.1.0-Boron.jar

Then run the agent with no arguments (assuming you already have JDK 1.8
or above installed) and it should display the usage that lists the
expected arguments.

java -classpath simple-agent-0.1.0-Boron.jar org.opendaylight.ocpplugin.OcpAgent

Usage: java org.opendaylight.ocpplugin.OcpAgent <controller's ip address> <port number> <vendor id> <serial number>

Here is an example:

java -classpath simple-agent-0.1.0-Boron.jar org.opendaylight.ocpplugin.OcpAgent 127.0.0.1 1033 XYZ 123

Web / Graphical Interface

Once you enable the DLUX feature, you can access the Controller GUI
using following URL.

http://<controller-ip>:8080/index.html

Expand Nodes. You should see all the radio head devices that are
connected to the controller running at <controller-ip>.

[image: DLUX Nodes]
DLUX Nodes

And expand Yang UI if you want to browse the various northbound APIs
exposed by the OCP service.

[image: DLUX Yang UI]
DLUX Yang UI

For information on how to use these northbound APIs, please refer to the
OCP Plugin Developer Guide.

Programmatic Interface

The OCP Plugin project has implemented a complete set of the C&M
operations (elementary functions) defined in the OCP specification, in
the form of both northbound and southbound APIs, including:

	health-check

	set-time

	re-reset

	get-param

	modify-param

	create-obj

	delete-obj

	get-state

	modify-state

	get-fault

The API is documented in the OCP Plugin Developer Guide under the
section Southbound API and Northbound API, respectively.

ODL-SDNi User Guide

Introduction

This user guide will help to setup the ODL-SDNi application.

Components

SDNiAggregator, SDNi API, SDNiWrapper, and SDNiUI are the four
components in ODL-SDNi App:

	SDNiAggregator: Connects with switch, topology, hosttracker managers
of controller to get the topology and other related data.

	SDNi REST API: It is a part of controller northbound, which gives the
required information by quering SDNiAggregator through RESTCONF.

	SDNiWrapper: This component uses the SDNi REST API and gathers the
information required to be shared among controllers.

	SDNiUI:This component displays all the SDN controllers which are
connected to each other.

Troubleshooting

To work with multiple controllers, change some of the configuration in
config.ini file. For example change the listening port of one controller
to 6653 and other controller to 6663 in
/root/controller/opendaylight/distribution/opendaylight/target/distribution.opendaylight-osgipackage/opendaylight/configuration/config.ini
(i.e., of.listenPort=6653).

OpenFlow related system parameters.

TCP port on which the controller is listening (default 6633)
of.listenPort=6653

OF-CONFIG User Guide

Overview

OF-CONFIG defines an OpenFlow switch as an abstraction called an
OpenFlow Logical Switch. The OF-CONFIG protocol enables configuration of
essential artifacts of an OpenFlow Logical Switch so that an OpenFlow
controller can communicate and control the OpenFlow Logical switch via
the OpenFlow protocol. OF-CONFIG introduces an operating context for one
or more OpenFlow data paths called an OpenFlow Capable Switch for one or
more switches. An OpenFlow Capable Switch is intended to be equivalent
to an actual physical or virtual network element (e.g. an Ethernet
switch) which is hosting one or more OpenFlow data paths by partitioning
a set of OpenFlow related resources such as ports and queues among the
hosted OpenFlow data paths. The OF-CONFIG protocol enables dynamic
association of the OpenFlow related resources of an OpenFlow Capable
Switch with specific OpenFlow Logical Switches which are being hosted on
the OpenFlow Capable Switch. OF-CONFIG does not specify or report how
the partitioning of resources on an OpenFlow Capable Switch is achieved.
OF-CONFIG assumes that resources such as ports and queues are
partitioned amongst multiple OpenFlow Logical Switches such that each
OpenFlow Logical Switch can assume full control over the resources that
is assigned to it.

How to start

	start OF-CONFIG feature as below:

feature:install odl-of-config-all

Configuration on the OVS supporting OF-CONFIG

Note

OVS is not supported by OF-CONFIG temporarily because the
OpenDaylight version of OF-CONFIG is 1.2 while the OVS version of
OF-CONFIG is not standard.

The introduction of configuring the OVS can be referred to:

https://github.com/openvswitch/of-config.

Connection Establishment between the Capable/Logical Switch and OF-CONFIG

The OF-CONFIG protocol is based on NETCONF. So the switches supporting
OF-CONFIG can also access OpenDaylight using the functions provided by
NETCONF. This is the preparation step before connecting to OF-CONFIG.
How to access the switch to OpenDaylight using the NETCONF can be
referred to the NETCONF Southbound User
Guide or NETCONF Southbound
examples on the
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf].

Now the switches supporting OF-CONFIG and they have connected to the
controller using NETCONF as described in preparation phase. OF-CONFIG
can check whether the switch can support OF-CONFIG by reading the
capability list in NETCONF.

The OF-CONFIG will get the information of the capable switch and logical
switch via the NETCONF connection, and creates separate topologies for
the capable and logical switches in the OpenDaylight Topology module.

The Connection between the capable/logical switches and OF-CONFIG is
finished.

Configuration On Capable Switch

Here is an example showing how to make the configuration to
modify-controller-connection on the capable switch using OF-CONFIG.
Other configurations can follow the same way of the example.

	Example: modify-controller-connection

Note

this configuration can execute via the NETCONF, which can be
referred to the NETCONF Southbound User
Guide or NETCONF Southbound
examples on the
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf].

OpenFlow Plugin Project User Guide

Overview and Architecture

Overview and Architecture

Overview

OpenFlow is a vendor-neutral standard communications interface defined
to enable interaction between the control and forwarding layers of an
SDN architecture. The OpenFlow plugin project intends to develop a
plugin to support implementations of the OpenFlow specification as it
develops and evolves. Specifically the project has developed a plugin
aiming to support OpenFlow 1.0 and 1.3.x. It can be extended to add
support for subsequent OpenFlow specifications. The plugin is based on
the Model Driven Service Abstraction Layer (MD-SAL) architecture
(https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL).
This new OpenFlow 1.0/1.3 MD-SAL based plugin is distinct from the old
OpenFlow 1.0 plugin which was based on the API driven SAL (AD-SAL)
architecture.

Scope

	Southbound plugin and integration of OpenFlow 1.0/1.3.x library
project

	Ongoing support and integration of the OpenFlow specification

	The plugin should be implemented in an easily extensible manner

	Protocol verification activities will be performed on supported
OpenFlow specifications

Architecture and Design

Functionality

OpenFlow 1.3 Plugin will support the following functionality

	Connection Handling

	Session Management

	State Management.

	Error Handling.

	Mapping function(Infrastructure to OF structures).

	Connection establishment will be handled by OpenFlow library using
opensource netty.io library.

	Message handling(Ex: Packet in).

	Event handling and propagation to upper layers.

	Plugin will support both MD-SAL and Hard SAL.

	Will be backward compatible with OF 1.0.

Activities in OF plugin module

	New OF plugin bundle will support both OF 1.0 and OF 1.3.

	Integration with OpenFlow library.

	Integration with corresponding MD-SAL infrastructure.

	Hard SAL will be supported as adapter on top of MD-SAL plugin.

	OF 1.3 and OF 1.0 plugin will be integrated as single bundle.

Design

Overall Architecture

[image: overal architecture]
overal architecture

Coverage

Intro

This page is to catalog the things that have been tested and confirmed
to work:

Coverage

Coverage has been moved to a GoogleDoc
Spreadsheet [https://docs.google.com/spreadsheet/ccc?key=0AtpUuSEP8OyMdHNTZjBoM0VjOE9BcGhHMzk3N19uamc&usp=sharing%23gid=2#gid=0]

OF 1.3 Considerations

The baseline model is a OF 1.3 model, and the coverage tables primarily
deal with OF 1.3. However for OF 1.0, we have a column to indicate
either N/A if it doesn’t apply, or whether its been confirmed working.

OF 1.0 Considerations

OF 1.0 is being considered as a switch with: * 1 Table * 0 Groups * 0
Meters * 1 Instruction (Apply Actions) * and a limited vocabulary of
matches and actions.

Tutorial / How-To

Running the controller with the new OpenFlow Plugin

How to start

There are all helium features (from features-openflowplugin) duplicated
into features-openflowplugin-li. The duplicates got suffix -li and
provide Lithium codebase functionality.

These are most used:

	odl-openflowplugin-app-lldp-speaker-li

	odl-openflowplugin-flow-services-rest-li

	odl-openflowplugin-drop-test-li

In case topology is required then the first one should be installed.

feature:install odl-openflowplugin-app-lldp-speaker-li

The Li-southbound currently provides:

	flow management

	group management

	meter management

	statistics polling

What to log

In order to see really low level messages enter these in karaf console:

log:set TRACE org.opendaylight.openflowplugin.openflow.md.core
log:set TRACE org.opendaylight.openflowplugin.impl

How enable topology

In order for topology to work (fill dataStore/operational with links)
there must be LLDP responses delivered back to controller. This requires
table-miss-entries. Table-miss-entry is a flow in table.id=0 with low
priority, empty match and one output action = send to controller. Having
this flow installed on every node will enable for gathering and
exporting links between nodes into dataStore/operational. This is done
if you use for example l2 switch application.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <barrier>false</barrier>
 <cookie>54</cookie>
 <flags>SEND_FLOW_REM</flags>
 <flow-name>FooXf54</flow-name>
 <hard-timeout>0</hard-timeout>
 <id>4242</id>
 <idle-timeout>0</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <apply-actions>
 <action>
 <output-action>
 <max-length>65535</max-length>
 <output-node-connector>CONTROLLER</output-node-connector>
 </output-action>
 <order>0</order>
 </action>
 </apply-actions>
 <order>0</order>
 </instruction>
 </instructions>
 <match/>
 <priority>0</priority>
 <strict>false</strict>
 <table_id>0</table_id>
</flow>

Enable RESTCONF and Controller GUI

If you want to use RESTCONF with openflowplugin project, you have to
install odl-restconf feature to enable that. To install odl-restconf
feature run the following command

karaf#>feature:install odl-restconf

If you want to access the Controller GUI, you have to install
odl-dlux-core feature to enable that. Run following command to install
it

karaf#>feature:install odl-dlux-core

Once you enable the feature, access the Controller GUI using following
URL

http://<controller-ip>:8181/dlux/index.html

OpenFlow 1.3 Enabled Software Switches / Environment

Getting Mininet with OF 1.3

Download Mininet VM Upgraded to OF
1.3 [https://www.dropbox.com/s/dbf9a372elqs1s1/mininet-of-1.3.zip]
(or the newer mininet-2.1.0 with
OVS-2.0 [https://www.dropbox.com/s/t66vqfqx57a7nhk/mininet-2.1.0-of1.3.zip]
that works with VMware Player. For using this on VirtualBox, import this
to VMware Player and then export the .vmdk) or you could build one
yourself Openflow Protocol Library:OpenVirtualSwitch[Instructions for
setting up Mininet with OF 1.3].

Installing under VirtualBox

[image: configuring a host-only adapter]
configuring a host-only adapter

For whatever reason, at least on the Mac, NATed interfaces in VirtualBox
don’t actually seem to allow for connections from the host to the VM.
Instead, you need to configure a host-only network and set it up. Do
this by:

	Go to the VM’s settings in VirtualBox then to network and add a
second adapter attached to “Host-only Adapter” (see the screenshot to
the right)

	Edit the /etc/network/interfaces file to configure the adapter
properly by adding these two lines

auto eth1
iface eth1 inet dhcp

	Reboot the VM

At this point you should have two interfaces one which gives you NATed
access to the internet and another that gives you access between your
mac and the VMs. At least for me, the NATed interface gets a 10.0.2.x
address and the the host-only interface gets a 192.168.56.x address.

Your simplest choice: Use Vagrant

Download Virtual Box [https://www.virtualbox.org/] and install it
Download Vagrant [http://www.vagrantup.com/] and install it

cd openflowplugin/vagrant/mininet-2.1.0-of-1.3/
vagrant up
vagrant ssh

This will leave you sshed into a fully provisioned Ubuntu Trusty box
with mininet-2.1.0 and OVS 2.0 patches to work with OF 1.3.

Setup CPqD Openflow 1.3 Soft Switch

Latest version of Openvswitch (v2.0.0) doesn’t support all the openflow
1.3 features, e.g group multipart statistics request. Alternate options
is CPqD Openflow 1.3 soft switch, It supports most of the openflow 1.3
features.

	You can setup the switch as per the instructions given on the
following URL

https://github.com/CPqD/ofsoftswitch13

	Fire following command to start the switch

Start the datapath :

$ sudo udatapath/ofdatapath --datapath-id=<dpid> --interfaces=<if-list> ptcp:<port>
 e.g $ sudo udatapath/ofdatapath --datapath-id=000000000001 --interfaces=ethX ptcp:6680

ethX should not be associated with ip address and ipv6 should be
disabled on it. If you are installing the switch on your local machine,
you can use following command (for Ubuntu) to create virtual interface.

ip link add link ethX address 00:19:d1:29:d2:58 macvlan0 type macvlan

ethX - Any existing interface.

Or if you are using mininet VM for installing this switch, you can
simply add one more adaptor to your VM.

Start Openflow protocol agent:

$secchan/ofprotocol tcp:<switch-host>:<switch-port> tcp:<ctrl-host>:<ctrl-port>
 e.g $secchan/ofprotocol tcp:127.0.0.1:6680 tcp:127.0.0.1:6653

Commands to add entries to various tables of the switch

	Add meter

$utilities/dpctl tcp:<switch-host>:<switch-port> meter-mod cmd=add,meter=1 drop:rate=50

	Add Groups

$utilities/dpctl tcp:127.0.0.1:6680 group-mod cmd=add,type=all,group=1

$utilities/dpctl tcp:127.0.0.1:6680 group-mod cmd=add,type=sel,group=2 weight=10 output:1

	Create queue

$utilities/dpctl tcp:<ip>:<switch port> queue-mod <port-number> <queue-number> <minimum-bandwidth>
 e.g - $utilities/dpctl tcp:127.0.0.1:6680 queue-mod 1 1 23

“dpctl” –help is not very intuitive, so please keep adding any new
command you figured out while your experiment with the switch.

Using the built-in Wireshark

Mininet comes with pre-installed Wireshark, but for some reason it does
not include the Openflow protocol dissector. You may want to get and
install it in the /.wireshark/plugins/ directory.

First login to your mininet VM

ssh mininet@<your mininet vm ip> -X

The -X option in ssh will enable x-session over ssh so that the
wireshark window can be shown on your host machine’s display. when
prompted, enter the password (mininet).

From the mininet vm shell, set the wireshark capture privileges
(http://wiki.wireshark.org/CaptureSetup/CapturePrivileges):

sudo chgrp mininet /usr/bin/dumpcap
sudo chmod 754 /usr/bin/dumpcap
sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /usr/bin/dumpcap

Finally, start wireshark:

wireshark

The wireshark window should show up.

To see only Openflow packets, you may want to apply the following filter
in the Filter window:

tcp.port == 6633 and tcp.flags.push == 1

Start the capture on any port.

Running Mininet with OF 1.3

From within the Mininet VM, run:

sudo mn --topo single,3 --controller 'remote,ip=<your controller ip>,port=6653' --switch ovsk,protocols=OpenFlow13

End to End Inventory

Introduction

The purpose of this page is to walk you through how to see the Inventory
Manager working end to end with the openflowplugin using OpenFlow 1.3.

Basically, you will learn how to:

	Run the Base/Virtualization/Service provider Edition with the new
openflowplugin:
OpenDaylight_OpenFlow_Plugin::Running_controller_with_the_new_OF_plugin[Running
the controller with the new OpenFlow Plugin]

	Start mininet to use OF 1.3:
OpenDaylight_OpenFlow_Plugin::Test_Environment[OpenFlow 1.3
Enabled Software Switches / Environment]

	Use RESTCONF to see the nodes appear in inventory.

Restconf for Inventory

The REST url for listing all the nodes is:

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/

You will need to set the Accept header:

Accept: application/xml

You will also need to use HTTP Basic Auth with username: admin password:
admin.

Alternately, if you have a node’s id you can address it as

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/<id>

for example

http://localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1

How to hit RestConf with Postman

Install Postman for
Chrome [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

In the chrome browser bar enter

chrome://apps/

And click on Postman.

Enter the URL. Click on the Headers button on the far right. Enter the
Accept: header. Click on the Basic Auth Tab at the top and setup the
username and password. Send.

Known Bug

If you have not had any switches come up, and though no children for
http://localhost:8080/restconf/datastore/opendaylight-inventory:nodes/
and exception will be thrown. I’m pretty sure I know how to fix this
bug, just need to get to it :)

End to End Flows

Instructions

Learn End to End for Inventory

See End to End Inventory

Check inventory

	Run mininet with support for OF 1.3 as described in End to End Inventory

	Make sure you see the openflow:1 node come up as described in End to End Inventory

Flow Strategy

Current way to flush a flow to switch looks like this:

	Create MD-SAL modeled flow and commit it into dataStore using two
phase commit MD-SAL
FAQ [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ]

	FRM gets notified and invokes corresponding rpc (addFlow) on
particular service provider (if suitable provider for given node
registered)

	The provider (plugin in this case) transforms MD-SAL modeled flow
into OF-API modeled flow

	OF-API modeled flow is then flushed into OFLibrary

	OFLibrary encodes flow into particular version of wire protocol and
sends it to particular switch

	Check on mininet side if flow is set

Push your flow

	With PostMan:
	Set headers:
	Content-Type: application/xml

	Accept: application/xml

	Authentication

	Use URL: “http://<controller
IP>:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/0/flow/1”

	PUT

	Use Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <priority>2</priority>
 <flow-name>Foo</flow-name>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.10.2/24</ipv4-destination>
 </match>
 <id>1</id>
 <table_id>0</table_id>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
</flow>

*Note: If you want to try a different flow id or a different table,
make sure the URL and the body stay in sync. For example, if you wanted
to try: table 2 flow 20 you’d change the URL to:

“http://<controller
IP>:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/20”

but you would also need to update the 20 and 2 in the body of the XML.

Other caveat, we have a known bug with updates, so please only write to
a given flow id and table id on a given node once at this time until we
resolve it. Or you can use the DELETE method with the same URL in
PostMan to delete the flow information on switch and controller cache.

Check for your flow on the switch

	See your flow on your mininet:

mininet@mininet-vm:~$ sudo ovs-ofctl -O OpenFlow13 dump-flows s1
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=7.325s, table=0, n_packets=0, n_bytes=0, idle_timeout=300, hard_timeout=600, send_flow_rem priority=2,ip,nw_dst=10.0.10.0/24 actions=dec_ttl

If you want to see the above information from the mininet prompt - use
“sh” instead of “sudo” i.e. use “sh ovs-ofctl -O OpenFlow13 dump-flows
s1”.

Check for your flow in the controller config via RESTCONF

	See your configured flow in POSTMAN with
	URL http://<controller IP>:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/

	GET

	You no longer need to set Accept header

Return Response:

{
 "flow-node-inventory:table": [
 {
 "flow-node-inventory:id": 0,
 "flow-node-inventory:flow": [
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "10b1a23c-5299-4f7b-83d6-563bab472754",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.2"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "020bf359-1299-4da6-b4f7-368bd83b5841",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.1"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "42172bfc-9142-4a92-9e90-ee62529b1e85",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.3"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "99bf566e-89f3-4c6f-ae9e-e26012ceb1e4",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:1"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.4"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "019dcc2e-5b4f-44f0-90cc-de490294b862",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.5"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "968cf81e-3f16-42f1-8b16-d01ff719c63c",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.8"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "1c14ea3c-9dcc-4434-b566-7e99033ea252",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.6"
 },
 "flow-node-inventory:cookie": 0
 },
 {
 "flow-node-inventory:priority": 1,
 "flow-node-inventory:id": "ed9deeb2-be8f-4b84-bcd8-9d12049383d6",
 "flow-node-inventory:table_id": 0,
 "flow-node-inventory:hard-timeout": 0,
 "flow-node-inventory:idle-timeout": 0,
 "flow-node-inventory:instructions": {
 "flow-node-inventory:instruction": [
 {
 "flow-node-inventory:apply-actions": {
 "flow-node-inventory:action": [
 {
 "flow-node-inventory:output-action": {
 "flow-node-inventory:output-node-connector": "openflow:1:2"
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:order": 0
 }
]
 },
 "flow-node-inventory:match": {
 "flow-node-inventory:ethernet-match": {
 "flow-node-inventory:ethernet-type": {
 "flow-node-inventory:type": 2048
 }
 },
 "flow-node-inventory:ipv4-destination": "10.0.0.7"
 },
 "flow-node-inventory:cookie": 0
 }
]
 }
]
}

Look for your flow stats in the controller operational data via

RESTCONF

	See your operational flow stats in POSTMAN with
	URL “http://<controller
IP>:8181/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/table/0/”

	GET

Return Response:

{
 "flow-node-inventory:table": [
 {
 "flow-node-inventory:id": 0,
 "flow-node-inventory:flow": [
 {
 "flow-node-inventory:id": "10b1a23c-5299-4f7b-83d6-563bab472754",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 886000000,
 "opendaylight-flow-statistics:second": 2707
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.2/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "020bf359-1299-4da6-b4f7-368bd83b5841",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 826000000,
 "opendaylight-flow-statistics:second": 2711
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 1568,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.1/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 16,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "42172bfc-9142-4a92-9e90-ee62529b1e85",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 548000000,
 "opendaylight-flow-statistics:second": 2708
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.3/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "99bf566e-89f3-4c6f-ae9e-e26012ceb1e4",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 296000000,
 "opendaylight-flow-statistics:second": 2710
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 1274,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.4/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 13,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "1",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "019dcc2e-5b4f-44f0-90cc-de490294b862",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 392000000,
 "opendaylight-flow-statistics:second": 2711
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 1470,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.5/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 15,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "968cf81e-3f16-42f1-8b16-d01ff719c63c",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 344000000,
 "opendaylight-flow-statistics:second": 2707
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.8/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "ed9deeb2-be8f-4b84-bcd8-9d12049383d6",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 577000000,
 "opendaylight-flow-statistics:second": 2706
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.7/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 },
 {
 "flow-node-inventory:id": "1c14ea3c-9dcc-4434-b566-7e99033ea252",
 "opendaylight-flow-statistics:flow-statistics": {
 "opendaylight-flow-statistics:cookie": 0,
 "opendaylight-flow-statistics:duration": {
 "opendaylight-flow-statistics:nanosecond": 659000000,
 "opendaylight-flow-statistics:second": 2705
 },
 "opendaylight-flow-statistics:hard-timeout": 0,
 "opendaylight-flow-statistics:byte-count": 784,
 "opendaylight-flow-statistics:match": {
 "opendaylight-flow-statistics:ethernet-match": {
 "opendaylight-flow-statistics:ethernet-type": {
 "opendaylight-flow-statistics:type": 2048
 }
 },
 "opendaylight-flow-statistics:ipv4-destination": "10.0.0.6/32"
 },
 "opendaylight-flow-statistics:priority": 1,
 "opendaylight-flow-statistics:packet-count": 8,
 "opendaylight-flow-statistics:table_id": 0,
 "opendaylight-flow-statistics:idle-timeout": 0,
 "opendaylight-flow-statistics:instructions": {
 "opendaylight-flow-statistics:instruction": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:apply-actions": {
 "opendaylight-flow-statistics:action": [
 {
 "opendaylight-flow-statistics:order": 0,
 "opendaylight-flow-statistics:output-action": {
 "opendaylight-flow-statistics:output-node-connector": "2",
 "opendaylight-flow-statistics:max-length": 0
 }
 }
]
 }
 }
]
 }
 }
 }
],
 "opendaylight-flow-table-statistics:flow-table-statistics": {
 "opendaylight-flow-table-statistics:active-flows": 8,
 "opendaylight-flow-table-statistics:packets-matched": 97683,
 "opendaylight-flow-table-statistics:packets-looked-up": 101772
 }
 }
]
}

Discovering and testing new Flow Types

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

Using addMDFlow

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

once you can see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addMDFlow openflow:1 f#

Where # is a number between 1 and 80. This will create one of 80
possible flows. You can go confirm they were created on the switch.

Once you’ve done that, use

	GET

	Accept: application/xml

	URL:
“http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/“

To see a full listing of the flows in table 2 (where they will be put).
If you want to see a particular flow, look at

	URL:
“http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/#”

Where # is 123 + the f# you used. So for example, for f22, your url
would be

	URL:
“http://192.168.195.157:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/145“

Note: You may have to trim out some of the sections like that contain
bitfields and binary types that are not correctly modeled.

Note: Before attempting to PUT a flow you have created via addMDFlow,
please change its URL and body to, for example, use table 1 instead of
table 2 or another Flow Id, so you don’t collide.

Note: There are several test command providers and the one handling
flows is OpenflowpluginTestCommandProvider. Methods, which can be
use as commands in OSGI-console have prefix _.

Example Flows

Examples for XML for various flow matches, instructions & actions can be
found in following section here.

End to End Topology

Introduction

The purpose of this page is to walk you through how to see the Topology
Manager working end to end with the openflowplugin using OpenFlow 1.3.

Basically, you will learn how to:

	Run the Base/Virtualization/Service provider Edition with the new
openflowplugin: Running the controller with the new OpenFlow
Plugin

	Start mininet to use OF 1.3: OpenFlow 1.3 Enabled Software Switches
/ Environment

	Use RESTCONF to see the topology information.

Restconf for Topology

The REST url for listing all the nodes is:

http://localhost:8080/restconf/operational/network-topology:network-topology/

You will need to set the Accept header:

Accept: application/xml

You will also need to use HTTP Basic Auth with username: admin password:
admin.

Alternately, if you have a node’s id you can address it as

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/<id>

for example

http://localhost:8080/restconf/operational/network-topology:network-topology/topology/flow:1/

How to hit RestConf with Postman

Install
postman [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]
for Chrome

In the chrome browser bar enter

chrome://apps/

And click on Postman.

Enter the URL. Click on the Headers button on the far right. Enter the
Accept: header. Click on the Basic Auth Tab at the top and setup the
username and password. Send.

End to End Groups

NOTE

Groups are NOT SUPPORTED in current (2.0.0) version of
openvswitch [http://www.openvswitch.org/download]. See

	http://openvswitch.org/releases/NEWS-2.0.0

	http://comments.gmane.org/gmane.linux.network.openvswitch.general/3251

For testing group feature please use for example
CPQD virtual switch in the End to End Inventory section.

Instructions

Learn End to End for Inventory

End to End Inventory

Check inventory

Run CPqD with support for OF 1.3 as described in End to End Inventory

Make sure you see the openflow:1 node come up as described in End to End Inventory

Group Strategy

Current way to flush a group to switch looks like this:

	create MD-SAL modeled group and commit it into dataStore using two
phase commit

	FRM gets notified and invokes corresponding rpc (addGroup) on
particular service provider (if suitable provider for given node
registered)

	the provider (plugin in this case) transforms MD-SAL modeled group
into OF-API modeled group

	OF-API modeled group is then flushed into OFLibrary

	OFLibrary encodes group into particular version of wire protocol and
sends it to particular switch

	check on CPqD if group is installed

Push your Group

	With PostMan:
	Set
	Content-Type: application/xml

	Accept: application/xml

	Use URL:
“http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1”

	PUT

	Use Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<group xmlns="urn:opendaylight:flow:inventory">
 <group-type>group-all</group-type>
 <buckets>
 <bucket>
 <action>
 <pop-vlan-action/>
 <order>0</order>
 </action>
 <bucket-id>12</bucket-id>
 <watch_group>14</watch_group>
 <watch_port>1234</watch_port>
 </bucket>
 <bucket>
 <action>
 <set-field>
 <ipv4-source>100.1.1.1</ipv4-source>
 </set-field>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <ipv4-destination>200.71.9.5210</ipv4-destination>
 </set-field>
 <order>1</order>
 </action>
 <bucket-id>13</bucket-id>
 <watch_group>14</watch_group>
 <watch_port>1234</watch_port>
 </bucket>
 </buckets>
 <barrier>false</barrier>
 <group-name>Foo</group-name>
 <group-id>1</group-id>
</group>

Note

If you want to try a different group id, make sure the URL and the
body stay in sync. For example, if you wanted to try: group-id 20
you’d change the URL to
“http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/20”
but you would also need to update the <group-id>20</group-id> in the
body to match.

Note

<ip-address> :Provide the IP Address of the machine on which the
controller is running.

Check for your group on the switch

	See your group on your cpqd switch:

COMMAND: sudo dpctl tcp:127.0.0.1:6000 stats-group

SENDING:
stat_req{type="grp", flags="0x0", group="all"}

RECEIVED:
stat_repl{type="grp", flags="0x0", stats=[
{group="1", ref_cnt="0", pkt_cnt="0", byte_cnt="0", cntrs=[{pkt_cnt="0", byte_cnt="0"}, {pkt_cnt="0", byte_cnt="0"}]}]}

Check for your group in the controller config via RESTCONF

	See your configured group in POSTMAN with
	URL
http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1

	GET

	You should no longer need to set Accept

	Note: <ip-address> :Provide the IP Address of the machine on which
the controller is running.

Look for your group stats in the controller operational data via RESTCONF

	See your operational group stats in POSTMAN with
	URL
http://<ip-address>:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/group/1

	GET

	Note: <ip-address> :Provide the IP Address of the machine on which
the controller is running.

Discovering and testing Group Types

Currently, the openflowplugin has a test-provider that allows you to
push various groups through the system from the OSGI command line. Once
those groups have been pushed through, you can see them as examples and
then use them to see in the config what a particular group example looks
like.

Using addGroup

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your CPqD at the controller as described above.

once you can see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addGroup openflow:1

This will install a group in the switch. You can check whether the group
is installed or not.

Once you’ve done that, use

	GET

	Accept: application/xml

	URL:
“http://<ip-address>:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/group/1”
	Note: <ip-address> :Provide the IP Address of the machine on which
the controller is running.

Note

Before attempting to PUT a group you have created via addGroup,
please change its URL and body to, for example, use group 1 instead
of group 2 or another Group Id, so that they don’t collide.

Note

There are several test command providers and the one handling groups
is OpenflowpluginGroupTestCommandProvider. Methods, which can be use
as commands in OSGI-console have prefix _.

Example Group

Examples for XML for various Group Types can be found in the
test-scripts bundle of the plugin code with names g1.xml, g2.xml and
g3.xml.

End to End Meters

Instructions

Learn End to End for Inventory

	End to End Inventory

Check inventory

	Run mininet with support for OF 1.3 as described in End to End Inventory

	Make sure you see the openflow:1 node come up as described in End to End Inventory

Meter Strategy

Current way to flush a meter to switch looks like this:

	create MD-SAL modeled flow and commit it into dataStore using two
phase commit

	FRM gets notified and invokes corresponding rpc (addMeter) on
particular service provider (if suitable provider for given node
registered)

	the provider (plugin in this case) transforms MD-SAL modeled meter
into OF-API modeled meter

	OF-API modeled meter is then flushed into OFLibrary

	OFLibrary encodes meter into particular version of wire protocol and
sends it to particular switch

	check on mininet side if meter is installed

Push your Meter

	Using PostMan:
	Set Request Headers
	Content-Type: application/xml

	Accept: application/xml

	Use URL:
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1“

	Method:PUT

	Request Body:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<meter xmlns="urn:opendaylight:flow:inventory">
 <container-name>abcd</container-name>
 <flags>meter-burst</flags>
 <meter-band-headers>
 <meter-band-header>
 <band-burst-size>444</band-burst-size>
 <band-id>0</band-id>
 <band-rate>234</band-rate>
 <dscp-remark-burst-size>5</dscp-remark-burst-size>
 <dscp-remark-rate>12</dscp-remark-rate>
 <prec_level>1</prec_level>
 <meter-band-types>
 <flags>ofpmbt-dscp-remark</flags>
 </meter-band-types>
 </meter-band-header>
 </meter-band-headers>
 <meter-id>1</meter-id>
 <meter-name>Foo</meter-name>
</meter>

Note

If you want to try a different meter id, make sure the URL and the
body stay in sync. For example, if you wanted to try: meter-id 20
you’d change the URL to
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/20”
but you would also need to update the 20 in the body to match.

Note

:Provide the IP Address of the machine on which the controller is
running.

Check for your meter on the switch

	See your meter on your CPqD switch:

COMMAND: $ sudo dpctl tcp:127.0.0.1:6000 meter-config

SENDING:
stat_req{type="mconf", flags="0x0"{meter_id= ffffffff"}

RECEIVED:
stat_repl{type="mconf", flags="0x0", stats=[{meter= c"", flags="4", bands=[{type = dscp_remark, rate="12", burst_size="5", prec_level="1"}]}]}

Check for your meter in the controller config via RESTCONF

	See your configured flow in POSTMAN with
	URL
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/1“

	Method: GET

	You should no longer need to set Request Headers for Accept

	Note: :Provide the IP Address of the machine on which the
controller is running.

Look for your meter stats in the controller operational data via RESTCONF

	See your operational meter stats in POSTMAN with
	URL
“http://:8080/restconfig/operational/opendaylight-inventory:nodes/node/openflow:1/meter/1“

	Method: GET

	Note: :Provide the IP Address of the machine on which the
controller is running.

Discovering and testing Meter Types

Currently, the openflowplugin has a test-provider that allows you to
push various meters through the system from the OSGI command line. Once
those meters have been pushed through, you can see them as examples and
then use them to see in the config what a particular meter example looks
like.

Using addMeter

From the

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your CPqD at the controller as described above.

Once you can see your CPqD connected to the controller, at the OSGI
command line try running:

addMeter openflow:1

Once you’ve done that, use

	GET

	Accept: application/xml

	URL:
“http://:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/meter/12“
	Note: :Provide the IP Address of the machine on which the
controller is running.

Note

Before attempting to PUT a meter you have created via addMeter,
please change its URL and body to, for example, use meter 1 instead
of meter 2 or another Meter Id, so you don’t collide.

Note

There are several test command providers and the one handling Meter
is OpenflowpluginMeterTestCommandProvider. Methods, which can be
used as commands in OSGI-console have prefix _. Examples:
addMeter, modifyMeter and removeMeter.

Example Meter

Examples for XML for various Meter Types can be found in the
test-scripts bundle of the plugin code with names m1.xml, m2.xml and
m3.xml.

Statistics

Overview

This page contains high level detail about the statistics collection
mechanism in new OpenFlow plugin.

Statistics collection in new OpenFlow plugin

New OpenFlow plugin collects following statistics from OpenFlow enabled
node(switch):

	Individual Flow Statistics

	Aggregate Flow Statistics

	Flow Table Statistics

	Port Statistics

	Group Description

	Group Statistics

	Meter Configuration

	Meter Statistics

	Queue Statistics

	Node Description

	Flow Table Features

	Port Description

	Group Features

	Meter Features

At a high level statistics collection mechanism is divided into
following three parts

	Statistics related YANG models, service APIs and notification
interfaces [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=tree;f=opendaylight/md-sal/model/model-flow-statistics;h=3488133625ccf18d023bc59aa35c38e922b17d8d;hb=HEAD]
are defined in the MD-SAL.

	Service APIs (RPCs) defined in yang models are implemented by
OpenFlow plugin. Notification interfaces are wired up by OpenFlow
plugin to MD-SAL.

	Statistics Manager Module: This module use service APIs implemented
by OpenFlow plugin to send statistics requests to all the connected
OpenFlow enabled nodes. Module also implements notification
interfaces to receive statistics response from nodes. Once it
receives statistics response, it augment all the statistics data to
the relevant element of the node (like node-connector, flow,
table,group, meter) and store it in MD-SAL operational data store.

Details of statistics collection

	Current implementation collects above mentioned statistics (except
10-14) at a periodic interval of 15 seconds.

	Statistics mentioned in 10 to 14 are only fetched when any node
connects to the controller because these statistics are just static
details about the respective elements.

	Whenever any new element is added to node (like flow, group, meter,
queue) it sends statistics request immediately to fetch the latest
statistics and store it in the operational data store.

	Whenever any element is deleted from the node, it immediately remove
the relevant statistics from operational data store.

	Statistics data are augmented to their respective element stored in
the configuration data store. E.g Controller installed flows are
stored in configuration data store. Whenever Statistics Manager
receive statistics data related to these flow, it search the
corresponding flow in the configuration data store and augment
statistics in the corresponding location in operational data store.
Similar approach is used for other elements of the node.

	Statistics Manager stores flow statistics as an unaccounted flow
statistics in operational data store if there is no corresponding
flow exist in configuration data store. ID format of unaccounted flow
statistics is as follows - [#UF$TABLE**Unaccounted-flow-count - e.g
#UF$TABLE*2*1].

	All the unaccounted flows will be cleaned up periodically after every
two cycle of flow statistics collection, given that there is no
update for these flows in the last two cycles.

	Statistics Manager only entertains statistics response for the
request sent by itself. User can write its own statistics collector
using the statistics service APIs and notification defined in yang
models, it won’t effect the functioning of Statistics Manager.

	OpenFlow 1.0 don’t have concept of Meter and Group, so Statistics
Manager don’t send any group & meter related statistics request to
OpenFlow 1.0 enabled switch.

RESTCONF Uris to access statistics of various node elements

	Aggregate Flow Statistics & Flow Table Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/table/{table-id}

	Individual Flow Statistics from specific table

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/table/{table-id}/flow/{flow-id}

	Group Features & Meter Features Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}

	Group Description & Group Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/group/{group-id}

	Meter Configuration & Meter Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/meter/{meter-id}

	Node Connector Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/node-connector/{node-connector-id}

	Queue Statistics

GET http://<controller-ip>:8080/restconf/operational/opendaylight-inventory:nodes/node/{node-id}/node-connector/{node-connector-id}/queue/{queue-id}

Bugs

For more details and queuries, please send mail to
openflowplugin-dev@lists.opendaylight.org or avishnoi@in.ibm.com If you
want to report any bug in statistics collection, please use
bugzilla [https://bugs.opendaylight.org].

Web / Graphical Interface

In the Hydrogen & Helium release, the current Web UI does not support
the new OpenFlow 1.3 constructs such as groups, meters, new fields in
the flows, multiple flow tables, etc.

Command Line Interface

The following is not exactly CLI - just a set of test commands which can
be executed on the OSGI console testing various features in OpenFlow 1.3
spec.

	OSGI Console Test Provider Commands:
Flows

	OSGI Console Test Provider Commands:
Groups

	OSGI Console Test Provider Commands:
Meters

	OSGI Console Test Provider Commands: Topology
Events

Flows : Test Provider

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

AddFlow : addMDFlow

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addMDFlow openflow:1 f#

Where # is a number between 1 and 80 and openflow:1 is the of the
switch. This will create one of 80 possible flows. You can confirm that
they were created on the switch.

RemoveFlow : removeMDFlow

Similar to addMDFlow, from the controller OSGi prompt, while your switch
is connected to the controller, try running:

removeMDFlow openflow:1 f#

where # is a number between 1 and 80 and openflow:1 is the of the
switch. The flow to be deleted should have same flowid and Nodeid as
used for flow add.

ModifyFlow : modifyMDFlow

Similar to addMDFlow, from the controller OSGi prompt, while your switch
is connected to the controller, try running:

modifyMDFlow openflow:1 f#

where # is a number between 1 and 80 and openflow:1 is the of the
switch. The flow to be deleted should have same flowid and Nodeid as
used for flow add.

Group : Test Provider

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

AddGroup : addGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for
actiontype(a#). You can confirm that they were created on the switch.

RemoveGroup : removeGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

removeGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for
actiontype(a#). GroupId should be same as that used for adding the flow.
You can confirm that it was removed from the switch.

ModifyGroup : modifyGroup

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet at the controller as described above.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

modifyGroup openflow:1 a# g#

Where # is a number between 1 and 4 for grouptype(g#) and 1 and 28 for
actiontype(a#). GroupId should be same as that used for adding the flow.
You can confirm that it was modified on the switch.

Meters : Test Provider

Currently, the openflowplugin has a test-provider that allows you to
push various flows through the system from the OSGI command line. Once
those flows have been pushed through, you can see them as examples and
then use them to see in the config what a particular flow example looks
like.

AddMeter : addMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

addMeter openflow:1

You can now confirm that meter has been created on the switch.

RemoveMeter : removeMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

removeMeter openflow:1

The CLI takes care of using the same meterId and nodeId as used for
meter add. You can confirm that it was removed from the switch.

ModifyMeter : modifyMeter

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=.

Once you see your node (probably openflow:1 if you’ve been following
along) in the inventory, at the OSGI command line try running:

modifyMeter openflow:1

The CLI takes care of using the same meterId and nodeId as used for
meter add. You can confirm that it was modified on the switch.

Topology : Notification

Currently, the openflowplugin has a test-provider that allows you to get
notifications for the topology related events like Link-Discovered ,
Link-Removed events.

Link Discovered Event : Testing

Run the controller by executing:

cd openflowplugin/distribution/base/target/distributions-openflowplugin-base-0.0.1-SNAPSHOT-osgipackage/opendaylight
./run.sh

Point your mininet to the controller by giving the parameters
–controller=remote,ip=. Once the controller is connected to the switch,
Link-Discovered event can be tested by initially configuring the
specific flows on the switch. For Link Discovered event either
table-miss flow or LLDP ether-type flow can be configured.

Configuring Table-Miss flow using OpenflowpluginTestCommandProvider

addMDFlow Openflow:1 fTM

as per this
OpenDaylight_OpenFlow_Plugin:Test_Provider#Flows_:_Test_Provider[link].
fTM is the table-miss scenario here.

Once the table-miss flow is configured through above command, we can see
the Link-Discovered event in the debug logs on the controller console.

Configuring LLDP ether-type flow using OpenflowpluginTestCommandProvider

addMDFlow Openflow:1 0(table-id) f81

You can confirm that they were created on the switch.

Once the LLDP ether-type flow is configured through above command, we
can see the Link-Discovered event in the debug logs on the controller
console.

Link Removed Event : Testing

Having configured either table-miss or lldp ether-type flow on switch,
once the switch is disconnected we see the Link-Removed event

Programmatic Interface

The API is documented in the model documentation under the section
OpenFlow Services at:

	Models Documentation (OpenFlow Services
Section) [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Model_Reference]

Example flows

Overview

The flow examples on this page are tested to work with OVS.

Use, for example, POSTMAN with the following parameters:

PUT http://<ctrl-addr>:8080/restconf/config/opendaylight-inventory:nodes/node/<Node-id>/table/<Table-#>/flow/<Flow-#>

- Accept: application/xml
- Content-Type: application/xml

For example:

PUT http://localhost:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/127

Make sure that the Table-# and Flow-# in the URL and in the XML match.

The format of the flow-programming XML is determined by by the grouping
flow in the opendaylight-flow-types yang model: MISSING LINK.

Match Examples

The format of the XML that describes OpenFlow matches is determined by
the opendaylight-match-types yang model: .

IPv4 Dest Address

	Flow=124, Table=2, Priority=2,
Instructions=\{Apply_Actions={dec_nw_ttl}},
match=\{ipv4_destination_address=10.0.1.1/24}

	Note that ethernet-type MUST be 2048 (0x800)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>124</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.1.1/24</ipv4-destination>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>1</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf1</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src Address

	Flow=126, Table=2, Priority=2,
Instructions=\{Apply_Actions={drop}},
match=\{ethernet-source=00:00:00:00:00:01}

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <drop-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>126</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-source>
 <address>00:00:00:00:00:01</address>
 </ethernet-source>
 </ethernet-match>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>3</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf3</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, Ethernet Type

	Flow=127, Table=2, Priority=2,
Instructions=\{Apply_Actions={drop}},
match=\{ethernet-source=00:00:00:00:23:ae,
ethernet-destination=ff:ff:ff:ff:ff:ff, ethernet-type=45}

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>127</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>45</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:00:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>4</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf4</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, Input Port

	Note that ethernet-type MUST be 34887 (0x8847)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>128</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:00:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>10.1.2.3/24</ipv4-source>
 <ipv4-destination>20.4.5.6/16</ipv4-destination>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>5</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf5</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, IP

Protocol #, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>130</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:ff:aa</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>10.1.2.3/24</ipv4-source>
 <ipv4-destination>20.4.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>56</ip-protocol>
 <ip-dscp>15</ip-dscp>
 <ip-ecn>1</ip-ecn>
 </ip-match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12000</hard-timeout>
 <cookie>7</cookie>
 <idle-timeout>12000</idle-timeout>
 <flow-name>FooXf7</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, TCP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>131</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>8</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf8</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, UDP Src &

Dest Ports, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 17

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>132</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>9</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf9</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>

Ethernet Src & Dest Addresses, IPv4 Src & Dest Addresses, ICMPv4

Type & Code, IP DSCP, IP ECN, Input Port

	Note that ethernet-type MUST be 2048 (0x800)

	Note that IP Protocol Type MUST be 1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>134</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>1</ip-protocol>
 <ip-dscp>27</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <icmpv4-match>
 <icmpv4-type>6</icmpv4-type>
 <icmpv4-code>3</icmpv4-code>
 </icmpv4-match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>11</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf11</flow-name>
 <priority>2</priority>
</flow>

Ethernet Src & Dest Addresses, ARP Operation, ARP Src & Target

Transport Addresses, ARP Src & Target Hw Addresses

	Note that ethernet-type MUST be 2054 (0x806)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 <action>
 <order>1</order>
 <dec-mpls-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>137</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2054</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:ff:ff:FF:ff</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:FC:01:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <arp-op>1</arp-op>
 <arp-source-transport-address>192.168.4.1</arp-source-transport-address>
 <arp-target-transport-address>10.21.22.23</arp-target-transport-address>
 <arp-source-hardware-address>
 <address>12:34:56:78:98:AB</address>
 </arp-source-hardware-address>
 <arp-target-hardware-address>
 <address>FE:DC:BA:98:76:54</address>
 </arp-target-hardware-address>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>14</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>FooXf14</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>

Ethernet Src & Dest Addresses, Ethernet Type, VLAN ID, VLAN PCP

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>138</id>
 <cookie_mask>255</cookie_mask>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <vlan-match>
 <vlan-id>
 <vlan-id>78</vlan-id>
 <vlan-id-present>true</vlan-id-present>
 </vlan-id>
 <vlan-pcp>3</vlan-pcp>
 </vlan-match>
 </match>
 <hard-timeout>1200</hard-timeout>
 <cookie>15</cookie>
 <idle-timeout>3400</idle-timeout>
 <flow-name>FooXf15</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

Ethernet Src & Dest Addresses, MPLS Label, MPLS TC, MPLS BoS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <flow-name>FooXf17</flow-name>
 <id>140</id>
 <cookie_mask>255</cookie_mask>
 <cookie>17</cookie>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <priority>2</priority>
 <table_id>2</table_id>
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <protocol-match-fields>
 <mpls-label>567</mpls-label>
 <mpls-tc>3</mpls-tc>
 <mpls-bos>1</mpls-bos>
 </protocol-match-fields>
 </match>
</flow>

IPv6 Src & Dest Addresses

	Note that ethernet-type MUST be 34525

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf18</flow-name>
 <id>141</id>
 <cookie_mask>255</cookie_mask>
 <cookie>18</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>fe80::2acf:e9ff:fe21:6431/128</ipv6-source>
 <ipv6-destination>aabb:1234:2acf:e9ff::fe21:6431/64</ipv6-destination>
 </match>
</flow>

Metadata

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf19</flow-name>
 <id>142</id>
 <cookie_mask>255</cookie_mask>
 <cookie>19</cookie>
 <table_id>2</table_id>
 <priority>1</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 </match>
</flow>

Metadata, Metadata Mask

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf20</flow-name>
 <id>143</id>
 <cookie_mask>255</cookie_mask>
 <cookie>20</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <metadata>
 <metadata>12345</metadata>
 <metadata-mask>//FF</metadata-mask>
 </metadata>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, UDP Src & Dest Ports

	Note that ethernet-type MUST be 34525

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf21</flow-name>
 <id>144</id>
 <cookie_mask>255</cookie_mask>
 <cookie>21</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80::2acf:e9ff:fe21:6431/128</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf22</flow-name>
 <id>145</id>
 <cookie_mask>255</cookie_mask>
 <cookie>22</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dest Ports, IPv6 Label

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf23</flow-name>
 <id>146</id>
 <cookie_mask>255</cookie_mask>
 <cookie>23</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Tunnel ID

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf24</flow-name>
 <id>147</id>
 <cookie_mask>255</cookie_mask>
 <cookie>24</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <tunnel>
 <tunnel-id>2591</tunnel-id>
 </tunnel>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, ICMPv6 Type & Code, IPv6 Label

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 58

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf25</flow-name>
 <id>148</id>
 <cookie_mask>255</cookie_mask>
 <cookie>25</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ip-match>
 <ip-protocol>58</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <icmpv6-match>
 <icmpv6-type>6</icmpv6-type>
 <icmpv6-code>3</icmpv6-code>
 </icmpv6-match>
 </match>
</flow>

IPv6 Src & Dest Addresses, Metadata, IP DSCP, IP ECN, TCP Src & Dst Ports, IPv6 Label, IPv6 Ext Header

	Note that ethernet-type MUST be 34525

	Note that IP Protocol MUST be 58

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf27</flow-name>
 <id>150</id>
 <cookie_mask>255</cookie_mask>
 <cookie>27</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <dec-nw-ttl/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ipv6-label>
 <ipv6-flabel>33</ipv6-flabel>
 </ipv6-label>
 <ipv6-ext-header>
 <ipv6-exthdr>0</ipv6-exthdr>
 </ipv6-ext-header>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Actions

The format of the XML that describes OpenFlow actions is determined by
the opendaylight-action-types yang model: .

Apply Actions

Output to TABLE

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf101</flow-name>
 <id>256</id>
 <cookie_mask>255</cookie_mask>
 <cookie>101</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>TABLE</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to INPORT

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf102</flow-name>
 <id>257</id>
 <cookie_mask>255</cookie_mask>
 <cookie>102</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>INPORT</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
7 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to Physical Port

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf103</flow-name>
 <id>258</id>
 <cookie_mask>255</cookie_mask>
 <cookie>103</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>1</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>ff:ff:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>17.1.2.3/8</ipv4-source>
 <ipv4-destination>172.168.5.6/16</ipv4-destination>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>2</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>25364</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to LOCAL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf104</flow-name>
 <id>259</id>
 <cookie_mask>255</cookie_mask>
 <cookie>104</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>LOCAL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/76</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/94</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>60</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <tcp-source-port>183</tcp-source-port>
 <tcp-destination-port>8080</tcp-destination-port>
 </match>
</flow>

Output to NORMAL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf105</flow-name>
 <id>260</id>
 <cookie_mask>255</cookie_mask>
 <cookie>105</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>NORMAL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/84</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/90</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>45</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>20345</tcp-source-port>
 <tcp-destination-port>80</tcp-destination-port>
 </match>
</flow>

Output to FLOOD

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf106</flow-name>
 <id>261</id>
 <cookie_mask>255</cookie_mask>
 <cookie>106</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>FLOOD</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34525</type>
 </ethernet-type>
 </ethernet-match>
 <ipv6-source>1234:5678:9ABC:DEF0:FDCD:A987:6543:210F/100</ipv6-source>
 <ipv6-destination>fe80:2acf:e9ff:fe21::6431/67</ipv6-destination>
 <metadata>
 <metadata>12345</metadata>
 </metadata>
 <ip-match>
 <ip-protocol>6</ip-protocol>
 <ip-dscp>45</ip-dscp>
 <ip-ecn>2</ip-ecn>
 </ip-match>
 <tcp-source-port>20345</tcp-source-port>
 <tcp-destination-port>80</tcp-destination-port>
 </match>
</flow>

Output to ALL

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf107</flow-name>
 <id>262</id>
 <cookie_mask>255</cookie_mask>
 <cookie>107</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>ALL</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

Output to CONTROLLER

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf108</flow-name>
 <id>263</id>
 <cookie_mask>255</cookie_mask>
 <cookie>108</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>CONTROLLER</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

Output to ANY

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <flow-name>FooXf109</flow-name>
 <id>264</id>
 <cookie_mask>255</cookie_mask>
 <cookie>109</cookie>
 <table_id>2</table_id>
 <priority>2</priority>
 <hard-timeout>1200</hard-timeout>
 <idle-timeout>3400</idle-timeout>
 <installHw>false</installHw>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>ANY</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>20:14:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:ae</address>
 </ethernet-source>
 </ethernet-match>
 <ipv4-source>19.1.2.3/10</ipv4-source>
 <ipv4-destination>172.168.5.6/18</ipv4-destination>
 <ip-match>
 <ip-protocol>17</ip-protocol>
 <ip-dscp>8</ip-dscp>
 <ip-ecn>3</ip-ecn>
 </ip-match>
 <udp-source-port>25364</udp-source-port>
 <udp-destination-port>8080</udp-destination-port>
 <in-port>0</in-port>
 </match>
</flow>

Push VLAN

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <push-vlan-action>
 <ethernet-type>33024</ethernet-type>
 </push-vlan-action>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <vlan-match>
 <vlan-id>
 <vlan-id>79</vlan-id>
 <vlan-id-present>true</vlan-id-present>
 </vlan-id>
 </vlan-match>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>5</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>0</table_id>
 <id>31</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 <ethernet-destination>
 <address>FF:FF:29:01:19:61</address>
 </ethernet-destination>
 <ethernet-source>
 <address>00:00:00:11:23:AE</address>
 </ethernet-source>
 </ethernet-match>
 <in-port>1</in-port>
 </match>
 <flow-name>vlan_flow</flow-name>
 <priority>2</priority>
</flow>

Push MPLS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>push-mpls-action</flow-name>
 <instructions>
 <instruction>
 <order>3</order>
 <apply-actions>
 <action>
 <push-mpls-action>
 <ethernet-type>34887</ethernet-type>
 </push-mpls-action>
 <order>0</order>
 </action>
 <action>
 <set-field>
 <protocol-match-fields>
 <mpls-label>27</mpls-label>
 </protocol-match-fields>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <strict>false</strict>
 <id>100</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <ipv4-destination>10.0.0.4/32</ipv4-destination>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie_mask>255</cookie_mask>
 <cookie>401</cookie>
 <priority>8</priority>
 <hard-timeout>0</hard-timeout>
 <installHw>false</installHw>
 <table_id>0</table_id>
</flow>

Swap MPLS

	Note that ethernet-type MUST be 34887

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>push-mpls-action</flow-name>
 <instructions>
 <instruction>
 <order>2</order>
 <apply-actions>
 <action>
 <set-field>
 <protocol-match-fields>
 <mpls-label>37</mpls-label>
 </protocol-match-fields>
 </set-field>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <strict>false</strict>
 <id>101</id>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <protocol-match-fields>
 <mpls-label>27</mpls-label>
 </protocol-match-fields>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie_mask>255</cookie_mask>
 <cookie>401</cookie>
 <priority>8</priority>
 <hard-timeout>0</hard-timeout>
 <installHw>false</installHw>
 <table_id>0</table_id>
</flow>

Pop MPLS

	Note that ethernet-type MUST be 34887

	Issue with OVS 2.1 OVS
fix [http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=commitdiff;h=b3f2fc93e3f357f8d05a92f53ec253339a40887f]

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <flow-name>FooXf10</flow-name>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <pop-mpls-action>
 <ethernet-type>2048</ethernet-type>
 </pop-mpls-action>
 <order>1</order>
 </action>
 <action>
 <output-action>
 <output-node-connector>2</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 <order>2</order>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <id>11</id>
 <strict>false</strict>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>34887</type>
 </ethernet-type>
 </ethernet-match>
 <in-port>1</in-port>
 <protocol-match-fields>
 <mpls-label>37</mpls-label>
 </protocol-match-fields>
 </match>
 <idle-timeout>0</idle-timeout>
 <cookie>889</cookie>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <hard-timeout>0</hard-timeout>
 <priority>10</priority>
 <table_id>0</table_id>
</flow>

Learn

	Nicira extension defined in
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h

	Example section is -
https://github.com/osrg/openvswitch/blob/master/include/openflow/nicira-ext.h#L788

<flow>
 <id>ICMP_Ingress258a5a5ad-08a8-4ff7-98f5-ef0b96ca3bb8</id>
 <hard-timeout>0</hard-timeout>
 <idle-timeout>0</idle-timeout>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <metadata>
 <metadata>2199023255552</metadata>
 <metadata-mask>2305841909702066176</metadata-mask>
 </metadata>
 <ip-match>
 <ip-protocol>1</ip-protocol>
 </ip-match>
 </match>
 <cookie>110100480</cookie>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>1</order>
 <nx-resubmit
 xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
 <table>220</table>
 </nx-resubmit>
 </action>
 <action>
 <order>0</order>
 <nx-learn
 xmlns="urn:opendaylight:openflowplugin:extension:nicira:action">
 <idle-timeout>60</idle-timeout>
 <fin-idle-timeout>0</fin-idle-timeout>
 <hard-timeout>60</hard-timeout>
 <flags>0</flags>
 <table-id>41</table-id>
 <priority>61010</priority>
 <fin-hard-timeout>0</fin-hard-timeout>
 <flow-mods>
 <flow-mod-add-match-from-value>
 <src-ofs>0</src-ofs>
 <value>2048</value>
 <src-field>1538</src-field>
 <flow-mod-num-bits>16</flow-mod-num-bits>
 </flow-mod-add-match-from-value>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>4100</dst-field>
 <src-field>3588</src-field>
 <flow-mod-num-bits>32</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>518</dst-field>
 <src-field>1030</src-field>
 <flow-mod-num-bits>48</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-add-match-from-field>
 <src-ofs>0</src-ofs>
 <dst-ofs>0</dst-ofs>
 <dst-field>3073</dst-field>
 <src-field>3073</src-field>
 <flow-mod-num-bits>8</flow-mod-num-bits>
 </flow-mod-add-match-from-field>
 </flow-mods>
 <flow-mods>
 <flow-mod-copy-value-into-field>
 <dst-ofs>0</dst-ofs>
 <value>1</value>
 <dst-field>65540</dst-field>
 <flow-mod-num-bits>8</flow-mod-num-bits>
 </flow-mod-copy-value-into-field>
 </flow-mods>
 <cookie>110100480</cookie>
 </nx-learn>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <installHw>true</installHw>
 <barrier>false</barrier>
 <strict>false</strict>
 <priority>61010</priority>
 <table_id>253</table_id>
 <flow-name>ACL</flow-name>
</flow>

Opendaylight OpenFlow Plugin: Troubleshooting

empty section

OpFlex agent-ovs User Guide

Introduction

agent-ovs is a policy agent that works with OVS to enforce a group-based
policy networking model with locally attached virtual machines or
containers. The policy agent is designed to work well with orchestration
tools like OpenStack.

Agent Configuration

The agent configuration is handled using its config file which is by
default found at “/etc/opflex-agent-ovs/opflex-agent-ovs.conf”

Here is an example configuration file that documents the available
options:

{
 // Logging configuration
 // "log": {
 // "level": "info"
 // },

 // Configuration related to the OpFlex protocol
 "opflex": {
 // The policy domain for this agent.
 "domain": "openstack",

 // The unique name in the policy domain for this agent.
 "name": "example-agent",

 // a list of peers to connect to, by hostname and port. One
 // peer, or an anycast pseudo-peer, is sufficient to bootstrap
 // the connection without needing an exhaustive list of all
 // peers.
 "peers": [
 // EXAMPLE:
 {"hostname": "10.0.0.30", "port": 8009}
],

 "ssl": {
 // SSL mode. Possible values:
 // disabled: communicate without encryption
 // encrypted: encrypt but do not verify peers
 // secure: encrypt and verify peer certificates
 "mode": "disabled",

 // The path to a directory containing trusted certificate
 // authority public certificates, or a file containing a
 // specific CA certificate.
 "ca-store": "/etc/ssl/certs/"
 },

 "inspector": {
 // Enable the MODB inspector service, which allows
 // inspecting the state of the managed object database.
 // Default: enabled
 "enabled": true,

 // Listen on the specified socket for the inspector
 // Default /var/run/opflex-agent-ovs-inspect.sock
 "socket-name": "/var/run/opflex-agent-ovs-inspect.sock"
 }
 },

 // Endpoint sources provide metadata about local endpoints
 "endpoint-sources": {
 // Filesystem path to monitor for endpoint information
 "filesystem": ["/var/lib/opflex-agent-ovs/endpoints"]
 },

 // Renderers enforce policy obtained via OpFlex.
 "renderers": {
 // Stitched-mode renderer for interoperating with a
 // hardware fabric such as ACI
 // EXAMPLE:
 "stitched-mode": {
 "ovs-bridge-name": "br0",

 // Set encapsulation type. Must set either vxlan or vlan.
 "encap": {
 // Encapsulate traffic with VXLAN.
 "vxlan" : {
 // The name of the tunnel interface in OVS
 "encap-iface": "br0_vxlan0",

 // The name of the interface whose IP should be used
 // as the source IP in encapsulated traffic.
 "uplink-iface": "eth0.4093",

 // The vlan tag, if any, used on the uplink interface.
 // Set to zero or omit if the uplink is untagged.
 "uplink-vlan": 4093,

 // The IP address used for the destination IP in
 // the encapsulated traffic. This should be an
 // anycast IP address understood by the upstream
 // stiched-mode fabric.
 "remote-ip": "10.0.0.32",

 // UDP port number of the encapsulated traffic.
 "remote-port": 8472
 }

 // Encapsulate traffic with a locally-significant VLAN
 // tag
 // EXAMPLE:
 // "vlan" : {
 // // The name of the uplink interface in OVS
 // "encap-iface": "team0"
 // }
 },

 // Configure forwarding policy
 "forwarding": {
 // Configure the virtual distributed router
 "virtual-router": {
 // Enable virtual distributed router. Set to true
 // to enable or false to disable. Default true.
 "enabled": true,

 // Override MAC address for virtual router.
 // Default is "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff",

 // Configure IPv6-related settings for the virtual
 // router
 "ipv6" : {
 // Send router advertisement messages in
 // response to router solicitation requests as
 // well as unsolicited advertisements. This
 // is not required in stitched mode since the
 // hardware router will send them.
 "router-advertisement": true
 }
 },

 // Configure virtual distributed DHCP server
 "virtual-dhcp": {
 // Enable virtual distributed DHCP server. Set to
 // true to enable or false to disable. Default
 // true.
 "enabled": true,

 // Override MAC address for virtual dhcp server.
 // Default is "00:22:bd:f8:19:ff"
 "mac": "00:22:bd:f8:19:ff"
 },

 "endpoint-advertisements": {
 // Enable generation of periodic ARP/NDP
 // advertisements for endpoints. Default true.
 "enabled": "true"
 }
 },

 // Location to store cached IDs for managing flow state
 "flowid-cache-dir": "/var/lib/opflex-agent-ovs/ids"
 }
 }
}

Endpoint Registration

The agent learns about endpoints using endpoint metadata files located
by default in “/var/lib/opflex-agent-ovs/endpoints”.

These are JSON-format files such as the (unusually complex) example
below:

{
 "uuid": "83f18f0b-80f7-46e2-b06c-4d9487b0c754",
 "policy-space-name": "test",
 "endpoint-group-name": "group1",
 "interface-name": "veth0",
 "ip": [
 "10.0.0.1", "fd8f:69d8:c12c:ca62::1"
],
 "dhcp4": {
 "ip": "10.200.44.2",
 "prefix-len": 24,
 "routers": ["10.200.44.1"],
 "dns-servers": ["8.8.8.8", "8.8.4.4"],
 "domain": "example.com",
 "static-routes": [
 {
 "dest": "169.254.169.0",
 "dest-prefix": 24,
 "next-hop": "10.0.0.1"
 }
]
 },
 "dhcp6": {
 "dns-servers": ["2001:4860:4860::8888", "2001:4860:4860::8844"],
 "search-list": ["test1.example.com", "example.com"]
 },
 "ip-address-mapping": [
 {
 "uuid": "91c5b217-d244-432c-922d-533c6c036ab4",
 "floating-ip": "5.5.5.1",
 "mapped-ip": "10.0.0.1",
 "policy-space-name": "common",
 "endpoint-group-name": "nat-epg"
 },
 {
 "uuid": "22bfdc01-a390-4b6f-9b10-624d4ccb957b",
 "floating-ip": "fdf1:9f86:d1af:6cc9::1",
 "mapped-ip": "fd8f:69d8:c12c:ca62::1",
 "policy-space-name": "common",
 "endpoint-group-name": "nat-epg"
 }
],
 "mac": "00:00:00:00:00:01",
 "promiscuous-mode": false
}

The possible parameters for these files are:

	uuid

	A globally unique ID for the endpoint

	endpoint-group-name

	The name of the endpoint group for the endpoint

	policy-space-name

	The name of the policy space for the endpoint group.

	interface-name

	The name of the OVS interface to which the endpoint is attached

	ip

	A list of strings contains either IPv4 or IPv6 addresses that the
endpoint is allowed to use

	mac

	The MAC address for the endpoint’s interface.

	promiscuous-mode

	Allow traffic from this VM to bypass default port security

	dhcp4

	A distributed DHCPv4 configuration block (see below)

	dhcp6

	A distributed DHCPv6 configuration block (see below)

	ip-address-mapping

	A list of IP address mapping configuration blocks (see below)

DHCPv4 configuration blocks can contain the following parameters:

	ip

	the IP address to return with DHCP. Must be one of the configured
IPv4 addresses.

	prefix

	the subnet prefix length

	routers

	a list of default gateways for the endpoint

	dns

	a list of DNS server addresses

	domain

	The domain name parameter to send in the DHCP reply

	static-routes

	A list of static route configuration blocks, which contains a
“dest”, “dest-prefix”, and “next-hop” parameters to send as static
routes to the end host

DHCPv6 configuration blocks can contain the following parameters:

	dns

	A list of DNS servers for the endpoint

	search-patch

	The DNS search path for the endpoint

IP address mapping configuration blocks can contain the following
parameters:

	uuid

	a globally unique ID for the virtual endpoint created by the
mapping.

	floating-ip

	Map using DNAT to this floating IPv4 or IPv6 address

	mapped-ip

	the source IPv4 or IPv6 address; must be one of the IPs assigned to
the endpoint.

	endpoint-group-name

	The name of the endpoint group for the NATed IP

	policy-space-name

	The name of the policy space for the NATed IP

Inspector

The Opflex inspector is a useful command-line tool that will allow you
to inspect the state of the managed object database for the agent for
debugging and diagnosis purposes.

The command is called “gbp_inspect” and takes the following arguments:

gbp_inspect -h
Usage: ./gbp_inspect [options]
Allowed options:
 -h [--help] Print this help message
 --log arg Log to the specified file (default
 standard out)
 --level arg (=warning) Use the specified log level (default
 info)
 --syslog Log to syslog instead of file or
 standard out
 --socket arg (=/usr/local/var/run/opflex-agent-ovs-inspect.sock)
 Connect to the specified UNIX domain
 socket (default /usr/local/var/run/opfl
 ex-agent-ovs-inspect.sock)
 -q [--query] arg Query for a specific object with
 subjectname,uri or all objects of a
 specific type with subjectname
 -r [--recursive] Retrieve the whole subtree for each
 returned object
 -f [--follow-refs] Follow references in returned objects
 --load arg Load managed objects from the specified
 file into the MODB view
 -o [--output] arg Output the results to the specified
 file (default standard out)
 -t [--type] arg (=tree) Specify the output format: tree, list,
 or dump (default tree)
 -p [--props] Include object properties in output

Here are some examples of the ways to use this tool.

You can get information about the running system using one or more
queries, which consist of an object model class name and optionally the
URI of a specific object. The simplest query is to get a single object,
nonrecursively:

gbp_inspect -q DmtreeRoot
--* DmtreeRoot,/
gbp_inspect -q GbpEpGroup
--* GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
--* GbpEpGroup,/PolicyUniverse/PolicySpace/test/GbpEpGroup/group1/
gbp_inspect -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
--* GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/

You can also display all the properties for each object:

gbp_inspect -p -q GbpeL24Classifier
--* GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier4/
 {
 connectionTracking : 1 (reflexive)
 dFromPort : 80
 dToPort : 80
 etherT : 2048 (ipv4)
 name : classifier4
 prot : 6
 }
--* GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier3/
 {
 etherT : 34525 (ipv6)
 name : classifier3
 order : 100
 prot : 58
 }
--* GbpeL24Classifier,/PolicyUniverse/PolicySpace/test/GbpeL24Classifier/classifier2/
 {
 etherT : 2048 (ipv4)
 name : classifier2
 order : 101
 prot : 1
 }

You can also request to get the all the children of an object you query
for:

gbp_inspect -r -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
--* GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
 |-* GbpeInstContext,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpeInstContext/
 `-* GbpEpGroupToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpEpGroupToNetworkRSrc/

You can also follow references found in any object downloads:

gbp_inspect -fr -q GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
--* GbpEpGroup,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/
 |-* GbpeInstContext,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpeInstContext/
 `-* GbpEpGroupToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpEpGroup/nat-epg/GbpEpGroupToNetworkRSrc/
--* GbpFloodDomain,/PolicyUniverse/PolicySpace/common/GbpFloodDomain/fd_ext/
 `-* GbpFloodDomainToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpFloodDomain/fd_ext/GbpFloodDomainToNetworkRSrc/
--* GbpBridgeDomain,/PolicyUniverse/PolicySpace/common/GbpBridgeDomain/bd_ext/
 `-* GbpBridgeDomainToNetworkRSrc,/PolicyUniverse/PolicySpace/common/GbpBridgeDomain/bd_ext/GbpBridgeDomainToNetworkRSrc/
--* GbpRoutingDomain,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/
 |-* GbpRoutingDomainToIntSubnetsRSrc,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/GbpRoutingDomainToIntSubnetsRSrc/122/%2fPolicyUniverse%2fPolicySpace%2fcommon%2fGbpSubnets%2fsubnets_ext%2f/
 `-* GbpForwardingBehavioralGroupToSubnetsRSrc,/PolicyUniverse/PolicySpace/common/GbpRoutingDomain/rd_ext/GbpForwardingBehavioralGroupToSubnetsRSrc/
--* GbpSubnets,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/
 |-* GbpSubnet,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/GbpSubnet/subnet_ext4/
 `-* GbpSubnet,/PolicyUniverse/PolicySpace/common/GbpSubnets/subnets_ext/GbpSubnet/subnet_ext6/

OVSDB User Guide

The OVSDB project implements the OVSDB protocol (RFC 7047), as well as
plugins to support OVSDB Schemas, such as the Open_vSwitch database
schema and the hardware_vtep database schema.

OVSDB Plugins

Overview and Architecture

There are currently two OVSDB Southbound plugins:

	odl-ovsdb-southbound: Implements the OVSDB Open_vSwitch database
schema.

	odl-ovsdb-hwvtepsouthbound: Implements the OVSDB hardware_vtep
database schema.

These plugins are normally installed and used automatically by higher
level applications such as odl-ovsdb-openstack; however, they can also
be installed separately and used via their REST APIs as is described in
the following sections.

OVSDB Southbound Plugin

The OVSDB Southbound Plugin provides support for managing OVS hosts via
an OVSDB model in the MD-SAL which maps to important tables and
attributes present in the Open_vSwitch schema. The OVSDB Southbound
Plugin is able to connect actively or passively to OVS hosts and operate
as the OVSDB manager of the OVS host. Using the OVSDB protocol it is
able to manage the OVS database (OVSDB) on the OVS host as defined by
the Open_vSwitch schema.

OVSDB YANG Model

The OVSDB Southbound Plugin provides a YANG model which is based on the
abstract network topology
model [https://github.com/opendaylight/yangtools/blob/stable/boron/yang/yang-parser-impl/src/test/resources/ietf/network-topology%402013-10-21.yang].

The details of the OVSDB YANG model are defined in the
ovsdb.yang [https://github.com/opendaylight/ovsdb/blob/stable/boron/southbound/southbound-api/src/main/yang/ovsdb.yang]
file.

The OVSDB YANG model defines three augmentations:

	ovsdb-node-augmentation

	This augments the network-topology node and maps primarily to the
Open_vSwitch table of the OVSDB schema. The ovsdb-node-augmentation
is a representation of the OVS host. It contains the following
attributes.

	connection-info - holds the local and remote IP address and
TCP port numbers for the OpenDaylight to OVSDB node connections

	db-version - version of the OVSDB database

	ovs-version - version of OVS

	list managed-node-entry - a list of references to
ovsdb-bridge-augmentation nodes, which are the OVS bridges
managed by this OVSDB node

	list datapath-type-entry - a list of the datapath types
supported by the OVSDB node (e.g. system, netdev) - depends
on newer OVS versions

	list interface-type-entry - a list of the interface types
supported by the OVSDB node (e.g. internal, vxlan, gre,
dpdk, etc.) - depends on newer OVS verions

	list openvswitch-external-ids - a list of the key/value pairs
in the Open_vSwitch table external_ids column

	list openvswitch-other-config - a list of the key/value pairs
in the Open_vSwitch table other_config column

	list managery-entry - list of manager information entries and
connection status

	list qos-entries - list of QoS entries present in the QoS
table

	list queues - list of queue entries present in the queue
table

	ovsdb-bridge-augmentation

	This augments the network-topology node and maps to an specific
bridge in the OVSDB bridge table of the associated OVSDB node. It
contains the following attributes.

	bridge-uuid - UUID of the OVSDB bridge

	bridge-name - name of the OVSDB bridge

	bridge-openflow-node-ref - a reference (instance-identifier)
of the OpenFlow node associated with this bridge

	list protocol-entry - the version of OpenFlow protocol to use
with the OpenFlow controller

	list controller-entry - a list of controller-uuid and
is-connected status of the OpenFlow controllers associated with
this bridge

	datapath-id - the datapath ID associated with this bridge on
the OVSDB node

	datapath-type - the datapath type of this bridge

	fail-mode - the OVSDB fail mode setting of this bridge

	flow-node - a reference to the flow node corresponding to
this bridge

	managed-by - a reference to the ovsdb-node-augmentation
(OVSDB node) that is managing this bridge

	list bridge-external-ids - a list of the key/value pairs in
the bridge table external_ids column for this bridge

	list bridge-other-configs - a list of the key/value pairs in
the bridge table other_config column for this bridge

	ovsdb-termination-point-augmentation

	This augments the topology termination point model. The OVSDB
Southbound Plugin uses this model to represent both the OVSDB port
and OVSDB interface for a given port/interface in the OVSDB schema.
It contains the following attributes.

	port-uuid - UUID of an OVSDB port row

	interface-uuid - UUID of an OVSDB interface row

	name - name of the port and interface

	interface-type - the interface type

	list options - a list of port options

	ofport - the OpenFlow port number of the interface

	ofport_request - the requested OpenFlow port number for the
interface

	vlan-tag - the VLAN tag value

	list trunks - list of VLAN tag values for trunk mode

	vlan-mode - the VLAN mode (e.g. access, native-tagged,
native-untagged, trunk)

	list port-external-ids - a list of the key/value pairs in the
port table external_ids column for this port

	list interface-external-ids - a list of the key/value pairs
in the interface table external_ids interface for this interface

	list port-other-configs - a list of the key/value pairs in
the port table other_config column for this port

	list interface-other-configs - a list of the key/value pairs
in the interface table other_config column for this interface

	list inteface-lldp - LLDP Auto Attach configuration for the
interface

	qos - UUID of the QoS entry in the QoS table assigned to this
port

Getting Started

To install the OVSDB Southbound Plugin, use the following command at the
Karaf console:

feature:install odl-ovsdb-southbound-impl-ui

After installing the OVSDB Southbound Plugin, and before any OVSDB
topology nodes have been created, the OVSDB topology will appear as
follows in the configuration and operational MD-SAL.

HTTP GET:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/
 or
http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1"
 }
]
}

Where

<controller-ip> is the IP address of the OpenDaylight controller

OpenDaylight as the OVSDB Manager

An OVS host is a system which is running the OVS software and is capable
of being managed by an OVSDB manager. The OVSDB Southbound Plugin is
capable of connecting to an OVS host and operating as an OVSDB manager.
Depending on the configuration of the OVS host, the connection of
OpenDaylight to the OVS host will be active or passive.

Active Connection to OVS Hosts

An active connection is when the OVSDB Southbound Plugin initiates the
connection to an OVS host. This happens when the OVS host is configured
to listen for the connection (i.e. the OVSDB Southbound Plugin is active
the the OVS host is passive). The OVS host is configured with the
following command:

sudo ovs-vsctl set-manager ptcp:6640

This configures the OVS host to listen on TCP port 6640.

The OVSDB Southbound Plugin can be configured via the configuration
MD-SAL to actively connect to an OVS host.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb://HOST1",
 "connection-info": {
 "ovsdb:remote-port": "6640",
 "ovsdb:remote-ip": "<ovs-host-ip>"
 }
 }
]
}

Where

<ovs-host-ip> is the IP address of the OVS Host

Note that the configuration assigns a node-id of “ovsdb://HOST1” to
the OVSDB node. This node-id will be used as the identifier for this
OVSDB node in the MD-SAL.

Query the configuration MD-SAL for the OVSDB topology.

HTTP GET:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://HOST1",
 "ovsdb:connection-info": {
 "remote-ip": "<ovs-host-ip>",
 "remote-port": 6640
 }
 }
]
 }
]
}

As a result of the OVSDB node configuration being added to the
configuration MD-SAL, the OVSDB Southbound Plugin will attempt to
connect with the specified OVS host. If the connection is successful,
the plugin will connect to the OVS host as an OVSDB manager, query the
schemas and databases supported by the OVS host, and register to monitor
changes made to the OVSDB tables on the OVS host. It will also set an
external id key and value in the external-ids column of the
Open_vSwtich table of the OVS host which identifies the MD-SAL instance
identifier of the OVSDB node. This ensures that the OVSDB node will use
the same node-id in both the configuration and operational MD-SAL.

"opendaylight-iid" = "instance identifier of OVSDB node in the MD-SAL"

When the OVS host sends the OVSDB Southbound Plugin the first update
message after the monitoring has been established, the plugin will
populate the operational MD-SAL with the information it receives from
the OVS host.

Query the operational MD-SAL for the OVSDB topology.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://HOST1",
 "ovsdb:openvswitch-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']"
 }
],
 "ovsdb:connection-info": {
 "local-ip": "<controller-ip>",
 "remote-port": 6640,
 "remote-ip": "<ovs-host-ip>",
 "local-port": 39042
 },
 "ovsdb:ovs-version": "2.3.1-git4750c96",
 "ovsdb:manager-entry": [
 {
 "target": "ptcp:6640",
 "connected": true,
 "number_of_connections": 1
 }
]
 }
]
 }
]
}

To disconnect an active connection, just delete the configuration MD-SAL
entry.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1

Note in the above example, that / characters which are part of the
node-id are specified in hexadecimal format as “%2F”.

Passive Connection to OVS Hosts

A passive connection is when the OVS host initiates the connection to
the OVSDB Southbound Plugin. This happens when the OVS host is
configured to connect to the OVSDB Southbound Plugin. The OVS host is
configured with the following command:

sudo ovs-vsctl set-manager tcp:<controller-ip>:6640

The OVSDB Southbound Plugin is configured to listen for OVSDB
connections on TCP port 6640. This value can be changed by editing the
”./karaf/target/assembly/etc/custom.properties” file and changing the
value of the “ovsdb.listenPort” attribute.

When a passive connection is made, the OVSDB node will appear first in
the operational MD-SAL. If the Open_vSwitch table does not contain an
external-ids value of opendaylight-iid, then the node-id of the new
OVSDB node will be created in the format:

"ovsdb://uuid/<actual UUID value>"

If there an opendaylight-iid value was already present in the
external-ids column, then the instance identifier defined there will be
used to create the node-id instead.

Query the operational MD-SAL for an OVSDB node after a passive
connection.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/

Result Body:

{
 "topology": [
 {
 "topology-id": "ovsdb:1",
 "node": [
 {
 "node-id": "ovsdb://uuid/163724f4-6a70-428a-a8a0-63b2a21f12dd",
 "ovsdb:openvswitch-external-ids": [
 {
 "external-id-key": "system-id",
 "external-id-value": "ecf160af-e78c-4f6b-a005-83a6baa5c979"
 }
],
 "ovsdb:connection-info": {
 "local-ip": "<controller-ip>",
 "remote-port": 46731,
 "remote-ip": "<ovs-host-ip>",
 "local-port": 6640
 },
 "ovsdb:ovs-version": "2.3.1-git4750c96",
 "ovsdb:manager-entry": [
 {
 "target": "tcp:10.11.21.7:6640",
 "connected": true,
 "number_of_connections": 1
 }
]
 }
]
 }
]
}

Take note of the node-id that was created in this case.

Manage Bridges

The OVSDB Southbound Plugin can be used to manage bridges on an OVS
host.

This example shows how to add a bridge to the OVSDB node
ovsdb://HOST1.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb://HOST1/bridge/brtest",
 "ovsdb:bridge-name": "brtest",
 "ovsdb:protocol-entry": [
 {
 "protocol": "ovsdb:ovsdb-bridge-protocol-openflow-13"
 }
],
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']"
 }
]
}

Notice that the ovsdb:managed-by attribute is specified in the
command. This indicates the association of the new bridge node with its
OVSDB node.

Bridges can be updated. In the following example, OpenDaylight is
configured to be the OpenFlow controller for the bridge.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb://HOST1/bridge/brtest",
 "ovsdb:bridge-name": "brtest",
 "ovsdb:controller-entry": [
 {
 "target": "tcp:<controller-ip>:6653"
 }
],
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']"
 }
]
}

If the OpenDaylight OpenFlow Plugin is installed, then checking on the
OVS host will show that OpenDaylight has successfully connected as the
controller for the bridge.

$ sudo ovs-vsctl show
 Manager "ptcp:6640"
 is_connected: true
 Bridge brtest
 Controller "tcp:<controller-ip>:6653"
 is_connected: true
 Port brtest
 Interface brtest
 type: internal
 ovs_version: "2.3.1-git4750c96"

Query the operational MD-SAL to see how the bridge appears.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/

Result Body:

{
 "node": [
 {
 "node-id": "ovsdb://HOST1/bridge/brtest",
 "ovsdb:bridge-name": "brtest",
 "ovsdb:datapath-type": "ovsdb:datapath-type-system",
 "ovsdb:datapath-id": "00:00:da:e9:0c:08:2d:45",
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1']",
 "ovsdb:bridge-external-ids": [
 {
 "bridge-external-id-key": "opendaylight-iid",
 "bridge-external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1/bridge/brtest']"
 }
],
 "ovsdb:protocol-entry": [
 {
 "protocol": "ovsdb:ovsdb-bridge-protocol-openflow-13"
 }
],
 "ovsdb:bridge-uuid": "080ce9da-101e-452d-94cd-ee8bef8a4b69",
 "ovsdb:controller-entry": [
 {
 "target": "tcp:10.11.21.7:6653",
 "is-connected": true,
 "controller-uuid": "c39b1262-0876-4613-8bfd-c67eec1a991b"
 }
],
 "termination-point": [
 {
 "tp-id": "brtest",
 "ovsdb:port-uuid": "c808ae8d-7af2-4323-83c1-e397696dc9c8",
 "ovsdb:ofport": 65534,
 "ovsdb:interface-type": "ovsdb:interface-type-internal",
 "ovsdb:interface-uuid": "49e9417f-4479-4ede-8faf-7c873b8c0413",
 "ovsdb:name": "brtest"
 }
]
 }
]
}

Notice that just like with the OVSDB node, an opendaylight-iid has
been added to the external-ids column of the bridge since it was created
via the configuration MD-SAL.

A bridge node may be deleted as well.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest

Manage Ports

Similarly, ports may be managed by the OVSDB Southbound Plugin.

This example illustrates how a port and various attributes may be
created on a bridge.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:options": [
 {
 "ovsdb:option": "remote_ip",
 "ovsdb:value" : "10.10.14.11"
 }
],
 "ovsdb:name": "testport",
 "ovsdb:interface-type": "ovsdb:interface-type-vxlan",
 "tp-id": "testport",
 "vlan-tag": "1",
 "trunks": [
 {
 "trunk": "5"
 }
],
 "vlan-mode":"access"
 }
]
}

Ports can be updated - add another VLAN trunk.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport",
 "trunks": [
 {
 "trunk": "5"
 },
 {
 "trunk": "500"
 }
]
 }
]
}

Query the operational MD-SAL for the port.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest/termination-point/testport/

Result Body:

{
 "termination-point": [
 {
 "tp-id": "testport",
 "ovsdb:port-uuid": "b1262110-2a4f-4442-b0df-84faf145488d",
 "ovsdb:options": [
 {
 "option": "remote_ip",
 "value": "10.10.14.11"
 }
],
 "ovsdb:port-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb://HOST1/bridge/brtest']/network-topology:termination-point[network-topology:tp-id='testport']"
 }
],
 "ovsdb:interface-type": "ovsdb:interface-type-vxlan",
 "ovsdb:trunks": [
 {
 "trunk": 5
 },
 {
 "trunk": 500
 }
],
 "ovsdb:vlan-mode": "access",
 "ovsdb:vlan-tag": 1,
 "ovsdb:interface-uuid": "7cec653b-f407-45a8-baec-7eb36b6791c9",
 "ovsdb:name": "testport",
 "ovsdb:ofport": 1
 }
]
}

Remember that the OVSDB YANG model includes both OVSDB port and
interface table attributes in the termination-point augmentation. Both
kinds of attributes can be seen in the examples above. Again, note the
creation of an opendaylight-iid value in the external-ids column of
the port table.

Delete a port.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:%2F%2FHOST1%2Fbridge%2Fbrtest2/termination-point/testport/

Overview of QoS and Queue

The OVSDB Southbound Plugin provides the capability of managing the QoS
and Queue tables on an OVS host with OpenDaylight configured as the
OVSDB manager.

QoS and Queue Tables in OVSDB

The OVSDB includes a QoS and Queue table. Unlike most of the other
tables in the OVSDB, except the Open_vSwitch table, the QoS and Queue
tables are “root set” tables, which means that entries, or rows, in
these tables are not automatically deleted if they can not be reached
directly or indirectly from the Open_vSwitch table. This means that QoS
entries can exist and be managed independently of whether or not they
are referenced in a Port entry. Similarly, Queue entries can be managed
independently of whether or not they are referenced by a QoS entry.

Modelling of QoS and Queue Tables in OpenDaylight MD-SAL

Since the QoS and Queue tables are “root set” tables, they are modeled
in the OpenDaylight MD-SAL as lists which are part of the attributes of
the OVSDB node model.

The MD-SAL QoS and Queue models have an additonal identifier attribute
per entry (e.g. “qos-id” or “queue-id”) which is not present in the
OVSDB schema. This identifier is used by the MD-SAL as a key for
referencing the entry. If the entry is created originally from the
configuration MD-SAL, then the value of the identifier is whatever is
specified by the configuration. If the entry is created on the OVSDB
node and received by OpenDaylight in an operational update, then the id
will be created in the following format.

"queue-id": "queue://<UUID>"
"qos-id": "qos://<UUID>"

The UUID in the above identifiers is the actual UUID of the entry in the
OVSDB database.

When the QoS or Queue entry is created by the configuration MD-SAL, the
identifier will be configured as part of the external-ids column of the
entry. This will ensure that the corresponding entry that is created in
the operational MD-SAL uses the same identifier.

"queues-external-ids": [
 {
 "queues-external-id-key": "opendaylight-queue-id",
 "queues-external-id-value": "QUEUE-1"
 }
]

See more in the examples that follow in this section.

The QoS schema in OVSDB currently defines two types of QoS entries.

	linux-htb

	linux-hfsc

These QoS types are defined in the QoS model. Additional types will need
to be added to the model in order to be supported. See the examples that
folow for how the QoS type is specified in the model.

QoS entries can be configured with addtional attritubes such as
“max-rate”. These are configured via the other-config column of the
QoS entry. Refer to OVSDB schema (in the reference section below) for
all of the relevant attributes that can be configured. The examples in
the rest of this section will demonstrate how the other-config column
may be configured.

Similarly, the Queue entries may be configured with additional
attributes via the other-config column.

Managing QoS and Queues via Configuration MD-SAL

This section will show some examples on how to manage QoS and Queue
entries via the configuration MD-SAL. The examples will be illustrated
by using RESTCONF (see QoS and Queue Postman
Collection [https://github.com/opendaylight/ovsdb/blob/stable/boron/resources/commons/Qos-and-Queue-Collection.json.postman_collection]
).

A pre-requisite for managing QoS and Queue entries is that the OVS host
must be present in the configuration MD-SAL.

For the following examples, the following OVS host is configured.

HTTP POST:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/

Body:

{
 "node": [
 {
 "node-id": "ovsdb:HOST1",
 "connection-info": {
 "ovsdb:remote-ip": "<ovs-host-ip>",
 "ovsdb:remote-port": "<ovs-host-ovsdb-port>"
 }
 }
]
}

Where

	<controller-ip> is the IP address of the OpenDaylight controller

	<ovs-host-ip> is the IP address of the OVS host

	<ovs-host-ovsdb-port> is the TCP port of the OVSDB server on the
OVS host (e.g. 6640)

This command creates an OVSDB node with the node-id “ovsdb:HOST1”. This
OVSDB node will be used in the following examples.

QoS and Queue entries can be created and managed without a port, but
ultimately, QoS entries are associated with a port in order to use them.
For the following examples a test bridge and port will be created.

Create the test bridge.

HTTP PUT

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test

Body:

{
 "network-topology:node": [
 {
 "node-id": "ovsdb:HOST1/bridge/br-test",
 "ovsdb:bridge-name": "br-test",
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1']"
 }
]
}

Create the test port (which is modeled as a termination point in the
OpenDaylight MD-SAL).

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport"
 }
]
}

If all of the previous steps were successful, a query of the operational
MD-SAL should look something like the following results. This indicates
that the configuration commands have been successfully instantiated on
the OVS host.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test

Result Body:

{
 "node": [
 {
 "node-id": "ovsdb:HOST1/bridge/br-test",
 "ovsdb:bridge-name": "br-test",
 "ovsdb:datapath-type": "ovsdb:datapath-type-system",
 "ovsdb:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1']",
 "ovsdb:datapath-id": "00:00:8e:5d:22:3d:09:49",
 "ovsdb:bridge-external-ids": [
 {
 "bridge-external-id-key": "opendaylight-iid",
 "bridge-external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']"
 }
],
 "ovsdb:bridge-uuid": "3d225d8d-d060-4909-93ef-6f4db58ef7cc",
 "termination-point": [
 {
 "tp-id": "br=-est",
 "ovsdb:port-uuid": "f85f7aa7-4956-40e4-9c94-e6ca2d5cd254",
 "ovsdb:ofport": 65534,
 "ovsdb:interface-type": "ovsdb:interface-type-internal",
 "ovsdb:interface-uuid": "29ff3692-6ed4-4ad7-a077-1edc277ecb1a",
 "ovsdb:name": "br-test"
 },
 {
 "tp-id": "testport",
 "ovsdb:port-uuid": "aa79a8e2-147f-403a-9fa9-6ee5ec276f08",
 "ovsdb:port-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']/network-topology:termination-point[network-topology:tp-id='testport']"
 }
],
 "ovsdb:interface-uuid": "e96f282e-882c-41dd-a870-80e6b29136ac",
 "ovsdb:name": "testport"
 }
]
 }
]
}

Create Queue

Create a new Queue in the configuration MD-SAL.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Body:

{
 "ovsdb:queues": [
 {
 "queue-id": "QUEUE-1",
 "dscp": 25,
 "queues-other-config": [
 {
 "queue-other-config-key": "max-rate",
 "queue-other-config-value": "3600000"
 }
]
 }
]
}

Query Queue

Now query the operational MD-SAL for the Queue entry.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Result Body:

{
 "ovsdb:queues": [
 {
 "queue-id": "QUEUE-1",
 "queues-other-config": [
 {
 "queue-other-config-key": "max-rate",
 "queue-other-config-value": "3600000"
 }
],
 "queues-external-ids": [
 {
 "queues-external-id-key": "opendaylight-queue-id",
 "queues-external-id-value": "QUEUE-1"
 }
],
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69",
 "dscp": 25
 }
]
}

Create QoS

Create a QoS entry. Note that the UUID of the Queue entry, obtained by
querying the operational MD-SAL of the Queue entry, is specified in the
queue-list of the QoS entry. Queue entries may be added to the QoS entry
at the creation of the QoS entry, or by a subsequent update to the QoS
entry.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

Body:

{
 "ovsdb:qos-entries": [
 {
 "qos-id": "QOS-1",
 "qos-type": "ovsdb:qos-type-linux-htb",
 "qos-other-config": [
 {
 "other-config-key": "max-rate",
 "other-config-value": "4400000"
 }
],
 "queue-list": [
 {
 "queue-number": "0",
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
 }
]
 }
]
}

Query QoS

Query the operational MD-SAL for the QoS entry.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

Result Body:

{
 "ovsdb:qos-entries": [
 {
 "qos-id": "QOS-1",
 "qos-other-config": [
 {
 "other-config-key": "max-rate",
 "other-config-value": "4400000"
 }
],
 "queue-list": [
 {
 "queue-number": 0,
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
 }
],
 "qos-type": "ovsdb:qos-type-linux-htb",
 "qos-external-ids": [
 {
 "qos-external-id-key": "opendaylight-qos-id",
 "qos-external-id-value": "QOS-1"
 }
],
 "qos-uuid": "90ba9c60-3aac-499d-9be7-555f19a6bb31"
 }
]
}

Add QoS to a Port

Update the termination point entry to include the UUID of the QoS entry,
obtained by querying the operational MD-SAL, to associate a QoS entry
with a port.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport",
 "qos": "90ba9c60-3aac-499d-9be7-555f19a6bb31"
 }
]
}

Query the Port

Query the operational MD-SAL to see how the QoS entry appears in the
termination point model.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Result Body:

{
 "termination-point": [
 {
 "tp-id": "testport",
 "ovsdb:port-uuid": "aa79a8e2-147f-403a-9fa9-6ee5ec276f08",
 "ovsdb:port-external-ids": [
 {
 "external-id-key": "opendaylight-iid",
 "external-id-value": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='ovsdb:1']/network-topology:node[network-topology:node-id='ovsdb:HOST1/bridge/br-test']/network-topology:termination-point[network-topology:tp-id='testport']"
 }
],
 "ovsdb:qos": "90ba9c60-3aac-499d-9be7-555f19a6bb31",
 "ovsdb:interface-uuid": "e96f282e-882c-41dd-a870-80e6b29136ac",
 "ovsdb:name": "testport"
 }
]
}

Query the OVSDB Node

Query the operational MD-SAL for the OVS host to see how the QoS and
Queue entries appear as lists in the OVS node model.

HTTP GET:

http://<controller-ip>:8181/restconf/operational/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/

Result Body (edited to only show information relevant to the QoS and
Queue entries):

{
 "node": [
 {
 "node-id": "ovsdb:HOST1",
 <content edited out>
 "ovsdb:queues": [
 {
 "queue-id": "QUEUE-1",
 "queues-other-config": [
 {
 "queue-other-config-key": "max-rate",
 "queue-other-config-value": "3600000"
 }
],
 "queues-external-ids": [
 {
 "queues-external-id-key": "opendaylight-queue-id",
 "queues-external-id-value": "QUEUE-1"
 }
],
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69",
 "dscp": 25
 }
],
 "ovsdb:qos-entries": [
 {
 "qos-id": "QOS-1",
 "qos-other-config": [
 {
 "other-config-key": "max-rate",
 "other-config-value": "4400000"
 }
],
 "queue-list": [
 {
 "queue-number": 0,
 "queue-uuid": "83640357-3596-4877-9527-b472aa854d69"
 }
],
 "qos-type": "ovsdb:qos-type-linux-htb",
 "qos-external-ids": [
 {
 "qos-external-id-key": "opendaylight-qos-id",
 "qos-external-id-value": "QOS-1"
 }
],
 "qos-uuid": "90ba9c60-3aac-499d-9be7-555f19a6bb31"
 }
]
 <content edited out>
 }
]
}

Remove QoS from a Port

This example removes a QoS entry from the termination point and
associated port. Note that this is a PUT command on the termination
point with the QoS attribute absent. Other attributes of the termination
point should be included in the body of the command so that they are not
inadvertantly removed.

HTTP PUT:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1%2Fbridge%2Fbr-test/termination-point/testport/

Body:

{
 "network-topology:termination-point": [
 {
 "ovsdb:name": "testport",
 "tp-id": "testport"
 }
]
}

Remove a Queue from QoS

This example removes the specific Queue entry from the queue list in the
QoS entry. The queue entry is specified by the queue number, which is
“0” in this example.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/queue-list/0/

Remove Queue

Once all references to a specific queue entry have been removed from QoS
entries, the Queue itself can be removed.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:queues/QUEUE-1/

Remove QoS

The QoS entry may be removed when it is no longer referenced by any
ports.

HTTP DELETE:

http://<controller-ip>:8181/restconf/config/network-topology:network-topology/topology/ovsdb:1/node/ovsdb:HOST1/ovsdb:qos-entries/QOS-1/

References

Openvswitch
schema [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf]

OVSDB and Netvirt Postman
Collection [https://github.com/opendaylight/ovsdb/blob/stable/boron/resources/commons]

OVSDB Hardware VTEP SouthBound Plugin

Overview

Hwvtepsouthbound plugin is used to configure a hardware VTEP which
implements hardware ovsdb schema. This page will show how to use
RESTConf API of hwvtepsouthbound. There are two ways to connect to ODL:

switch initiates connection..

Both will be introduced respectively.

User Initiates Connection

Prerequisite

Configure the hwvtep device/node to listen for the tcp connection in
passive mode. In addition, management IP and tunnel source IP are also
configured. After all this configuration is done, a physical switch is
created automatically by the hwvtep node.

Connect to a hwvtep device/node

Send below Restconf request if you want to initiate the connection to a
hwvtep node from the controller, where listening IP and port of hwvtep
device/node are provided.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

{
 "network-topology:node": [
 {
 "node-id": "hwvtep://192.168.1.115:6640",
 "hwvtep:connection-info":
 {
 "hwvtep:remote-port": 6640,
 "hwvtep:remote-ip": "192.168.1.115"
 }
 }
]
}

Please replace odl in the URL with the IP address of your OpenDaylight
controller and change 192.168.1.115 to your hwvtep node IP.

NOTE: The format of node-id is fixed. It will be one of the two:

User initiates connection from ODL:

hwvtep://ip:port

Switch initiates connection:

hwvtep://uuid/<uuid of switch>

The reason for using UUID is that we can distinguish between multiple
switches if they are behind a NAT.

After this request is completed successfully, we can get the physical
switch from the operational data store.

REST API: GET
http://odl:8181/restconf/operational/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

There is no body in this request.

The response of the request is:

{
 "node": [
 {
 "node-id": "hwvtep://192.168.1.115:6640",
 "hwvtep:switches": [
 {
 "switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640/physicalswitch/br0']"
 }
],
 "hwvtep:connection-info": {
 "local-ip": "192.168.92.145",
 "local-port": 47802,
 "remote-port": 6640,
 "remote-ip": "192.168.1.115"
 }
 },
 {
 "node-id": "hwvtep://192.168.1.115:6640/physicalswitch/br0",
 "hwvtep:management-ips": [
 {
 "management-ips-key": "192.168.1.115"
 }
],
 "hwvtep:physical-switch-uuid": "37eb5abd-a6a3-4aba-9952-a4d301bdf371",
 "hwvtep:managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']",
 "hwvtep:hwvtep-node-description": "",
 "hwvtep:tunnel-ips": [
 {
 "tunnel-ips-key": "192.168.1.115"
 }
],
 "hwvtep:hwvtep-node-name": "br0"
 }
]
}

If there is a physical switch which has already been created by manual
configuration, we can get the node-id of the physical switch from this
response, which is presented in “swith-ref”. If the switch does not
exist, we need to create the physical switch. Currently, most hwvtep
devices do not support running multiple switches.

Create a physical switch

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/

request body:

{
 "network-topology:node": [
 {
 "node-id": "hwvtep://192.168.1.115:6640/physicalswitch/br0",
 "hwvtep-node-name": "ps0",
 "hwvtep-node-description": "",
 "management-ips": [
 {
 "management-ips-key": "192.168.1.115"
 }
],
 "tunnel-ips": [
 {
 "tunnel-ips-key": "192.168.1.115"
 }
],
 "managed-by": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']"
 }
]
}

Note: “managed-by” must provided by user. We can get its value after the
step Connect to a hwvtep device/node since the node-id of hwvtep
device is provided by user. “managed-by” is a reference typed of
instance identifier. Though the instance identifier is a little
complicated for RestConf, the primary user of hwvtepsouthbound plugin
will be provider-type code such as NetVirt and the instance identifier
is much easier to write code for.

Create a logical switch

Creating a logical switch is effectively creating a logical network. For
VxLAN, it is a tunnel network with the same VNI.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "logical-switches": [
 {
 "hwvtep-node-name": "ls0",
 "hwvtep-node-description": "",
 "tunnel-key": "10000"
 }
]
}

Create a physical locator

After the VXLAN network is ready, we will add VTEPs to it. A VTEP is
described by a physical locator.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "termination-point": [
 {
 "tp-id": "vxlan_over_ipv4:192.168.0.116",
 "encapsulation-type": "encapsulation-type-vxlan-over-ipv4",
 "dst-ip": "192.168.0.116"
 }
]
}

The “tp-id” of locator is “{encapsualation-type}: {dst-ip}”.

Note: As far as we know, the OVSDB database does not allow the insertion
of a new locator alone. So, no locator is inserted after this request is
sent. We will trigger off the creation until other entity refer to it,
such as remote-mcast-macs.

Create a remote-mcast-macs entry

After adding a physical locator to a logical switch, we need to create a
remote-mcast-macs entry to handle unknown traffic.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "remote-mcast-macs": [
 {
 "mac-entry-key": "00:00:00:00:00:00",
 "logical-switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']",
 "locator-set": [
 {
 "locator-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://219.141.189.115:6640']/network-topology:termination-point[network-topology:tp-id='vxlan_over_ipv4:192.168.0.116']"
 }
]
 }
]
}

The physical locator vxlan_over_ipv4:192.168.0.116 is just created
in “Create a physical locator”. It should be noted that list
“locator-set” is immutable, that is, we must provide a set of
“locator-ref” as a whole.

Note: “00:00:00:00:00:00” stands for “unknown-dst” since the type of
mac-entry-key is yang:mac and does not accept “unknown-dst”.

Create a physical port

Now we add a physical port into the physical switch
“hwvtep://192.168.1.115:6640/physicalswitch/br0”. The port is attached
with a physical server or an L2 network and with the vlan 100.

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640%2Fphysicalswitch%2Fbr0

{
 "network-topology:termination-point": [
 {
 "tp-id": "port0",
 "hwvtep-node-name": "port0",
 "hwvtep-node-description": "",
 "vlan-bindings": [
 {
 "vlan-id-key": "100",
 "logical-switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']"
 }
]
 }
]
}

At this point, we have completed the basic configuration.

Typically, hwvtep devices learn local MAC addresses automatically. But
they also support getting MAC address entries from ODL.

Create a local-mcast-macs entry

It is similar to Create a remote-mcast-macs entry.

Create a remote-ucast-macs

REST API: POST
http://odl:8181/restconf/config/network-topology:network-topology/topology/hwvtep:1/node/hwvtep:%2F%2F192.168.1.115:6640

request body:

{
 "remote-ucast-macs": [
 {
 "mac-entry-key": "11:11:11:11:11:11",
 "logical-switch-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/hwvtep:logical-switches[hwvtep:hwvtep-node-name='ls0']",
 "ipaddr": "1.1.1.1",
 "locator-ref": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='hwvtep:1']/network-topology:node[network-topology:node-id='hwvtep://192.168.1.115:6640']/network-topology:termination-point[network-topology:tp-id='vxlan_over_ipv4:192.168.0.116']"
 }
]
}

Create a local-ucast-macs entry

This is similar to Create a remote-ucast-macs.

Switch Initiates Connection

We do not need to connect to a hwvtep device/node when the switch
initiates the connection. After switches connect to ODL successfully, we
get the node-id’s of switches by reading the operational data store.
Once the node-id of a hwvtep device is received, the remaining steps are
the same as when the user initiates the connection.

References

https://wiki.opendaylight.org/view/User_talk:Pzhang

PCEP User Guide

This guide contains information on how to use the OpenDaylight Path Computation Element Configuration Protocol (PCEP) plugin.
The user should learn about PCEP basic concepts, supported capabilities, configuration and operations.

Contents

	Overview

	Running PCEP

	Active Stateful PCE

	Test tools

	Troubleshooting

	References

Overview

This section provides a high-level overview of the PCEP, SDN use-cases and OpenDaylight implementation.

Contents

	Path Computation Element Communication Protocol

	PCEP in SDN

	OpenDaylight PCEP plugin
	List of supported capabilities

Path Computation Element Communication Protocol

The Path Computation Element (PCE) Communication Protocol (PCEP) is used for communication between a Path Computation Client (PCC) and a PCE in context of MPLS and GMPLS Traffic Engineering (TE) Label Switched Paths (LSPs).
This interaction include path computation requests and computation replies.
The PCE operates on a network graph, built from the (Traffic Engineering Database) TED, in order to compute paths based on the path computation request issued by the PCC.
The path computation request includes the source and destination of the path and set of constrains to be applied during the computation.
The PCE response contains the computed path or the computation failure reason.
The PCEP operates on top the TCP, which provides reliable communication.

[image: PCEP]
PCE-based architecture.

PCEP in SDN

The Path Computation Element perfectly fits into the centralized SDN controller architecture.
The PCE’s knowledge of the availability of network resources (i.e. TED) and active LSPs awareness (LSP-DB) allows to perform automated application-driven network operations:

	LSP Re-optimization

	Resource defragmentation

	Link failure restoration

	Auto-bandwidth adjustment

	Bandwidth scheduling

	Shared Risk Link Group (SRLG) diversity maintenance

OpenDaylight PCEP plugin

The OpenDaylight PCEP plugin provides all basic service units necessary to build-up a PCE-based controller.
In addition, it offers LSP management functionality for Active Stateful PCE - the cornerstone for majority of PCE-enabled SDN solutions.
It consists of the following components:

	Protocol library

	PCEP session handling

	Stateful PCE LSP-DB

	Active Stateful PCE LSP Operations

[image: PCEP plugin]
OpenDaylight PCEP plugin overview.

Important

The PCEP plugin does not provide path computational functionality and does not build TED.

List of supported capabilities

	RFC5440 [https://tools.ietf.org/html/rfc5440] - Path Computation Element (PCE) Communication Protocol (PCEP)

	RFC5455 [https://tools.ietf.org/html/rfc5455] - Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol

	RFC5520 [https://tools.ietf.org/html/rfc5520] - Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism

	RFC5521 [https://tools.ietf.org/html/rfc5521] - Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions

	RFC5541 [https://tools.ietf.org/html/rfc5541] - Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)

	RFC5557 [https://tools.ietf.org/html/rfc5557] - Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization

	RFC5886 [https://tools.ietf.org/html/rfc5886] - A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture

	RFC7470 [https://tools.ietf.org/html/rfc7470] - Conveying Vendor-Specific Constraints in the Path Computation Element Communication Protocol

	RFC7896 [https://tools.ietf.org/html/rfc7896] - Update to the Include Route Object (IRO) Specification in the Path Computation Element Communication Protocol (PCEP)

	draft-ietf-pce-stateful-pce [https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-16] - PCEP Extensions for Stateful PCE
	draft-ietf-pce-pce-initiated-lsp [https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-07] - PCEP Extensions for PCE-initiated LSP Setup in a Stateful PCE Model

	draft-ietf-pce-segment-routing [https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07] - PCEP Extension for segment routing

	draft-ietf-pce-lsp-setup-type [https://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-03] - PCEP Extension for path setup type

	draft-ietf-pce-stateful-sync-optimizations [https://tools.ietf.org/html/draft-ietf-pce-stateful-sync-optimizations-05] - Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE

	draft-sivabalan-pce-binding-label-sid [https://tools.ietf.org/html/draft-sivabalan-pce-binding-label-sid-01] - Carrying Binding Label/Segment-ID in PCE-based Networks

	draft-ietf-pce-pceps [https://tools.ietf.org/html/draft-ietf-pce-pceps-10] - Secure Transport for PCEP

Running PCEP

This section explains how to install PCEP plugin.

	Install PCEP feature - odl-bgpcep-pcep.
Also, for sake of this sample, it is required to install RESTCONF.
In the Karaf console, type command:

feature:install odl-restconf odl-bgpcep-pcep

	The PCEP plugin contains a default configuration, which is applied after the feature starts up.
One instance of PCEP plugin is created (named pcep-topology), and its presence can be verified via REST:

URL: restconf/operational/network-topology:network-topology/topology/pcep-topology

Method: GET

Response Body:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>pcep-topology</topology-id>
 <topology-types>
 <topology-pcep xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep"></topology-pcep>
 </topology-types>
</topology>

Active Stateful PCE

The PCEP extension for Stateful PCE brings a visibility of active LSPs to PCE, in order to optimize path computation, while considering individual LSPs and their interactions.
This requires state synchronization mechanism between PCE and PCC.
Moreover, Active Stateful PCE is capable to address LSP parameter changes to the PCC.

Contents

	Configuration
	MD5 authentication configuration

	LSP State Database
	LSP-DB API

	LSP Delegation

	LSP Update

	PCE-initiated LSP Setup
	Configuration

	LSP Instantiation

	LSP Deletion

	PCE-initiated LSP Delegation

	Segment Routing
	Configuration

	LSP Operations for PCEP SR

	LSP State Synchronization Optimization Procedures
	Configuration

	State Synchronization Avoidance

	Incremental State Synchronization

	PCE-triggered Initial Synchronization

	PCE-triggered Re-synchronization

Configuration

This capability is enabled by default. No additional configuration is required.

MD5 authentication configuration

The OpenDaylight PCEP implementation is supporting TCP MD5 for authentication.
Sample configuration below shows how to set authentication password for a particular PCC.
It is required to install odl-netconf-connector-ssh feature first.

URL: /restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-pcep-topology-provider-cfg:pcep-topology-provider/pcep-topology

Method: PUT

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">x:pcep-topology-provider</type>
 <name>pcep-topology</name>
 <data-provider xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-async-data-broker</type>
 <name>pingpong-binding-data-broker</name>
 </data-provider>
 <dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:pcep">x:pcep-dispatcher</type>
 <name>global-pcep-dispatcher</name>
 </dispatcher>
 <rpc-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">x:binding-rpc-registry</type>
 <name>binding-rpc-broker</name>
 </rpc-registry>
 <scheduler xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type xmlns:x="urn:opendaylight:params:xml:ns:yang:controller:programming:spi">x:instruction-scheduler</type>
 <name>global-instruction-scheduler</name>
 </scheduler>
 <stateful-plugin xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <type>pcep-topology-stateful</type>
 <name>stateful07</name>
 </stateful-plugin>
 <topology-id xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">pcep-topology</topology-id>
 <client xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:topology:provider">
 <address>43.43.43.43</address>
 <password>topsecret</password>
 </client>
 </module>

@line 26: address - A PCC IP address.

@line 27: password - MD5 authentication phrase.

Warning

The PCE (pcep-topology-provider) configuration is going to be changed in Carbon release - moving to configuration datastore.

LSP State Database

The LSP State Database (LSP-DB) contains an information about all LSPs and their attributes.
The LSP state is synchronized between the PCC and PCE.
First, initial LSP state synchronization is performed once the session between PCC and PCE is established in order to learn PCC’s LPSs.
This step is a prerequisite to following LSPs manipulation operations.

[image: LSP State synchronization]
LSP State Synchronization.

LSP-DB API

path-computation-client
 +--ro reported-lsp* [name]
 +--ro name string
 +--ro path* [lsp-id]
 | +--ro lsp-id rsvp:lsp-id
 | +--ro ero
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro subobject*
 | | +--ro loose boolean
 | | +--ro (subobject-type)?
 | | +--:(as-number-case)
 | | | +--ro as-number
 | | | +--ro as-number inet:as-number
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | +--:(type1-label-case)
 | | | | +--ro type1-label
 | | | | +--ro type1-label uint32
 | | | +--:(generalized-label-case)
 | | | | +--ro generalized-label
 | | | | +--ro generalized-label binary
 | | | +--:(waveband-switching-label-case)
 | | | +--ro waveband-switching-label
 | | | +--ro end-label uint32
 | | | +--ro start-label uint32
 | | | +--ro waveband-id uint32
 | | +--:(srlg-case)
 | | | +--ro srlg
 | | | +--ro srlg-id srlg-id
 | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(exrs-case)
 | | | +--ro exrs
 | | | +--ro exrs*
 | | | +--ro mandatory? boolean
 | | | +--ro attribute enumeration
 | | | +--ro (subobject-type)?
 | | | +--:(as-number-case)
 | | | | +--ro as-number
 | | | | +--ro as-number inet:as-number
 | | | +--:(ip-prefix-case)
 | | | | +--ro ip-prefix
 | | | | +--ro ip-prefix inet:ip-prefix
 | | | +--:(label-case)
 | | | | +--ro label
 | | | | +--ro uni-directional boolean
 | | | | +--ro (label-type)?
 | | | | +--:(type1-label-case)
 | | | | | +--ro type1-label
 | | | | | +--ro type1-label uint32
 | | | | +--:(generalized-label-case)
 | | | | | +--ro generalized-label
 | | | | | +--ro generalized-label binary
 | | | | +--:(waveband-switching-label-case)
 | | | | +--ro waveband-switching-label
 | | | | +--ro end-label uint32
 | | | | +--ro start-label uint32
 | | | | +--ro waveband-id uint32
 | | | +--:(srlg-case)
 | | | | +--ro srlg
 | | | | +--ro srlg-id srlg-id
 | | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(path-key-case)
 | | +--ro path-key
 | | +--ro pce-id pce-id
 | | +--ro path-key path-key
 | +--ro lspa
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro hold-priority? uint8
 | | +--ro setup-priority? uint8
 | | +--ro local-protection-desired? boolean
 | | +--ro label-recording-desired? boolean
 | | +--ro se-style-desired? boolean
 | | +--ro session-name? string
 | | +--ro include-any? attribute-filter
 | | +--ro exclude-any? attribute-filter
 | | +--ro include-all? attribute-filter
 | | +--ro tlvs
 | | +--ro vendor-information-tlv*
 | | +--ro enterprise-number? iana:enterprise-number
 | | +--ro (enterprise-specific-information)?
 | +--ro bandwidth
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro bandwidth? netc:bandwidth
 | +--ro reoptimization-bandwidth
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro bandwidth? netc:bandwidth
 | +--ro metrics*
 | | +--ro metric
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro metric-type uint8
 | | +--ro bound? boolean
 | | +--ro computed? boolean
 | | +--ro value? ieee754:float32
 | +--ro iro
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro subobject*
 | | +--ro loose boolean
 | | +--ro (subobject-type)?
 | | +--:(as-number-case)
 | | | +--ro as-number
 | | | +--ro as-number inet:as-number
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | +--:(type1-label-case)
 | | | | +--ro type1-label
 | | | | +--ro type1-label uint32
 | | | +--:(generalized-label-case)
 | | | | +--ro generalized-label
 | | | | +--ro generalized-label binary
 | | | +--:(waveband-switching-label-case)
 | | | +--ro waveband-switching-label
 | | | +--ro end-label uint32
 | | | +--ro start-label uint32
 | | | +--ro waveband-id uint32
 | | +--:(srlg-case)
 | | | +--ro srlg
 | | | +--ro srlg-id srlg-id
 | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(exrs-case)
 | | | +--ro exrs
 | | | +--ro exrs*
 | | | +--ro mandatory? boolean
 | | | +--ro attribute enumeration
 | | | +--ro (subobject-type)?
 | | | +--:(as-number-case)
 | | | | +--ro as-number
 | | | | +--ro as-number inet:as-number
 | | | +--:(ip-prefix-case)
 | | | | +--ro ip-prefix
 | | | | +--ro ip-prefix inet:ip-prefix
 | | | +--:(label-case)
 | | | | +--ro label
 | | | | +--ro uni-directional boolean
 | | | | +--ro (label-type)?
 | | | | +--:(type1-label-case)
 | | | | | +--ro type1-label
 | | | | | +--ro type1-label uint32
 | | | | +--:(generalized-label-case)
 | | | | | +--ro generalized-label
 | | | | | +--ro generalized-label binary
 | | | | +--:(waveband-switching-label-case)
 | | | | +--ro waveband-switching-label
 | | | | +--ro end-label uint32
 | | | | +--ro start-label uint32
 | | | | +--ro waveband-id uint32
 | | | +--:(srlg-case)
 | | | | +--ro srlg
 | | | | +--ro srlg-id srlg-id
 | | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(path-key-case)
 | | +--ro path-key
 | | +--ro pce-id pce-id
 | | +--ro path-key path-key
 | +--ro rro
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro subobject*
 | | +--ro protection-available? boolean
 | | +--ro protection-in-use? boolean
 | | +--ro (subobject-type)?
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | | +--:(type1-label-case)
 | | | | | +--ro type1-label
 | | | | | +--ro type1-label uint32
 | | | | +--:(generalized-label-case)
 | | | | | +--ro generalized-label
 | | | | | +--ro generalized-label binary
 | | | | +--:(waveband-switching-label-case)
 | | | | +--ro waveband-switching-label
 | | | | +--ro end-label uint32
 | | | | +--ro start-label uint32
 | | | | +--ro waveband-id uint32
 | | | +--ro global? boolean
 | | +--:(unnumbered-case)
 | | | +--ro unnumbered
 | | | +--ro router-id uint32
 | | | +--ro interface-id uint32
 | | +--:(path-key-case)
 | | +--ro path-key
 | | +--ro pce-id pce-id
 | | +--ro path-key path-key
 | +--ro xro
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro flags bits
 | | +--ro subobject*
 | | +--ro mandatory? boolean
 | | +--ro attribute enumeration
 | | +--ro (subobject-type)?
 | | +--:(as-number-case)
 | | | +--ro as-number
 | | | +--ro as-number inet:as-number
 | | +--:(ip-prefix-case)
 | | | +--ro ip-prefix
 | | | +--ro ip-prefix inet:ip-prefix
 | | +--:(label-case)
 | | | +--ro label
 | | | +--ro uni-directional boolean
 | | | +--ro (label-type)?
 | | | +--:(type1-label-case)
 | | | | +--ro type1-label
 | | | | +--ro type1-label uint32
 | | | +--:(generalized-label-case)
 | | | | +--ro generalized-label
 | | | | +--ro generalized-label binary
 | | | +--:(waveband-switching-label-case)
 | | | +--ro waveband-switching-label
 | | | +--ro end-label uint32
 | | | +--ro start-label uint32
 | | | +--ro waveband-id uint32
 | | +--:(srlg-case)
 | | | +--ro srlg
 | | | +--ro srlg-id srlg-id
 | | +--:(unnumbered-case)
 | | +--ro unnumbered
 | | +--ro router-id uint32
 | | +--ro interface-id uint32
 | +--ro of
 | | +--ro processing-rule? boolean
 | | +--ro ignore? boolean
 | | +--ro code of-id
 | | +--ro tlvs
 | | +--ro vendor-information-tlv*
 | | +--ro enterprise-number? iana:enterprise-number
 | | +--ro (enterprise-specific-information)?
 | +--ro class-type
 | +--ro processing-rule? boolean
 | +--ro ignore? boolean
 | +--ro class-type class-type
 +--ro metadata
 +--ro lsp
 | +--ro processing-rule? boolean
 | +--ro ignore? boolean
 | +--ro tlvs
 | | +--ro lsp-error-code
 | | | +--ro error-code? uint32
 | | +--ro lsp-identifiers
 | | | +--ro lsp-id? rsvp:lsp-id
 | | | +--ro tunnel-id? rsvp:tunnel-id
 | | | +--ro (address-family)?
 | | | +--:(ipv4-case)
 | | | | +--ro ipv4
 | | | | +--ro ipv4-tunnel-sender-address inet:ipv4-address
 | | | | +--ro ipv4-extended-tunnel-id rsvp:ipv4-extended-tunnel-id
 | | | | +--ro ipv4-tunnel-endpoint-address inet:ipv4-address
 | | | +--:(ipv6-case)
 | | | +--ro ipv6
 | | | +--ro ipv6-tunnel-sender-address inet:ipv6-address
 | | | +--ro ipv6-extended-tunnel-id rsvp:ipv6-extended-tunnel-id
 | | | +--ro ipv6-tunnel-endpoint-address inet:ipv6-address
 | | +--ro rsvp-error-spec
 | | | +--ro (error-type)?
 | | | +--:(rsvp-case)
 | | | | +--ro rsvp-error
 | | | +--:(user-case)
 | | | +--ro user-error
 | | +--ro symbolic-path-name
 | | | +--ro path-name? symbolic-path-name
 | | o--ro vs-tlv
 | | | +--ro enterprise-number? iana:enterprise-number
 | | | +--ro (vendor-payload)?
 | | +--ro vendor-information-tlv*
 | | | +--ro enterprise-number? iana:enterprise-number
 | | | +--ro (enterprise-specific-information)?
 | | +--ro path-binding
 | | x--ro binding-type? uint8
 | | x--ro binding-value? binary
 | | +--ro (binding-type-value)?
 | | +--:(mpls-label)
 | | | +--ro mpls-label? netc:mpls-label
 | | +--:(mpls-label-entry)
 | | +--ro label? netc:mpls-label
 | | +--ro traffic-class? uint8
 | | +--ro bottom-of-stack? boolean
 | | +--ro time-to-live? uint8
 | +--ro plsp-id? plsp-id
 | +--ro delegate? boolean
 | +--ro sync? boolean
 | +--ro remove? boolean
 | +--ro administrative? boolean
 | +--ro operational? operational-status
 +--ro path-setup-type
 +--ro pst? uint8

The LSP-DB is accessible via RESTCONF.
The PCC’s LSPs are stored in the pcep-topology while the session is active.
In a next example, there is one PCEP session with PCC identified by its IP address (43.43.43.43) and one reported LSP (foo).

URL: /restconf/operational/network-topology:network-topology/topology/pcep-topology/node/pcc:%2F%2F43.43.43.43

Method: GET

Response Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	<node>
 <node-id>pcc://43.43.43.43</node-id>
 <path-computation-client>
 <ip-address>43.43.43.43</ip-address>
 <state-sync>synchronized</state-sync>
 <stateful-tlv>
 <stateful>
 <lsp-update-capability>true</lsp-update-capability>
 </stateful>
 </stateful-tlv>
 <reported-lsp>
 <name>foo</name>
 <lsp>
 <operational>up</operational>
 <sync>true</sync>
 <plsp-id>1</plsp-id>
 <create>false</create>
 <administrative>true</administrative>
 <remove>false</remove>
 <delegate>true</delegate>
 <tlvs>
 <lsp-identifiers>
 <ipv4>
 <ipv4-tunnel-sender-address>43.43.43.43</ipv4-tunnel-sender-address>
 <ipv4-tunnel-endpoint-address>39.39.39.39</ipv4-tunnel-endpoint-address>
 <ipv4-extended-tunnel-id>39.39.39.39</ipv4-extended-tunnel-id>
 </ipv4>
 <tunnel-id>1</tunnel-id>
 <lsp-id>1</lsp-id>
 </lsp-identifiers>
 <symbolic-path-name>
 <path-name>Zm9v</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 <ero>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>201.20.160.40/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>195.20.160.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>39.39.39.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 </ero>
 </reported-lsp>
 </path-computation-client>
</node>

@line 2: node-id The PCC identifier.

@line 4: ip-address IP address of the PCC.

@line 5: state-sync Synchronization status of the PCC’s LSPs. The synchronized indicates the State Synchronization is done.

@line 8: lsp-update-capability - Indicates that PCC allows LSP modifications.

@line 12: name - Textual representation of LPS’s name.

@line 14: operational - Represent operational status of the LSP:

	down - not active.

	up - signaled.

	active - up and carrying traffic.

	going-down - LSP is being torn down, resources are being released.

	going-up - LSP is being signaled.

@line 15: sync - The flag set by PCC during LSPs State Synchronization.

@line 16: plsp-id - A PCEP-specific identifier for the LSP. It is assigned by PCC and it is constant for a lifetime of a PCEP session.

@line 17: create - The false indicates that LSP is PCC-initiated.

@line 18: administrative - The flag indicates target operational status of the LSP.

@line 20: delegate - The delegate flag indicates that the PCC is delegating the LSP to the PCE.

@line 24: ipv4-tunnel-sender-address - Contains the sender node’s IP address.

@line 25: ipv4-tunnel-endpoint-address - Contains the egress node’s IP address.

@line 26: ipv4-extended-tunnel-id - The Extended Tunnel ID identifier.

@line 28: tunnel-id - The Tunnel ID identifier.

@line 29: lsp-id - The LSP ID identifier.

@line 32: path-name - The symbolic name for the LSP.

@line 36: ero - The Explicit Route Object is encoding the path of the TE LSP through the network.

LSP Delegation

The LSP control delegations is an mechanism, where PCC grants to a PCE the temporary right in order to modify LSP attributes.
The PCC can revoke the delegation or the PCE may waive the delegation at any time.
The LSP control is delegated to at most one PCE at the same time.

[image: Returning a Delegation]
Returning a Delegation.

Following RPC example illustrates a request for the LSP delegation give up:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<input>
 <node>pcc://43.43.43.43</node>
 <name>foo</name>
 <arguments>
 <lsp xmlns:stateful="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>false</delegate>
 <administrative>true</administrative>
 <tlvs>
 <symbolic-path-name>
 <path-name>Zm9v</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP.

@line 6: delegate - Delegation flag set false in order to return the LSP delegation.

@line 10: path-name - The Symbolic Path Name TLV must be present when sending a request to give up the delegation.

LSP Update

The LSP Update Request is an operation where a PCE requests a PCC to update attributes of an LSP and to rebuild the LSP with updated attributes.
In order to update LSP, the PCE must hold a LSP delegation.
The LSP update is done in make-before-break fashion - first, new LSP is initiated and then the old LSP is torn down.

[image: Active Stateful PCE LSP Update]
Active Stateful PCE LSP Update.

Following RPC example shows a request for the LSP update:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>foo</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <ero>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>200.20.160.41/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>196.20.160.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>39.39.39.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be updated.

@line 6: delegate - Delegation flag set true in order to keep the LSP control.

@line 7: administrative - Desired administrative status of the LSP is active.

@line 9: ero - This LSP attribute is changed.

PCE-initiated LSP Setup

The PCEP Extension for PCE-initiated LSP Setup allows PCE to request a creation and deletion of LSPs.

Configuration

This capability is enabled by default. No additional configuration is required.

LSP Instantiation

The PCE can request LSP creation.
The LSP instantiation is done by sending an LSP Initiate Message to PCC.
The PCC assign delegation to PCE which triggered creation.
PCE-initiated LSPs are identified by Create flag.

[image: LSP instantiation]
LSP instantiation.

Following RPC example shows a request for the LSP initiation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-tunel</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <endpoints-obj>
 <ipv4>
 <source-ipv4-address>43.43.43.43</source-ipv4-address>
 <destination-ipv4-address>39.39.39.39</destination-ipv4-address>
 </ipv4>
 </endpoints-obj>
 <ero>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>201.20.160.40/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>195.20.160.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 <subobject>
 <loose>false</loose>
 <ip-prefix>
 <ip-prefix>39.39.39.39/32</ip-prefix>
 </ip-prefix>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be created.

@line 8: endpoints-obj - The END-POINT Object is mandatory for an instantiation request of an RSVP-signaled LSP. It contains source and destination addresses for provisioning the LSP.

@line 14: ero - The ERO object is mandatory for LSP initiation request.

LSP Deletion

The PCE may request a deletion of PCE-initiated LSPs.
The PCE must be delegation holder for this particular LSP.

[image: LSP deletion.]
LSP deletion.

Following RPC example shows a request for the LSP deletion:

URL: /restconf/operations/network-topology-pcep:remove-lsp

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-tunel</name>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP to be removed.

PCE-initiated LSP Delegation

The PCE-initiated LSP control is delegated to the PCE which requested the initiation.
The PCC cannot revoke delegation of PCE-initiated LSP.
When PCE returns delegation for such LSP or PCE fails, then the LSP become orphan and can be removed by a PCC after some time.
The PCE may ask for a delegation of the orphan LSP.

[image: LSP re-delegation]
Orphan PCE-initiated LSP - control taken by PCE.

Following RPC example illustrates a request for the LSP delegation:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<input>
 <node>pcc://43.43.43.43</node>
 <name>update-tunel</name>
 <arguments>
 <lsp xmlns:stateful="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 <tlvs>
 <symbolic-path-name>
 <path-name>dXBkYXRlLXR1bmVs</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 2: node The PCC identifier.

@line 3: name The name of the LSP.

@line 6: delegate - Delegation flag set true in order to take the LSP delegation.

@line 10: path-name - The Symbolic Path Name TLV must be present when sending a request to take a delegation.

Segment Routing

The PCEP Extensions for Segment Routing (SR) allow a stateful PCE to compute and initiate TE paths in SR networks.
The SR path is defined as an order list of segments.
Segment Routing architecture can be directly applied to the MPLS forwarding plane without changes.
Segment Identifier (SID) is encoded as a MPLS label.

Configuration

This capability is enabled by default.
In PCEP-SR draft version 6, SR Explicit Route Object/Record Route Object subobjects IANA code points change was proposed.
In order to use the latest code points, a configuration should be changed in following way:

URL: /restconf/config/pcep-segment-routing-app-config:pcep-segment-routing-app-config

Method: PUT

Content-Type: application/xml

Request Body:

	1
2
3

	<pcep-segment-routing-config xmlns="urn:opendaylight:params:xml:ns:yang:controller:pcep:segment-routing-app-config">
 <iana-sr-subobjects-type>true</iana-sr-subobjects-type>
</pcep-segment-routing-config>

LSP Operations for PCEP SR

The PCEP SR extension defines new ERO subobject - SR-ERO subobject capable of carrying a SID.

sr-ero-type
 +---- c-flag? boolean
 +---- m-flag? boolean
 +---- sid-type? sid-type
 +---- sid? uint32
 +---- (nai)?
 +--:(ip-node-id)
 | +---- ip-address inet:ip-address
 +--:(ip-adjacency)
 | +---- local-ip-address inet:ip-address
 | +---- remote-ip-address inet:ip-address
 +--:(unnumbered-adjacency)
 +---- local-node-id uint32
 +---- local-interface-id uint32
 +---- remote-node-id uint32
 +---- remote-interface-id uint32

Following RPC example illustrates a request for the SR-TE LSP creation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>sr-path</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <endpoints-obj>
 <ipv4>
 <source-ipv4-address>43.43.43.43</source-ipv4-address>
 <destination-ipv4-address>39.39.39.39</destination-ipv4-address>
 </ipv4>
 </endpoints-obj>
 <path-setup-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <pst>1</pst>
 </path-setup-type>
 <ero>
 <subobject>
 <loose>false</loose>
 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">ipv4-node-id</sid-type>
 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">true</m-flag>
 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">24001</sid>
 <ip-address xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">39.39.39.39</ip-address>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 16: path-setup-type - Set 1 for SR-TE LSP

@line 21: ipv4-node-id - The SR-ERO subobject represents IPv4 Node ID NAI.

@line 22: m-flag - The SID value represents an MPLS label.

@line 23: sid - The Segment Identifier.

Following RPC example illustrates a request for the SR-TE LSP update including modified path:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Content-Type: application/xml

Request Body:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-tunnel</name>
 <arguments>
 <lsp xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <delegate>true</delegate>
 <administrative>true</administrative>
 </lsp>
 <path-setup-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:ietf:stateful">
 <pst>1</pst>
 </path-setup-type>
 <ero>
 <subobject>
 <loose>false</loose>
 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">ipv4-node-id</sid-type>
 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">true</m-flag>
 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">24002</sid>
 <ip-address xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">200.20.160.41</ip-address>
 </subobject>
 <subobject>
 <loose>false</loose>
 <sid-type xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">ipv4-node-id</sid-type>
 <m-flag xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">true</m-flag>
 <sid xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">24001</sid>
 <ip-address xmlns="urn:opendaylight:params:xml:ns:yang:pcep:segment:routing">39.39.39.39</ip-address>
 </subobject>
 </ero>
 </arguments>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

LSP State Synchronization Optimization Procedures

This extension bring optimizations for state synchronization:

	State Synchronization Avoidance

	Incremental State Synchronization

	PCE-triggered Initial Synchronization

	PCE-triggered Re-synchronization

Configuration

This capability is enabled by default. No additional configuration is required.

State Synchronization Avoidance

The State Synchronization Avoidance procedure is intended to skip state synchronization if the state has survived and not changed during session restart.

[image: Sync skipped]
State Synchronization Skipped.

Incremental State Synchronization

The Incremental State Synchronization procedure is intended to do incremental (delta) state synchronization when possible.

[image: Sync incremental]
Incremental Synchronization Procedure.

PCE-triggered Initial Synchronization

The PCE-triggered Initial Synchronization procedure is intended to do let PCE control the timing of the initial state synchronization.

[image: Initial Sync]
PCE-triggered Initial State Synchronization Procedure.

Following RPC example illustrates a request for the initial synchronization:

URL: /restconf/operations/network-topology-pcep:trigger-sync

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

PCE-triggered Re-synchronization

The PCE-triggered Re-synchronization: To let PCE re-synchronize the state for sanity check.

[image: Re-sync]
PCE-triggered Re-synchronization Procedure.

Following RPC example illustrates a request for the LSP re-synchronization:

URL: /restconf/operations/network-topology-pcep:trigger-sync

Method: POST

Content-Type: application/xml

Request Body:

	1
2
3
4
5

	<input xmlns="urn:opendaylight:params:xml:ns:yang:topology:pcep">
 <node>pcc://43.43.43.43</node>
 <name>update-lsp</name>
 <network-topology-ref xmlns:topo="urn:TBD:params:xml:ns:yang:network-topology">/topo:network-topology/topo:topology[topo:topology-id="pcep-topology"]</network-topology-ref>
</input>

@line 3: name - The LSP name. If this parameter is omitted, re-synchronization is requested for all PCC’s LSPs.

Test tools

PCC Mock

The PCC Mock is a stand-alone Java application purposed to simulate a PCC(s).
The simulator is capable to report sample LSPs, respond to delegation, LSP management operations and synchronization optimization procedures.
This application is not part of the OpenDaylight Karaf distribution, however it can be downloaded from OpenDaylight’s Nexus (use latest release version):

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/bgpcep/pcep-pcc-mock

Usage

The application can be run from command line:

java -jar pcep-pcc-mock-*-executable.jar

with optional input parameters:

--local-address <Address:Port> (optional, default 127.0.0.1)
 The first PCC IP address. If more PCCs are required, the IP address will be incremented. Port number can be optionally specified.

--remote-address <Address1:Port1,Address2:Port2,Address3:Port3,...> (optional, default 127.0.0.1:4189)
 The list of IP address for the PCE servers. Port number can be optionally specified, otherwise default port number 4189 is used.

--pcc <N> (optional, default 1)
 Number of mocked PCC instances.

--lsp <N> (optional, default 1)
 Number of tunnels (LSPs) reported per PCC, might be zero.

--pcerr (optional flag)
 If the flag is present, response with PCErr, otherwise PCUpd.

--log-level <LEVEL> (optional, default INFO)
 Set logging level for pcc-mock.

-d, --deadtimer <0..255> (optional, default 120)
 DeadTimer value in seconds.

-ka, --keepalive <0.255> (optional, default 30)
 KeepAlive timer value in seconds.

--password <password> (optional)
 If the password is present, it is used in TCP MD5 signature, otherwise plain TCP is used.

--reconnect <seconds> (optional)
 If the argument is present, the value in seconds, is used as a delay before each new reconnect (initial connect or connection re-establishment) attempt.
 The number of reconnect attempts is unlimited. If the argument is omitted, pcc-mock is not trying to reconnect.

--redelegation-timeout <seconds> (optional, default 0)
 The timeout starts when LSP delegation is returned or PCE fails, stops when LSP is re-delegated to PCE.
 When timeout expires, LSP delegation is revoked and held by PCC.

--state-timeout <seconds> (optional, default -1 (disabled))
 The timeout starts when LSP delegation is returned or PCE fails, stops when LSP is re-delegated to PCE.
 When timeout expires, PCE-initiated LSP is removed.

--state-sync-avoidance <disconnect_after_x_seconds> <reconnect_after_x_seconds> <dbVersion>
 Synchronization avoidance capability enabled.
 - disconnect_after_x_seconds: seconds that will pass until disconnections is forced. If set to smaller number than 1, disconnection wont be performed.
 - reconnect_after_x_seconds: seconds that will pass between disconnection and new connection attempt. Only happens if disconnection has been performed.
 - dbVersion: dbVersion used in new Open and must be always equal or bigger than LSP. If equal than LSP skip synchronization will be performed,
 if not full synchronization will be performed taking in account new starting dbVersion desired.
 --incremental-sync-procedure <disconnect_after_x_seconds> <reconnect_after_x_seconds> <dbVersion>
 Incremental synchronization capability enabled.
 - dbVersion: dbVersion used in new Open and must be always bigger than LSP. Incremental synchronization will be performed taking in account new starting dbVersion desired.

 --triggered-initial-sync
 PCE-triggered synchronization capability enabled. Can be combined combined with state-sync-avoidance/incremental-sync-procedure.

 --triggered-re-sync
 PCE-triggered re-synchronization capability enabled.

Troubleshooting

This section offers advices in a case OpenDaylight PCEP plugin is not working as expected.

Contents

	PCEP is not working...

	Bug reporting

PCEP is not working...

	First of all, ensure that all required features are installed, local PCE and remote PCC configuration is correct.

To list all installed features in OpenDaylight use the following command at the Karaf console:

feature:list -i

	Check OpenDaylight Karaf logs:

From Karaf console:

log:tail

or open log file: data/log/karaf.log

Possibly, a reason/hint for a cause of the problem can be found there.

	Try to minimize effect of other OpenDaylight features, when searching for a reason of the problem.

	Try to set DEBUG severity level for PCEP logger via Karaf console commands, in order to collect more information:

log:set DEBUG org.opendaylight.protocol.pcep

log:set DEBUG org.opendaylight.bgpcep.pcep

Bug reporting

Before you report a bug, check BGPCEP Bugzilla [https://bugs.opendaylight.org/buglist.cgi?list_id=65849&product=bgpcep&resolution=—] to ensure same/similar bug is not already filed there.

Write an e-mail to bgpcep-users@lists.opendaylight.org and provide following information:

	State OpenDaylight version

	Describe your use-case and provide as much details related to PCEP as possible

	Steps to reproduce

	Attach Karaf log files, optionally packet captures, REST input/output

References

	A Path Computation Element (PCE)-Based Architecture [https://tools.ietf.org/html/rfc4655]

	Path Computation Element (PCE) Communication Protocol Generic Requirements [https://tools.ietf.org/html/rfc4657]

	Unanswered Questions in the Path Computation Element Architecture [https://tools.ietf.org/html/rfc7399]

	A PCE-Based Architecture for Application-Based Network Operations [https://tools.ietf.org/html/rfc7491]

	Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering [https://tools.ietf.org/html/rfc5623]

	Applicability of a Stateful Path Computation Element (PCE) [https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-app-07]

PacketCable User Guide

Overview

These components introduce a DOCSIS QoS Gates management using the PCMM
protocol. The driver component is responsible for the PCMM/COPS/PDP
functionality required to service requests from PacketCable Provider and
FlowManager. Requests are transposed into PCMM Gate Control messages and
transmitted via COPS to the CMTS. This plugin adheres to the
PCMM/COPS/PDP functionality defined in the CableLabs specification.
PacketCable solution is an MDSAL compliant component.

PacketCable Components

PacketCable is comprised of two OpenDaylight bundles:

	Bundle
	Description

	odl-packetcable-policy-server
	Plugin that provides PCMM model
implementation based on CMTS
structure and COPS protocol.

	odl-packetcable-policy-model
	The Model provided provides a direct
mapping to the underlying QoS Gates
of CMTS.

See the PacketCable YANG
Models [https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-model/src/main/yang].

Installing PacketCable

To install PacketCable, run the following feature:install command
from the Karaf CLI

feature:install odl-packetcable-policy-server-all odl-restconf odl-mdsal-apidocs

Explore and exercise the PacketCable REST API

To see the PacketCable APIs, browse to this URL:
http://localhost:8181/apidoc/explorer/index.html

Replace localhost with the IP address or hostname where OpenDaylight is
running if you are not running OpenDaylight locally on your machine.

Note

Prior to setting any PCMM gates, a CCAP must first be added.

Postman

Install the Chrome
extension [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

Download and import sample packetcable
collection [https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-server/doc/restconf-samples]

Postman Operations

[image: Postman Operations]
Postman Operations

PacketCable REST API Usage Examples

	CCAP “CONFIG” DATASTORE API STRUCTURE

	Add and view CCAPConfigDatastore(add triggers also the CCAP COPS connection):

PUT http://localhost:8181/restconf/config/packetcable:ccaps/ccap/CMTS-1

{"ccap":[
 {"ccapId":"CMTS-1",
 "amId": {
 "am-tag": 51930,
 "am-type": 1
 },
 "connection": {
 "ipAddress": "10.20.30.40",
 "port":3918
 },"subscriber-subnets": [
 "2001:4978:030d:1000:0:0:0:0/52",
 "44.137.0.0/16"
],"upstream-scns": [
 "SCNA",
 "extrm_up"
],"downstream-scns": [
 "extrm_dn",
 "ipvideo_dn",
 "SCNC"
]}
]}

GET http://localhost:8181/restconf/config/packetcable:ccaps/ccap/CMTS-1

	CCAP OPERATIONAL STATUS - GET CCAP (COPS) CONNECTION STATUS

	Shows the Operational Datastorecontents for the CCAP COPS connection.

	The status is updated when the COPS connection is initiated or after an RPC poll:

GET http://localhost:8181/restconf/operational/packetcable:ccaps/ccap/CMTS-1/
Response: 200 OK

{
 "ccap": [
 {
 "ccapId": "CMTS-1",
 "connection": {
 "error": [
 "E6-CTO: CCAP client is connected"
],
 "timestamp": "2016-03-23T14:15:54.129-05:00",
 "connected": true
 }
 }
]
}

	CCAP OPERATIONAL STATUS - RPC CCAP POLL CONNECTION

	A CCAP RPC poll returns the COPS connectivity status info and also triggers an Operational Datastore status update with the same data:

POST http://localhost:8181/restconf/operations/packetcable:ccap-poll-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='CMTS-1']"
 }
}
Response: 200 OK
{
"output": {
 "response": "CMTS-1: CCAP poll complete",
 "timestamp": "2016-03-23T14:15:54.131-05:00",
 "ccap": {
 "ccapId": "CMTS-1",
 "connection": {
 "connection": {
 "error": [
 "CMTS-1: CCAP client is connected"
],
 "timestamp": "2016-03-23T14:15:54.129-05:00",
 "connected": true
 }
 }
 }
 }
}

	CCAP OPERATIONAL STATUS - RPC CCAP POLL CONNECTION (2) - CONNECTION DOWN:

POST http://localhost:8181/restconf/operations/packetcable:ccap-poll-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='CMTS-1']"
 }
}
Response: 200 OK
{
"output": {
 "response": "CMTS-1: CCAP poll complete",
 "timestamp": "2016-03-23T14:15:54.131-05:00",
 "ccap": {
 "ccapId": "CMTS-1",
 "connection": {
 "error": [
 "CMTS-1: CCAP client is disconnected with error: null",
 "CMTS-1: CCAP Cops socket is closed"],
 "timestamp": "2016-03-23T14:15:54.129-05:00",
 "connected": false
 }
 }
 }
}

	CCAP OPERATIONAL STATUS - RPC CCAP SET CONNECTION

	A CCAP RPC sets the CCAP COPS connection; possible values true or false meaning that the connection should be up or down.

	RPC responds with the same info as RPC POLL CONNECTION, and also updates the Operational Datastore:

POST http://localhost:8181/restconf/operations/packetcable:ccap-set-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='CMTS-1']",
 "connection": {
 "connected": true
 }
 }
}
Response: 200 OK
{
 "output": {

 "response": "CMTS-1: CCAP set complete",
 "timestamp": "2016-03-23T17:47:29.446-05:00",
 "ccap": {
 "ccapId": "CMTS-1",
 "connection": {
 "error": [
 "CMTS-1: CCAP client is connected",
 "CMTS-1: CCAP COPS socket is already open"],
 "timestamp": "2016-03-23T17:47:29.436-05:00",
 "connected": true
 }
 }
 }
}

	CCAP OPERATIONAL STATUS - RPC CCAP SET CONNECTION (2) - SHUTDOWN COPS CONNECTION:

POST http://localhost:8181/restconf/operations/packetcable:ccap-set-connection
{
 "input": {
 "ccapId": "/packetcable:ccaps/packetcable:ccap[packetcable:ccapId='E6-CTO']",
 "connection": {
 "connected": false
 }
 }
}
Response: 200 OK
{
 "output": {
 "response": "E6-CTO: CCAP set complete",
 "timestamp": "2016-03-23T17:47:29.446-05:00",
 "ccap": {
 "ccapId": "E6-CTO",
 "connection": {
 "error": [
 "E60CTO: CCAP client is disconnected with error: null"],
 "timestamp": "2016-03-23T17:47:29.436-05:00",
 "connected": false
 }
 }
 }
}

Note

A “null” in the error information means that the CCAP connection has been disconnected as a result of a RPC SET.

	GATES “CONFIG” DATASTORE API STRUCTURE CHANGED

	A CCAP RPC poll returns the gate status info, and also triggers a Operational Datastorestatus update.

	At a minimum the appIdneeds to be included in the input, subscriberIdand gateIdare optional.

	A gate status response is only included if the RPC request is done for a specific gate (subscriberIdand gateIdincluded in input).

	Add and retrieve gates to/from the Config Datastore:

PUT http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88/

{
 "gate": [
 {
 "gateId": "gate88",
 "gate0spec": {
 "dscp-tos-overwrite": "0xa0",
 "dscp-tos-mask": "0xff"
 },
 "traffic-profile": {
 "service-class-name": "extrm_dn"
 },
 "classifiers": {
 "classifier-container": [
 {
 "classifier-id": "1",
 "classifier": {
 "srcIp": "44.137.0.0",
 "dstIp": "44.137.0.11",
 "protocol": "0",
 "srcPort": "1234",
 "dstPort": "4321",
 "tos-byte": "0xa0",
 "tos-mask": "0xe0"
 }
 }
]
 }
 }
]
}

GET http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88/

	GATES SUPPORT MULTIPLE (UP TO FOUR) CLASSIFIERS

	Please note that there is a classifier container now that can have up to four classifiers:

PUT http://localhost:8181/restconf/config/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88/
{ "gate":{
 "gateId": "gate44",
 "gate-spec": {
 "dscp-tos-overwrite": "0xa0",
 "dscp-tos-mask": "0xff" },
 "traffic-profile": {
 "service-class-name": "extrm_dn"},
 "classifiers":
 { "classifier-container":[
 { "classifier-id": "1",
 "ipv6-classifier": {
 "srcIp6": "2001:4978:030d:1100:0:0:0:0/64",
 "dstIp6": "2001:4978:030d:1000:0:0:0:0/64",
 "flow-label": "102",
 "tc-low": "0xa0",
 "tc-high": "0xc0",
 "tc-mask": "0xe0",
 "next-hdr": "256",
 "srcPort-start": "4321",
 "srcPort-end": "4322",
 "dstPort-start": "1234",
 "dstPort-end": "1235"
 }},
 { "classifier-id": "2",
 "ext-classifier" : {
 "srcIp": "44.137.0.12",
 "srcIpMask": "255.255.255.255",
 "dstIp": "10.10.10.0",
 "dstIpMask": "255.255.255.0",
 "tos-byte": "0xa0",
 "tos-mask": "0xe0",
 "protocol": "0",
 "srcPort-start": "4321",
 "srcPort-end": "4322",
 "dstPort-start": "1234",
 "dstPort-end": "1235"
 }
 }]
 }
 }
}

	CCAP OPERATIONAL STATUS - GET GATE STATUS FROM OPERATIONAL DATASTORE

	Shows the Operational Datastore contents for the gate.

	The gate status is updated at the time when the gate is configured or during an RPC poll:

GET http://localhost:8181/restconf/operational/packetcable:qos/apps/app/cto-app/subscribers/subscriber/44.137.0.12/gates/gate/gate88

Response: 200
{
 "gate":[{
 "gateId":"gate88",
 "cops-gate-usage-info": "0",
 "cops-gate-state": "Committed(4)/Other(-1)",
 "gatePath": "cto-app/44.137.0.12/gate88",
 "cops-gate-time-info": "0",
 "cops-gateId": "3e0800e9",
 "timestamp": "2016-03-24T10:30:18.763-05:00",
 "ccapId": "E6-CTO"
 }]
}

	CCAP OPERATIONAL STATUS - RPC GATE STATUS POLL

	A CCAP RPC poll returns the gate status info and also triggers an Operational Datastore status update.

	At a minimum, the appId needs to be included in the input; subscriberId and gateId are optional.

	A gate status response is only included if the RPC request is done for a specific gate (subscriberId and gateId included in input):

POST http://localhost:8181/restconf/operations/packetcable:qos-poll-gates
{
 "input": {
 "appId": "/packetcable:apps/packetcable:apps[packetcable:appId='cto-app]",
 "subscriberId": "44.137.0.11",
 "gateId": "gate44"
 }
}
Response: 200 OK
{
 "output": {
 "gate": {
 "cops-gate-usage-info": "0",
 "cops-gate-state": "Committed(4)/Other(-1)",
 "gatePath": "ctoapp/44.137.0.12/gate88",
 "cops-gate-time-info": "0",
 "cops-gateId": "1ceb0001",
 "error": [""],
 "timestamp": "2016-03-24T13:22:59.900-05:00",
 "ccapId": "E6-CTO"
 },
 "response": "cto-app/44.137.0.12/gate88: gate poll complete",
 "timestamp": "2016-03-24T13:22:59.906-05:00"
 }
}

	When multiple gates are polled (only appId or appId and subscriberId are provided), a generic response is returned and the Operational Datastore is updated in the background:

{ "output": {
 "gate": {},
 "response": "cto-app/: gate subtree poll in progress",
 "timestamp": "2016-03-24T13:25:30.471-05:00"
 }
}

Service Function Chaining

OpenDaylight Service Function Chaining (SFC) Overview

OpenDaylight Service Function Chaining (SFC) provides the ability to
define an ordered list of a network services (e.g. firewalls, load
balancers). These service are then “stitched” together in the network to
create a service chain. This project provides the infrastructure
(chaining logic, APIs) needed for ODL to provision a service chain in
the network and an end-user application for defining such chains.

	ACE - Access Control Entry

	ACL - Access Control List

	SCF - Service Classifier Function

	SF - Service Function

	SFC - Service Function Chain

	SFF - Service Function Forwarder

	SFG - Service Function Group

	SFP - Service Function Path

	RSP - Rendered Service Path

	NSH - Network Service Header

SFC User Interface

Overview

SFC User Interface (SFC-UI) is based on Dlux project. It provides an
easy way to create, read, update and delete configuration stored in
Datastore. Moreover, it shows the status of all SFC features (e.g
installed, uninstalled) and Karaf log messages as well.

SFC-UI Architecture

SFC-UI operates purely by using RESTCONF.

[image: SFC-UI integration into ODL]
SFC-UI integration into ODL

Configuring SFC-UI

	Run ODL distribution (run karaf)

	In karaf console execute: feature:install odl-sfc-ui

	Visit SFC-UI on: http://<odl_ip_address>:8181/sfc/index.html

SFC Southbound REST Plugin

Overview

The Southbound REST Plugin is used to send configuration from DataStore
down to network devices supporting a REST API (i.e. they have a
configured REST URI). It supports POST/PUT/DELETE operations, which are
triggered accordingly by changes in the SFC data stores.

	Access Control List (ACL)

	Service Classifier Function (SCF)

	Service Function (SF)

	Service Function Group (SFG)

	Service Function Schedule Type (SFST)

	Service Function Forwader (SFF)

	Rendered Service Path (RSP)

Southbound REST Plugin Architecture

From the user perspective, the REST plugin is another SFC Southbound
plugin used to communicate with network devices.

[image: Soutbound REST Plugin integration into ODL]
Soutbound REST Plugin integration into ODL

Configuring Southbound REST Plugin

	Run ODL distribution (run karaf)

	In karaf console execute: feature:install odl-sfc-sb-rest

	Configure REST URIs for SF/SFF through SFC User Interface or RESTCONF
(required configuration steps can be found in the tutorial stated
bellow)

Tutorial

Comprehensive tutorial on how to use the Southbound REST Plugin and how
to control network devices with it can be found on:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101

SFC-OVS integration

Overview

SFC-OVS provides integration of SFC with Open vSwitch (OVS) devices.
Integration is realized through mapping of SFC objects (like SF, SFF,
Classifier, etc.) to OVS objects (like Bridge,
TerminationPoint=Port/Interface). The mapping takes care of automatic
instantiation (setup) of corresponding object whenever its counterpart
is created. For example, when a new SFF is created, the SFC-OVS plugin
will create a new OVS bridge and when a new OVS Bridge is created, the
SFC-OVS plugin will create a new SFF.

The feature is intended for SFC users willing to use Open vSwitch as
underlying network infrastructure for deploying RSPs (Rendered Service
Paths).

SFC-OVS Architecture

SFC-OVS uses the OVSDB MD-SAL Southbound API for getting/writing
information from/to OVS devices. From the user perspective SFC-OVS acts
as a layer between SFC DataStore and OVSDB.

[image: SFC-OVS integration into ODL]
SFC-OVS integration into ODL

Configuring SFC-OVS

	Run ODL distribution (run karaf)

	In karaf console execute: feature:install odl-sfc-ovs

	Configure Open vSwitch to use ODL as a manager, using following
command: ovs-vsctl set-manager tcp:<odl_ip_address>:6640

Tutorials

Verifying mapping from OVS to SFF

Overview

This tutorial shows the usual workflow when OVS configuration is
transformed to corresponding SFC objects (in this case SFF).

Prerequisities

	Open vSwitch installed (ovs-vsctl command available in shell)

	SFC-OVS feature configured as stated above

Instructions

	ovs-vsctl set-manager tcp:<odl_ip_address>:6640

	ovs-vsctl add-br br1

	ovs-vsctl add-port br1 testPort

Verification

	visit SFC User Interface:
http://<odl_ip_address>:8181/sfc/index.html#/sfc/serviceforwarder

	use pure RESTCONF and send GET request to URL:
http://<odl_ip_address>:8181/restconf/config/service-function-forwarder:service-function-forwarders

There should be SFF, which name will be ending with br1 and the SFF
should containt two DataPlane locators: br1 and testPort.

Verifying mapping from SFF to OVS

Overview

This tutorial shows the usual workflow during creation of OVS Bridge
with use of SFC APIs.

Prerequisities

	Open vSwitch installed (ovs-vsctl command available in shell)

	SFC-OVS feature configured as stated above

Instructions

	In shell execute: ovs-vsctl set-manager tcp:<odl_ip_address>:6640

	Send POST request to URL:
http://<odl_ip_address>:8181/restconf/operations/service-function-forwarder-ovs:create-ovs-bridge
Use Basic auth with credentials: “admin”, “admin” and set
Content-Type: application/json. The content of POST request
should be following:

{
 "input":
 {
 "name": "br-test",
 "ovs-node": {
 "ip": "<Open_vSwitch_ip_address>"
 }
 }
}

Open_vSwitch_ip_address is IP address of machine, where Open vSwitch
is installed.

Verification

In shell execute: ovs-vsctl show. There should be Bridge with name
br-test and one port/interface called br-test.

Also, corresponding SFF for this OVS Bridge should be configured, which
can be verified through SFC User Interface or RESTCONF as stated in
previous tutorial.

SFC Classifier User Guide

Overview

Description of classifier can be found in:
https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

There are two types of classifier:

	OpenFlow Classifier

	Iptables Classifier

OpenFlow Classifier

OpenFlow Classifier implements the classification criteria based on
OpenFlow rules deployed into an OpenFlow switch. An Open vSwitch will
take the role of a classifier and performs various encapsulations such
NSH, VLAN, MPLS, etc. In the existing implementation, classifier can
support NSH encapsulation. Matching information is based on ACL for MAC
addresses, ports, protocol, IPv4 and IPv6. Supported protocols are TCP,
UDP and SCTP. Actions information in the OF rules, shall be forwarding
of the encapsulated packets with specific information related to the
RSP.

Classifier Architecture

The OVSDB Southbound interface is used to create an instance of a bridge
in a specific location (via IP address). This bridge contains the
OpenFlow rules that perform the classification of the packets and react
accordingly. The OpenFlow Southbound interface is used to translate the
ACL information into OF rules within the Open vSwitch.

Note

in order to create the instance of the bridge that takes the role of
a classifier, an “empty” SFF must be created.

Configuring Classifier

	An empty SFF must be created in order to host the ACL that contains
the classification information.

	SFF data plane locator must be configured

	Classifier interface must be mannually added to SFF bridge.

Administering or Managing Classifier

Classification information is based on MAC addresses, protocol, ports
and IP. ACL gathers this information and is assigned to an RSP which
turns to be a specific path for a Service Chain.

Iptables Classifier

Classifier manages everything from starting the packet listener to
creation (and removal) of appropriate ip(6)tables rules and marking
received packets accordingly. Its functionality is available only on
Linux as it leverdges NetfilterQueue, which provides access to
packets matched by an iptables rule. Classifier requires root
privileges to be able to operate.

So far it is capable of processing ACL for MAC addresses, ports, IPv4
and IPv6. Supported protocols are TCP and UDP.

Classifier Architecture

Python code located in the project repository
sfc-py/common/classifier.py.

Note

classifier assumes that Rendered Service Path (RSP) already
exists in ODL when an ACL referencing it is obtained

	sfc_agent receives an ACL and passes it for processing to the
classifier

	the RSP (its SFF locator) referenced by ACL is requested from ODL

	if the RSP exists in the ODL then ACL based iptables rules for it are
applied

After this process is over, every packet successfully matched to an
iptables rule (i.e. successfully classified) will be NSH encapsulated
and forwarded to a related SFF, which knows how to traverse the RSP.

Rules are created using appropriate iptables command. If the Access
Control Entry (ACE) rule is MAC address related both iptables and
ip6tabeles rules re issued. If ACE rule is IPv4 address related, only
iptables rules are issued, same for IPv6.

Note

iptables raw table contains all created rules

Configuring Classifier

Classfier does’t need any configuration.

Its only requirement is that the second (2) Netfilter Queue is not
used by any other process and is avalilable for the classifier.

Administering or Managing Classifier

Classfier runs alongside sfc_agent, therefore the commad for starting
it locally is:

sudo python3.4 sfc-py/sfc_agent.py --rest --odl-ip-port localhost:8181 --auto-sff-name --nfq-class

SFC OpenFlow Renderer User Guide

Overview

The Service Function Chaining (SFC) OpenFlow Renderer (SFC OF Renderer)
implements Service Chaining on OpenFlow switches. It listens for the
creation of a Rendered Service Path (RSP), and once received it programs
Service Function Forwarders (SFF) that are hosted on OpenFlow capable
switches to steer packets through the service chain.

Common acronyms used in the following sections:

	SF - Service Function

	SFF - Service Function Forwarder

	SFC - Service Function Chain

	SFP - Service Function Path

	RSP - Rendered Service Path

SFC OpenFlow Renderer Architecture

The SFC OF Renderer is invoked after a RSP is created using an MD-SAL
listener called SfcOfRspDataListener. Upon SFC OF Renderer
initialization, the SfcOfRspDataListener registers itself to listen
for RSP changes. When invoked, the SfcOfRspDataListener processes
the RSP and calls the SfcOfFlowProgrammerImpl to create the
necessary flows in the Service Function Forwarders configured in the
RSP. Refer to the following diagram for more details.

[image: SFC OpenFlow Renderer High Level Architecture]
SFC OpenFlow Renderer High Level Architecture

SFC OpenFlow Switch Flow pipeline

The SFC OpenFlow Renderer uses the following tables for its Flow
pipeline:

	Table 0, Classifier

	Table 1, Transport Ingress

	Table 2, Path Mapper

	Table 3, Path Mapper ACL

	Table 4, Next Hop

	Table 10, Transport Egress

The OpenFlow Table Pipeline is intended to be generic to work for all of
the different encapsulations supported by SFC.

All of the tables are explained in detail in the following section.

The SFFs (SFF1 and SFF2), SFs (SF1), and topology used for the flow
tables in the following sections are as described in the following
diagram.

[image: SFC OpenFlow Renderer Typical Network Topology]
SFC OpenFlow Renderer Typical Network Topology

Classifier Table detailed

It is possible for the SFF to also act as a classifier. This table maps
subscriber traffic to RSPs, and is explained in detail in the classifier
documentation.

If the SFF is not a classifier, then this table will just have a simple
Goto Table 1 flow.

Transport Ingress Table detailed

The Transport Ingress table has an entry per expected tunnel transport
type to be received in a particular SFF, as established in the SFC
configuration.

Here are two example on SFF1: one where the RSP ingress tunnel is MPLS
assuming VLAN is used for the SFF-SF, and the other where the RSP
ingress tunnel is NSH GRE (UDP port 4789):

	Priority
	Match
	Action

	256
	EtherType==0x8847 (MPLS unicast)
	Goto Table 2

	256
	EtherType==0x8100 (VLAN)
	Goto Table 2

	256
	EtherType==0x0800,udp,tp_dst==4789
(IP v4)
	Goto Table 2

	5
	Match Any
	Drop

Table: Table Transport Ingress

Path Mapper Table detailed

The Path Mapper table has an entry per expected tunnel transport info to
be received in a particular SFF, as established in the SFC
configuration. The tunnel transport info is used to determine the RSP
Path ID, and is stored in the OpenFlow Metadata. This table is not used
for NSH, since the RSP Path ID is stored in the NSH header.

For SF nodes that do not support NSH tunneling, the IP header DSCP field
is used to store the RSP Path Id. The RSP Path Id is written to the DSCP
field in the Transport Egress table for those packets sent to an SF.

Here is an example on SFF1, assuming the following details:

	VLAN ID 1000 is used for the SFF-SF

	The RSP Path 1 tunnel uses MPLS label 100 for ingress and 101 for
egress

	The RSP Path 2 (symmetric downlink path) uses MPLS label 101 for
ingress and 100 for egress

	Priority
	Match
	Action

	256
	MPLS Label==100
	RSP Path=1, Pop MPLS,
Goto Table 4

	256
	MPLS Label==101
	RSP Path=2, Pop MPLS,
Goto Table 4

	256
	VLAN ID==1000, IP
DSCP==1
	RSP Path=1, Pop VLAN,
Goto Table 4

	256
	VLAN ID==1000, IP
DSCP==2
	RSP Path=2, Pop VLAN,
Goto Table 4

	5
	Match Any
	Goto Table 3

Table: Table Path Mapper

Path Mapper ACL Table detailed

This table is only populated when PacketIn packets are received from the
switch for TcpProxy type SFs. These flows are created with an inactivity
timer of 60 seconds and will be automatically deleted upon expiration.

Next Hop Table detailed

The Next Hop table uses the RSP Path Id and appropriate packet fields to
determine where to send the packet next. For NSH, only the NSP (Network
Services Path, RSP ID) and NSI (Network Services Index, next hop) fields
from the NSH header are needed to determine the VXLAN tunnel destination
IP. For VLAN or MPLS, then the source MAC address is used to determine
the destination MAC address.

Here are two examples on SFF1, assuming SFF1 is connected to SFF2. RSP
Paths 1 and 2 are symmetric VLAN paths. RSP Paths 3 and 4 are symmetric
NSH paths. RSP Path 1 ingress packets come from external to SFC, for
which we don’t have the source MAC address (MacSrc).

	Priority
	Match
	Action

	256
	RSP Path==1, MacSrc==SF1
	MacDst=SFF2, Goto Table 10

	256
	RSP Path==2, MacSrc==SF1
	Goto Table 10

	256
	RSP Path==2, MacSrc==SFF2
	MacDst=SF1, Goto Table 10

	246
	RSP Path==1
	MacDst=SF1, Goto Table 10

	256
	nsp=3,nsi=255 (SFF Ingress RSP
3)
	load:0xa000002→NXM_NX_TUN_I
PV4_DST[],
Goto Table 10

	256
	nsp=3,nsi=254 (SFF Ingress
from SF, RSP 3)
	load:0xa00000a→NXM_NX_TUN_I
PV4_DST[],
Goto Table 10

	256
	nsp=4,nsi=254 (SFF1 Ingress
from SFF2)
	load:0xa00000a→NXM_NX_TUN_I
PV4_DST[],
Goto Table 10

	5
	Match Any
	Drop

Table: Table Next Hop

Transport Egress Table detailed

The Transport Egress table prepares egress tunnel information and sends
the packets out.

Here are two examples on SFF1. RSP Paths 1 and 2 are symmetric MPLS
paths that use VLAN for the SFF-SF. RSP Paths 3 and 4 are symmetric NSH
paths. Since it is assumed that switches used for NSH will only have one
VXLANport, the NSH packets are just sent back where they came from.

	Priority
	Match
	Action

	256
	RSP Path==1, MacDst==SF1
	Push VLAN ID 1000, Port=SF1

	256
	RSP Path==1, MacDst==SFF2
	Push MPLS Label 101, Port=SFF2

	256
	RSP Path==2, MacDst==SF1
	Push VLAN ID 1000, Port=SF1

	246
	RSP Path==2
	Push MPLS Label 100,
Port=Ingress

	256
	nsp=3,nsi=255 (SFF Ingress RSP
3)
	IN_PORT

	256
	nsp=3,nsi=254 (SFF Ingress
from SF, RSP 3)
	IN_PORT

	256
	nsp=4,nsi=254 (SFF1 Ingress
from SFF2)
	IN_PORT

	5
	Match Any
	Drop

Table: Table Transport Egress

Administering SFC OF Renderer

To use the SFC OpenFlow Renderer Karaf, at least the following Karaf
features must be installed.

	odl-openflowplugin-nxm-extensions

	odl-openflowplugin-flow-services

	odl-sfc-provider

	odl-sfc-model

	odl-sfc-openflow-renderer

	odl-sfc-ui (optional)

The following command can be used to view all of the currently installed
Karaf features:

opendaylight-user@root>feature:list -i

Or, pipe the command to a grep to see a subset of the currently
installed Karaf features:

opendaylight-user@root>feature:list -i | grep sfc

To install a particular feature, use the Karaf feature:install
command.

SFC OF Renderer Tutorial

Overview

In this tutorial, 2 different encapsulations will be shown: MPLS and
NSH. The following Network Topology diagram is a logical view of the
SFFs and SFs involved in creating the Service Chains.

[image: SFC OpenFlow Renderer Typical Network Topology]
SFC OpenFlow Renderer Typical Network Topology

Prerequisites

To use this example, SFF OpenFlow switches must be created and connected
as illustrated above. Additionally, the SFs must be created and
connected.

Target Environment

The target environment is not important, but this use-case was created
and tested on Linux.

Instructions

The steps to use this tutorial are as follows. The referenced
configuration in the steps is listed in the following sections.

There are numerous ways to send the configuration. In the following
configuration chapters, the appropriate curl command is shown for
each configuration to be sent, including the URL.

Steps to configure the SFC OF Renderer tutorial:

	Send the SF RESTCONF configuration

	Send the SFF RESTCONF configuration

	Send the SFC RESTCONF configuration

	Send the SFP RESTCONF configuration

	Create the RSP with a RESTCONF RPC command

Once the configuration has been successfully created, query the Rendered
Service Paths with either the SFC UI or via RESTCONF. Notice that the
RSP is symmetrical, so the following 2 RSPs will be created:

	sfc-path1

	sfc-path1-Reverse

At this point the Service Chains have been created, and the OpenFlow
Switches are programmed to steer traffic through the Service Chain.
Traffic can now be injected from a client into the Service Chain. To
debug problems, the OpenFlow tables can be dumped with the following
commands, assuming SFF1 is called s1 and SFF2 is called s2.

sudo ovs-ofctl -O OpenFlow13 dump-flows s1

sudo ovs-ofctl -O OpenFlow13 dump-flows s2

In all the following configuration sections, replace the ${JSON}
string with the appropriate JSON configuration. Also, change the
localhost desintation in the URL accordingly.

SFC OF Renderer NSH Tutorial

The following configuration sections show how to create the different
elements using NSH encapsulation.

NSH Service Function configuration

The Service Function configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function:service-functions/

SF configuration JSON.

{
 "service-functions": {
 "service-function": [
 {
 "name": "sf1",
 "type": "http-header-enrichment",
 "nsh-aware": true,
 "ip-mgmt-address": "10.0.0.2",
 "sf-data-plane-locator": [
 {
 "name": "sf1dpl",
 "ip": "10.0.0.10",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe",
 "service-function-forwarder": "sff1"
 }
]
 },
 {
 "name": "sf2",
 "type": "firewall",
 "nsh-aware": true,
 "ip-mgmt-address": "10.0.0.3",
 "sf-data-plane-locator": [
 {
 "name": "sf2dpl",
 "ip": "10.0.0.20",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe",
 "service-function-forwarder": "sff2"
 }
]
 }
]
 }
}

NSH Service Function Forwarder configuration

The Service Function Forwarder configuration can be sent with the
following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

SFF configuration JSON.

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "sff1",
 "service-node": "openflow:2",
 "sff-data-plane-locator": [
 {
 "name": "sff1dpl",
 "data-plane-locator":
 {
 "ip": "10.0.0.1",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf1dpl",
 "sff-dpl-name": "sff1dpl"
 }
 }
]
 },
 {
 "name": "sff2",
 "service-node": "openflow:3",
 "sff-data-plane-locator": [
 {
 "name": "sff2dpl",
 "data-plane-locator":
 {
 "ip": "10.0.0.2",
 "port": 4789,
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf2",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf2dpl",
 "sff-dpl-name": "sff2dpl"
 }
 }
]
 }
]
 }
}

NSH Service Function Chain configuration

The Service Function Chain configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-chain:service-function-chains/

SFC configuration JSON.

{
 "service-function-chains": {
 "service-function-chain": [
 {
 "name": "sfc-chain1",
 "symmetric": true,
 "sfc-service-function": [
 {
 "name": "hdr-enrich-abstract1",
 "type": "http-header-enrichment"
 },
 {
 "name": "firewall-abstract1",
 "type": "firewall"
 }
]
 }
]
 }
}

NSH Service Function Path configuration

The Service Function Path configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-path:service-function-paths/

SFP configuration JSON.

{
 "service-function-paths": {
 "service-function-path": [
 {
 "name": "sfc-path1",
 "service-chain-name": "sfc-chain1",
 "transport-type": "service-locator:vxlan-gpe",
 "symmetric": true
 }
]
 }
}

NSH Rendered Service Path creation

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:create-rendered-path/

RSP creation JSON.

{
 "input": {
 "name": "sfc-path1",
 "parent-service-function-path": "sfc-path1",
 "symmetric": true
 }
}

NSH Rendered Service Path removal

The following command can be used to remove a Rendered Service Path
called sfc-path1:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{"input": {"name": "sfc-path1" } }' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:delete-rendered-path/

NSH Rendered Service Path Query

The following command can be used to query all of the created Rendered
Service Paths:

curl -H "Content-Type: application/json" -H "Cache-Control: no-cache" -X GET --user admin:admin http://localhost:8181/restconf/operational/rendered-service-path:rendered-service-paths/

SFC OF Renderer MPLS Tutorial

The following configuration sections show how to create the different
elements using MPLS encapsulation.

MPLS Service Function configuration

The Service Function configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function:service-functions/

SF configuration JSON.

{
 "service-functions": {
 "service-function": [
 {
 "name": "sf1",
 "type": "http-header-enrichment",
 "nsh-aware": false,
 "ip-mgmt-address": "10.0.0.2",
 "sf-data-plane-locator": [
 {
 "name": "sf1-sff1",
 "mac": "00:00:08:01:02:01",
 "vlan-id": 1000,
 "transport": "service-locator:mac",
 "service-function-forwarder": "sff1"
 }
]
 },
 {
 "name": "sf2",
 "type": "firewall",
 "nsh-aware": false,
 "ip-mgmt-address": "10.0.0.3",
 "sf-data-plane-locator": [
 {
 "name": "sf2-sff2",
 "mac": "00:00:08:01:03:01",
 "vlan-id": 2000,
 "transport": "service-locator:mac",
 "service-function-forwarder": "sff2"
 }
]
 }
]
 }
}

MPLS Service Function Forwarder configuration

The Service Function Forwarder configuration can be sent with the
following command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-forwarder:service-function-forwarders/

SFF configuration JSON.

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "sff1",
 "service-node": "openflow:2",
 "sff-data-plane-locator": [
 {
 "name": "ulSff1Ingress",
 "data-plane-locator":
 {
 "mpls-label": 100,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "11:11:11:11:11:11",
 "port-id" : "1"
 }
 },
 {
 "name": "ulSff1ToSff2",
 "data-plane-locator":
 {
 "mpls-label": 101,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "33:33:33:33:33:33",
 "port-id" : "2"
 }
 },
 {
 "name": "toSf1",
 "data-plane-locator":
 {
 "mac": "22:22:22:22:22:22",
 "vlan-id": 1000,
 "transport": "service-locator:mac",
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "33:33:33:33:33:33",
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf1",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf1-sff1",
 "sff-dpl-name": "toSf1"
 }
 }
]
 },
 {
 "name": "sff2",
 "service-node": "openflow:3",
 "sff-data-plane-locator": [
 {
 "name": "ulSff2Ingress",
 "data-plane-locator":
 {
 "mpls-label": 101,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "44:44:44:44:44:44",
 "port-id" : "1"
 }
 },
 {
 "name": "ulSff2Egress",
 "data-plane-locator":
 {
 "mpls-label": 102,
 "transport": "service-locator:mpls"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "mac": "66:66:66:66:66:66",
 "port-id" : "2"
 }
 },
 {
 "name": "toSf2",
 "data-plane-locator":
 {
 "mac": "55:55:55:55:55:55",
 "vlan-id": 2000,
 "transport": "service-locator:mac"
 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
],
 "service-function-dictionary": [
 {
 "name": "sf2",
 "sff-sf-data-plane-locator":
 {
 "sf-dpl-name": "sf2-sff2",
 "sff-dpl-name": "toSf2"

 },
 "service-function-forwarder-ofs:ofs-port":
 {
 "port-id" : "3"
 }
 }
]
 }
]
 }
}

MPLS Service Function Chain configuration

The Service Function Chain configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-chain:service-function-chains/

SFC configuration JSON.

{
 "service-function-chains": {
 "service-function-chain": [
 {
 "name": "sfc-chain1",
 "symmetric": true,
 "sfc-service-function": [
 {
 "name": "hdr-enrich-abstract1",
 "type": "http-header-enrichment"
 },
 {
 "name": "firewall-abstract1",
 "type": "firewall"
 }
]
 }
]
 }
}

MPLS Service Function Path configuration

The Service Function Path configuration can be sent with the following
command:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-path:service-function-paths/

SFP configuration JSON.

{
 "service-function-paths": {
 "service-function-path": [
 {
 "name": "sfc-path1",
 "service-chain-name": "sfc-chain1",
 "transport-type": "service-locator:mpls",
 "symmetric": true
 }
]
 }
}

MPLS Rendered Service Path creation

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '${JSON}' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:create-rendered-path/

RSP creation JSON.

{
 "input": {
 "name": "sfc-path1",
 "parent-service-function-path": "sfc-path1",
 "symmetric": true
 }
}

MPLS Rendered Service Path removal

The following command can be used to remove a Rendered Service Path
called sfc-path1:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '{"input": {"name": "sfc-path1" } }' -X POST --user admin:admin http://localhost:8181/restconf/operations/rendered-service-path:delete-rendered-path/

MPLS Rendered Service Path Query

The following command can be used to query all of the created Rendered
Service Paths:

curl -H "Content-Type: application/json" -H "Cache-Control: no-cache" -X GET --user admin:admin http://localhost:8181/restconf/operational/rendered-service-path:rendered-service-paths/

SFC IOS XE Renderer User Guide

Overview

The early Service Function Chaining (SFC) renderer for IOS-XE devices
(SFC IOS-XE renderer) implements Service Chaining functionality on
IOS-XE capable switches. It listens for the creation of a Rendered
Service Path (RSP) and sets up Service Function Forwarders (SFF) that
are hosted on IOS-XE switches to steer traffic through the service
chain.

Common acronyms used in the following sections:

	SF - Service Function

	SFF - Service Function Forwarder

	SFC - Service Function Chain

	SP - Service Path

	SFP - Service Function Path

	RSP - Rendered Service Path

	LSF - Local Service Forwarder

	RSF - Remote Service Forwarder

SFC IOS-XE Renderer Architecture

When the SFC IOS-XE renderer is initialized, all required listeners are
registered to handle incoming data. It involves CSR/IOS-XE
NodeListener which stores data about all configurable devices
including their mountpoints (used here as databrokers),
ServiceFunctionListener, ServiceForwarderListener (see mapping)
and RenderedPathListener used to listen for RSP changes. When the
SFC IOS-XE renderer is invoked, RenderedPathListener calls the
IosXeRspProcessor which processes the RSP change and creates all
necessary Service Paths and Remote Service Forwarders (if necessary) on
IOS-XE devices.

Service Path details

Each Service Path is defined by index (represented by NSP) and contains
service path entries. Each entry has appropriate service index (NSI) and
definition of next hop. Next hop can be Service Function, different
Service Function Forwarder or definition of end of chain - terminate.
After terminating, the packet is sent to destination. If a SFF is
defined as a next hop, it has to be present on device in the form of
Remote Service Forwarder. RSFs are also created during RSP processing.

Example of Service Path:

service-chain service-path 200
 service-index 255 service-function firewall-1
 service-index 254 service-function dpi-1
 service-index 253 terminate

Mapping to IOS-XE SFC entities

Renderer contains mappers for SFs and SFFs. IOS-XE capable device is
using its own definition of Service Functions and Service Function
Forwarders according to appropriate .yang file.
ServiceFunctionListener serves as a listener for SF changes. If SF
appears in datastore, listener extracts its management ip address and
looks into cached IOS-XE nodes. If some of available nodes match,
Service function is mapped in IosXeServiceFunctionMapper to be
understandable by IOS-XE device and it’s written into device’s config.
ServiceForwarderListener is used in a similar way. All SFFs with
suitable management ip address it mapped in
IosXeServiceForwarderMapper. Remapped SFFs are configured as a Local
Service Forwarders. It is not possible to directly create Remote Service
Forwarder using IOS-XE renderer. RSF is created only during RSP
processing.

Administering SFC IOS-XE renderer

To use the SFC IOS-XE Renderer Karaf, at least the following Karaf
features must be installed:

	odl-aaa-shiro

	odl-sfc-model

	odl-sfc-provider

	odl-restconf

	odl-netconf-topology

	odl-sfc-ios-xe-renderer

SFC IOS-XE renderer Tutorial

Overview

This tutorial is a simple example how to create Service Path on IOS-XE
capable device using IOS-XE renderer

Preconditions

To connect to IOS-XE device, it is necessary to use several modified
yang models and override device’s ones. All .yang files are in the
Yang/netconf folder in the sfc-ios-xe-renderer module in the SFC
project. These files have to be copied to the cache/schema
directory, before Karaf is started. After that, custom capabilities have
to be sent to network-topology:

PUT ./config/network-topology:network-topology/topology/topology-netconf/node/<device-name>

<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <node-id>device-name</node-id>
 <host xmlns="urn:opendaylight:netconf-node-topology">device-ip</host>
 <port xmlns="urn:opendaylight:netconf-node-topology">2022</port>
 <username xmlns="urn:opendaylight:netconf-node-topology">login</username>
 <password xmlns="urn:opendaylight:netconf-node-topology">password</password>
 <tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
 <keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">0</keepalive-delay>
 <yang-module-capabilities xmlns="urn:opendaylight:netconf-node-topology">
 <override>true</override>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 urn:ietf:params:xml:ns:yang:ietf-inet-types?module=ietf-inet-types&revision=2013-07-15
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 urn:ietf:params:xml:ns:yang:ietf-yang-types?module=ietf-yang-types&revision=2013-07-15
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 urn:ios?module=ned&revision=2016-03-08
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 http://tail-f.com/yang/common?module=tailf-common&revision=2015-05-22
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 http://tail-f.com/yang/common?module=tailf-meta-extensions&revision=2013-11-07
 </capability>
 <capability xmlns="urn:opendaylight:netconf-node-topology">
 http://tail-f.com/yang/common?module=tailf-cli-extensions&revision=2015-03-19
 </capability>
 </yang-module-capabilities>
</node>

Note

The device name in the URL and in the XML must match.

Instructions

When the IOS-XE renderer is installed, all NETCONF nodes in
topology-netconf are processed and all capable nodes with accessible
mountpoints are cached. The first step is to create LSF on node.

Service Function Forwarder configuration

PUT ./config/service-function-forwarder:service-function-forwarders

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "CSR1Kv-2",
 "ip-mgmt-address": "172.25.73.23",
 "sff-data-plane-locator": [
 {
 "name": "CSR1Kv-2-dpl",
 "data-plane-locator": {
 "transport": "service-locator:vxlan-gpe",
 "port": 6633,
 "ip": "10.99.150.10"
 }
 }
]
 }
]
 }
}

If the IOS-XE node with appropriate management IP exists, this
configuration is mapped and LSF is created on the device. The same
approach is used for Service Functions.

PUT ./config/service-function:service-functions

{
 "service-functions": {
 "service-function": [
 {
 "name": "Firewall",
 "ip-mgmt-address": "172.25.73.23",
 "type": "service-function-type: firewall",
 "nsh-aware": true,
 "sf-data-plane-locator": [
 {
 "name": "firewall-dpl",
 "port": 6633,
 "ip": "12.1.1.2",
 "transport": "service-locator:gre",
 "service-function-forwarder": "CSR1Kv-2"
 }
]
 },
 {
 "name": "Dpi",
 "ip-mgmt-address": "172.25.73.23",
 "type":"service-function-type: dpi",
 "nsh-aware": true,
 "sf-data-plane-locator": [
 {
 "name": "dpi-dpl",
 "port": 6633,
 "ip": "12.1.1.1",
 "transport": "service-locator:gre",
 "service-function-forwarder": "CSR1Kv-2"
 }
]
 },
 {
 "name": "Qos",
 "ip-mgmt-address": "172.25.73.23",
 "type":"service-function-type: qos",
 "nsh-aware": true,
 "sf-data-plane-locator": [
 {
 "name": "qos-dpl",
 "port": 6633,
 "ip": "12.1.1.4",
 "transport": "service-locator:gre",
 "service-function-forwarder": "CSR1Kv-2"
 }
]
 }
]
 }
}

All these SFs are configured on the same device as the LSF. The next
step is to prepare Service Function Chain. SFC is symmetric.

PUT ./config/service-function-chain:service-function-chains/

{
 "service-function-chains": {
 "service-function-chain": [
 {
 "name": "CSR3XSF",
 "symmetric": "true",
 "sfc-service-function": [
 {
 "name": "Firewall",
 "type": "service-function-type: firewall"
 },
 {
 "name": "Dpi",
 "type": "service-function-type: dpi"
 },
 {
 "name": "Qos",
 "type": "service-function-type: qos"
 }
]
 }
]
 }
}

Service Function Path:

PUT ./config/service-function-path:service-function-paths/

{
 "service-function-paths": {
 "service-function-path": [
 {
 "name": "CSR3XSF-Path",
 "service-chain-name": "CSR3XSF",
 "starting-index": 255,
 "symmetric": "true"
 }
]
 }
}

Without a classifier, there is possibility to POST RSP directly.

POST ./operations/rendered-service-path:create-rendered-path

{
 "input": {
 "name": "CSR3XSF-Path-RSP",
 "parent-service-function-path": "CSR3XSF-Path",
 "symmetric": true
 }
}

The resulting configuration:

!
service-chain service-function-forwarder local
 ip address 10.99.150.10
!
service-chain service-function firewall
ip address 12.1.1.2
 encapsulation gre enhanced divert
!
service-chain service-function dpi
ip address 12.1.1.1
 encapsulation gre enhanced divert
!
service-chain service-function qos
ip address 12.1.1.4
 encapsulation gre enhanced divert
!
service-chain service-path 1
 service-index 255 service-function firewall
 service-index 254 service-function dpi
 service-index 253 service-function qos
 service-index 252 terminate
!
service-chain service-path 2
 service-index 255 service-function qos
 service-index 254 service-function dpi
 service-index 253 service-function firewall
 service-index 252 terminate
!

Service Path 1 is direct, Service Path 2 is reversed. Path numbers may
vary.

Service Function Scheduling Algorithms

Overview

When creating the Rendered Service Path, the origin SFC controller chose
the first available service function from a list of service function
names. This may result in many issues such as overloaded service
functions and a longer service path as SFC has no means to understand
the status of service functions and network topology. The service
function selection framework supports at least four algorithms (Random,
Round Robin, Load Balancing and Shortest Path) to select the most
appropriate service function when instantiating the Rendered Service
Path. In addition, it is an extensible framework that allows 3rd party
selection algorithm to be plugged in.

Architecture

The following figure illustrates the service function selection
framework and algorithms.

[image: SF Selection Architecture]
SF Selection Architecture

A user has three different ways to select one service function selection
algorithm:

	Integrated RESTCONF Calls. OpenStack and/or other administration
system could provide plugins to call the APIs to select one
scheduling algorithm.

	Command line tools. Command line tools such as curl or browser
plugins such as POSTMAN (for Google Chrome) and RESTClient (for
Mozilla Firefox) could select schedule algorithm by making RESTCONF
calls.

	SFC-UI. Now the SFC-UI provides an option for choosing a selection
algorithm when creating a Rendered Service Path.

The RESTCONF northbound SFC API provides GUI/RESTCONF interactions for
choosing the service function selection algorithm. MD-SAL data store
provides all supported service function selection algorithms, and
provides APIs to enable one of the provided service function selection
algorithms. Once a service function selection algorithm is enabled, the
service function selection algorithm will work when creating a Rendered
Service Path.

Select SFs with Scheduler

Administrator could use both the following ways to select one of the
selection algorithm when creating a Rendered Service Path.

	Command line tools. Command line tools includes Linux commands curl
or even browser plugins such as POSTMAN(for Google Chrome) or
RESTClient(for Mozilla Firefox). In this case, the following JSON
content is needed at the moment:
Service_function_schudule_type.json

{
 "service-function-scheduler-types": {
 "service-function-scheduler-type": [
 {
 "name": "random",
 "type": "service-function-scheduler-type:random",
 "enabled": false
 },
 {
 "name": "roundrobin",
 "type": "service-function-scheduler-type:round-robin",
 "enabled": true
 },
 {
 "name": "loadbalance",
 "type": "service-function-scheduler-type:load-balance",
 "enabled": false
 },
 {
 "name": "shortestpath",
 "type": "service-function-scheduler-type:shortest-path",
 "enabled": false
 }
]
 }
}

If using the Linux curl command, it could be:

curl -i -H "Content-Type: application/json" -H "Cache-Control: no-cache" --data '$${Service_function_schudule_type.json}'
-X PUT --user admin:admin http://localhost:8181/restconf/config/service-function-scheduler-type:service-function-scheduler-types/

Here is also a snapshot for using the RESTClient plugin:

[image: Mozilla Firefox RESTClient]
Mozilla Firefox RESTClient

	SFC-UI.SFC-UI provides a drop down menu for service function
selection algorithm. Here is a snapshot for the user interaction from
SFC-UI when creating a Rendered Service Path.

[image: Karaf Web UI]
Karaf Web UI

Note

Some service function selection algorithms in the drop list are not
implemented yet. Only the first three algorithms are committed at
the moment.

Random

Select Service Function from the name list randomly.

Overview

The Random algorithm is used to select one Service Function from the
name list which it gets from the Service Function Type randomly.

Prerequisites

	Service Function information are stored in datastore.

	Either no algorithm or the Random algorithm is selected.

Target Environment

The Random algorithm will work either no algorithm type is selected or
the Random algorithm is selected.

Instructions

Once the plugins are installed into Karaf successfully, a user can use
his favorite method to select the Random scheduling algorithm type.
There are no special instructions for using the Random algorithm.

Round Robin

Select Service Function from the name list in Round Robin manner.

Overview

The Round Robin algorithm is used to select one Service Function from
the name list which it gets from the Service Function Type in a Round
Robin manner, this will balance workloads to all Service Functions.
However, this method cannot help all Service Functions load the same
workload because it’s flow-based Round Robin.

Prerequisites

	Service Function information are stored in datastore.

	Round Robin algorithm is selected

Target Environment

The Round Robin algorithm will work one the Round Robin algorithm is
selected.

Instructions

Once the plugins are installed into Karaf successfully, a user can use
his favorite method to select the Round Robin scheduling algorithm type.
There are no special instructions for using the Round Robin algorithm.

Load Balance Algorithm

Select appropriate Service Function by actual CPU utilization.

Overview

The Load Balance Algorithm is used to select appropriate Service
Function by actual CPU utilization of service functions. The CPU
utilization of service function obtained from monitoring information
reported via NETCONF.

Prerequisites

	CPU-utilization for Service Function.

	NETCONF server.

	NETCONF client.

	Each VM has a NETCONF server and it could work with NETCONF client
well.

Instructions

Set up VMs as Service Functions. enable NETCONF server in VMs. Ensure
that you specify them separately. For example:

	Set up 4 VMs include 2 SFs’ type are Firewall, Others are Napt44.
Name them as firewall-1, firewall-2, napt44-1, napt44-2 as Service
Function. The four VMs can run either the same server or different
servers.

	Install NETCONF server on every VM and enable it. More information on
NETCONF can be found on the OpenDaylight wiki here:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf:Manual_netopeer_installation

	Get Monitoring data from NETCONF server. These monitoring data should
be get from the NETCONF server which is running in VMs. The following
static XML data is an example:

static XML data like this:

<?xml version="1.0" encoding="UTF-8"?>
<service-function-description-monitor-report>
 <SF-description>
 <number-of-dataports>2</number-of-dataports>
 <capabilities>
 <supported-packet-rate>5</supported-packet-rate>
 <supported-bandwidth>10</supported-bandwidth>
 <supported-ACL-number>2000</supported-ACL-number>
 <RIB-size>200</RIB-size>
 <FIB-size>100</FIB-size>
 <ports-bandwidth>
 <port-bandwidth>
 <port-id>1</port-id>
 <ipaddress>10.0.0.1</ipaddress>
 <macaddress>00:1e:67:a2:5f:f4</macaddress>
 <supported-bandwidth>20</supported-bandwidth>
 </port-bandwidth>
 <port-bandwidth>
 <port-id>2</port-id>
 <ipaddress>10.0.0.2</ipaddress>
 <macaddress>01:1e:67:a2:5f:f6</macaddress>
 <supported-bandwidth>10</supported-bandwidth>
 </port-bandwidth>
 </ports-bandwidth>
 </capabilities>
 </SF-description>
 <SF-monitoring-info>
 <liveness>true</liveness>
 <resource-utilization>
 <packet-rate-utilization>10</packet-rate-utilization>
 <bandwidth-utilization>15</bandwidth-utilization>
 <CPU-utilization>12</CPU-utilization>
 <memory-utilization>17</memory-utilization>
 <available-memory>8</available-memory>
 <RIB-utilization>20</RIB-utilization>
 <FIB-utilization>25</FIB-utilization>
 <power-utilization>30</power-utilization>
 <SF-ports-bandwidth-utilization>
 <port-bandwidth-utilization>
 <port-id>1</port-id>
 <bandwidth-utilization>20</bandwidth-utilization>
 </port-bandwidth-utilization>
 <port-bandwidth-utilization>
 <port-id>2</port-id>
 <bandwidth-utilization>30</bandwidth-utilization>
 </port-bandwidth-utilization>
 </SF-ports-bandwidth-utilization>
 </resource-utilization>
 </SF-monitoring-info>
</service-function-description-monitor-report>

	Unzip SFC release tarball.

	Run SFC: ${sfc}/bin/karaf. More information on Service Function
Chaining can be found on the OpenDaylight SFC’s wiki page:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main

	Deploy the SFC2 (firewall-abstract2⇒napt44-abstract2) and click
button to Create Rendered Service Path in SFC UI
(http://localhost:8181/sfc/index.html).

	Verify the Rendered Service Path to ensure the CPU utilization of the
selected hop is the minimum one among all the service functions with
same type. The correct RSP is firewall-1⇒napt44-2

Shortest Path Algorithm

Select appropriate Service Function by Dijkstra’s algorithm. Dijkstra’s
algorithm is an algorithm for finding the shortest paths between nodes
in a graph.

Overview

The Shortest Path Algorithm is used to select appropriate Service
Function by actual topology.

Prerequisites

	Depolyed topology (include SFFs, SFs and their links).

	Dijkstra’s algorithm. More information on Dijkstra’s algorithm can be
found on the wiki here:
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Instructions

	Unzip SFC release tarball.

	Run SFC: ${sfc}/bin/karaf.

	Depoly SFFs and SFs. import the service-function-forwarders.json and
service-functions.json in UI
(http://localhost:8181/sfc/index.html#/sfc/config)

service-function-forwarders.json:

{
 "service-function-forwarders": {
 "service-function-forwarder": [
 {
 "name": "SFF-br1",
 "service-node": "OVSDB-test01",
 "rest-uri": "http://localhost:5001",
 "sff-data-plane-locator": [
 {
 "name": "eth0",
 "service-function-forwarder-ovs:ovs-bridge": {
 "uuid": "4c3778e4-840d-47f4-b45e-0988e514d26c",
 "bridge-name": "br-tun"
 },
 "data-plane-locator": {
 "port": 5000,
 "ip": "192.168.1.1",
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "sff-sf-data-plane-locator": {
 "port": 10001,
 "ip": "10.3.1.103"
 },
 "name": "napt44-1",
 "type": "service-function-type:napt44"
 },
 {
 "sff-sf-data-plane-locator": {
 "port": 10003,
 "ip": "10.3.1.102"
 },
 "name": "firewall-1",
 "type": "service-function-type:firewall"
 }
],
 "connected-sff-dictionary": [
 {
 "name": "SFF-br3"
 }
]
 },
 {
 "name": "SFF-br2",
 "service-node": "OVSDB-test01",
 "rest-uri": "http://localhost:5002",
 "sff-data-plane-locator": [
 {
 "name": "eth0",
 "service-function-forwarder-ovs:ovs-bridge": {
 "uuid": "fd4d849f-5140-48cd-bc60-6ad1f5fc0a1",
 "bridge-name": "br-tun"
 },
 "data-plane-locator": {
 "port": 5000,
 "ip": "192.168.1.2",
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "sff-sf-data-plane-locator": {
 "port": 10002,
 "ip": "10.3.1.103"
 },
 "name": "napt44-2",
 "type": "service-function-type:napt44"
 },
 {
 "sff-sf-data-plane-locator": {
 "port": 10004,
 "ip": "10.3.1.101"
 },
 "name": "firewall-2",
 "type": "service-function-type:firewall"
 }
],
 "connected-sff-dictionary": [
 {
 "name": "SFF-br3"
 }
]
 },
 {
 "name": "SFF-br3",
 "service-node": "OVSDB-test01",
 "rest-uri": "http://localhost:5005",
 "sff-data-plane-locator": [
 {
 "name": "eth0",
 "service-function-forwarder-ovs:ovs-bridge": {
 "uuid": "fd4d849f-5140-48cd-bc60-6ad1f5fc0a4",
 "bridge-name": "br-tun"
 },
 "data-plane-locator": {
 "port": 5000,
 "ip": "192.168.1.2",
 "transport": "service-locator:vxlan-gpe"
 }
 }
],
 "service-function-dictionary": [
 {
 "sff-sf-data-plane-locator": {
 "port": 10005,
 "ip": "10.3.1.104"
 },
 "name": "test-server",
 "type": "service-function-type:dpi"
 },
 {
 "sff-sf-data-plane-locator": {
 "port": 10006,
 "ip": "10.3.1.102"
 },
 "name": "test-client",
 "type": "service-function-type:dpi"
 }
],
 "connected-sff-dictionary": [
 {
 "name": "SFF-br1"
 },
 {
 "name": "SFF-br2"
 }
]
 }
]
 }
}

service-functions.json:

{
 "service-functions": {
 "service-function": [
 {
 "rest-uri": "http://localhost:10001",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "preferred",
 "port": 10001,
 "ip": "10.3.1.103",
 "service-function-forwarder": "SFF-br1"
 }
],
 "name": "napt44-1",
 "type": "service-function-type:napt44",
 "nsh-aware": true
 },
 {
 "rest-uri": "http://localhost:10002",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "master",
 "port": 10002,
 "ip": "10.3.1.103",
 "service-function-forwarder": "SFF-br2"
 }
],
 "name": "napt44-2",
 "type": "service-function-type:napt44",
 "nsh-aware": true
 },
 {
 "rest-uri": "http://localhost:10003",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "1",
 "port": 10003,
 "ip": "10.3.1.102",
 "service-function-forwarder": "SFF-br1"
 }
],
 "name": "firewall-1",
 "type": "service-function-type:firewall",
 "nsh-aware": true
 },
 {
 "rest-uri": "http://localhost:10004",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "2",
 "port": 10004,
 "ip": "10.3.1.101",
 "service-function-forwarder": "SFF-br2"
 }
],
 "name": "firewall-2",
 "type": "service-function-type:firewall",
 "nsh-aware": true
 },
 {
 "rest-uri": "http://localhost:10005",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "3",
 "port": 10005,
 "ip": "10.3.1.104",
 "service-function-forwarder": "SFF-br3"
 }
],
 "name": "test-server",
 "type": "service-function-type:dpi",
 "nsh-aware": true
 },
 {
 "rest-uri": "http://localhost:10006",
 "ip-mgmt-address": "10.3.1.103",
 "sf-data-plane-locator": [
 {
 "name": "4",
 "port": 10006,
 "ip": "10.3.1.102",
 "service-function-forwarder": "SFF-br3"
 }
],
 "name": "test-client",
 "type": "service-function-type:dpi",
 "nsh-aware": true
 }
]
 }
}

The depolyed topology like this:

 +----+ +----+ +----+
 |sff1|+----------|sff3|---------+|sff2|
 +----+ +----+ +----+
 | |
 +--------------+ +--------------+
 | | | |
+----------+ +--------+ +----------+ +--------+
|firewall-1| |napt44-1| |firewall-2| |napt44-2|
+----------+ +--------+ +----------+ +--------+

	Deploy the SFC2(firewall-abstract2⇒napt44-abstract2), select
“Shortest Path” as schedule type and click button to Create Rendered
Service Path in SFC UI (http://localhost:8181/sfc/index.html).

[image: select schedule type]
select schedule type

	Verify the Rendered Service Path to ensure the selected hops are
linked in one SFF. The correct RSP is firewall-1⇒napt44-1 or
firewall-2⇒napt44-2. The first SF type is Firewall in Service
Function Chain. So the algorithm will select first Hop randomly among
all the SFs type is Firewall. Assume the first selected SF is
firewall-2. All the path from firewall-1 to SF which type is Napt44
are list:
	Path1: firewall-2 → sff2 → napt44-2

	Path2: firewall-2 → sff2 → sff3 → sff1 → napt44-1 The shortest
path is Path1, so the selected next hop is napt44-2.

[image: rendered service path]
rendered service path

Service Function Load Balancing User Guide

Overview

SFC Load-Balancing feature implements load balancing of Service
Functions, rather than a one-to-one mapping between
Service-Function-Forwarder and Service-Function.

Load Balancing Architecture

Service Function Groups (SFG) can replace Service Functions (SF) in the
Rendered Path model. A Service Path can only be defined using SFGs or
SFs, but not a combination of both.

Relevant objects in the YANG model are as follows:

	Service-Function-Group-Algorithm:

Service-Function-Group-Algorithms {
 Service-Function-Group-Algorithm {
 String name
 String type
 }
}

Available types: ALL, SELECT, INDIRECT, FAST_FAILURE

	Service-Function-Group:

Service-Function-Groups {
 Service-Function-Group {
 String name
 String serviceFunctionGroupAlgorithmName
 String type
 String groupId
 Service-Function-Group-Element {
 String service-function-name
 int index
 }
 }
}

	ServiceFunctionHop: holds a reference to a name of SFG (or SF)

Tutorials

This tutorial will explain how to create a simple SFC configuration,
with SFG instead of SF. In this example, the SFG will include two
existing SF.

Setup SFC

For general SFC setup and scenarios, please see the SFC wiki page:
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main#SFC_101

Create an algorithm

POST -
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

{
 "service-function-group-algorithm": [
 {
 "name": "alg1"
 "type": "ALL"
 }
]
}

(Header “content-type”: application/json)

Verify: get all algorithms

GET -
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

In order to delete all algorithms: DELETE -
http://127.0.0.1:8181/restconf/config/service-function-group-algorithm:service-function-group-algorithms

Create a group

POST -
http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

{
 "service-function-group": [
 {
 "rest-uri": "http://localhost:10002",
 "ip-mgmt-address": "10.3.1.103",
 "algorithm": "alg1",
 "name": "SFG1",
 "type": "service-function-type:napt44",
 "sfc-service-function": [
 {
 "name":"napt44-104"
 },
 {
 "name":"napt44-103-1"
 }
]
 }
]
}

Verify: get all SFG’s

GET -
http://127.0.0.1:8181/restconf/config/service-function-group:service-function-groups

SFC Proof of Transit User Guide

Overview

Early Service Function Chaining (SFC) Proof of Transit (SFC Proof of
Transit) implements Service Chaining Proof of Transit functionality on
capable switches. After the creation of an Rendered Service Path (RSP),
a user can configure to enable SFC proof of transit on the selected RSP
to effect the proof of transit.

Common acronyms used in the following sections:

	SF - Service Function

	SFF - Service Function Forwarder

	SFC - Service Function Chain

	SFP - Service Function Path

	RSP - Rendered Service Path

	SFCPOT - Service Function Chain Proof of Transit

SFC Proof of Transit Architecture

When SFC Proof of Transit is initialized, all required listeners are
registered to handle incoming data. It involves SfcPotNodeListener
which stores data about all node devices including their mountpoints
(used here as databrokers), SfcPotRSPDataListener,
RenderedPathListener. RenderedPathListener is used to listen for
RSP changes. SfcPotRSPDataListener implements RPC services to enable
or disable SFC Proof of Transit on a particular RSP. When the SFC Proof
of Transit is invoked, RSP listeners and service implementations are
setup to receive SFCPOT configurations. When a user configures via a
POST RPC call to enable SFCPOT on a particular RSP, the configuration
drives the creation of necessary augmentations to the RSP to effect the
SFCPOT configurations.

SFC Proof of Transit details

Several deployments use traffic engineering, policy routing, segment
routing or service function chaining (SFC) to steer packets through a
specific set of nodes. In certain cases regulatory obligations or a
compliance policy require to prove that all packets that are supposed to
follow a specific path are indeed being forwarded across the exact set
of nodes specified. I.e. if a packet flow is supposed to go through a
series of service functions or network nodes, it has to be proven that
all packets of the flow actually went through the service chain or
collection of nodes specified by the policy. In case the packets of a
flow weren’t appropriately processed, a proof of transit egress device
would be required to identify the policy violation and take
corresponding actions (e.g. drop or redirect the packet, send an alert
etc.) corresponding to the policy.

The SFCPOT approach is based on meta-data which is added to every
packet. The meta data is updated at every hop and is used to verify
whether a packet traversed all required nodes. A particular path is
either described by a set of secret keys, or a set of shares of a single
secret. Nodes on the path retrieve their individual keys or shares of a
key (using for e.g. Shamir’s Shared Sharing Secret scheme) from a
central controller. The complete key set is only known to the verifier-
which is typically the ultimate node on a path that requires proof of
transit. Each node in the path uses its secret or share of the secret to
update the meta-data of the packets as the packets pass through the
node. When the verifier receives a packet, it can use its key(s) along
with the meta-data to validate whether the packet traversed the service
chain correctly.

SFC Proof of Transit entities

In order to implement SFC Proof of Transit for a service function chain,
an RSP is a pre-requisite to identify the SFC to enable SFC PoT on. SFC
Proof of Transit for a particular RSP is enabled by an RPC request to
the controller along with necessary parameters to control some of the
aspects of the SFC Proof of Transit process.

The RPC handler identifies the RSP and generates SFC Proof of Transit
parameters like secret share, secret etc., and adds the generated SFCPOT
configuration parameters to SFC main as well as the various SFC hops.
The last node in the SFC is configured as a verifier node to allow
SFCPOT Proof of Transit process to be completed.

The SFCPOT configuration generators and related handling are done by
SfcPotAPI, SfcPotConfigGenerator, SfcPotListener,
SfcPotPolyAPI, SfcPotPolyClassAPI and SfcPotPolyClass.

Administering SFC Proof of Transit

To use the SFC Proof of Transit Karaf, at least the following Karaf
features must be installed:

	odl-sfc-model

	odl-sfc-provider

	odl-sfc-netconf

	odl-restconf

	odl-netconf-topology

	odl-netconf-connector-all

	odl-sfc-pot

SFC Proof of Transit Tutorial

Overview

This tutorial is a simple example how to configure Service Function
Chain Proof of Transit using SFC POT feature.

Preconditions

To enable a device to handle SFC Proof of Transit, it is expected that
the netconf server device advertise capability as under ioam-scv.yang
present under src/main/yang folder of sfc-pot feature. It is also
expected that netconf notifications be enabled and its support
capability advertised as capabilities.

It is also expected that the devices are netconf mounted and available
in the topology-netconf store.

Instructions

When SFC Proof of Transit is installed, all netconf nodes in
topology-netconf are processed and all capable nodes with accessible
mountpoints are cached.

First step is to create the required RSP as usually done.

Once RSP name is avaiable it is used to send a POST RPC to the
controller similar to below:

POST ./restconf/operations/sfc-ioam-nb-pot:enable-sfc-ioam-pot-rendered-path

{
 "input": {
 "sfc-ioam-pot-rsp-name": "rsp1"
 }
}

The following can be used to disable the SFC Proof of Transit on an RSP
which removes the augmentations and stores back the RSP without the
SFCPOT enabled features and also sending down a delete configuration to
the SFCPOT configuration sub-tree in the nodes.

POST ./restconf/operations/sfc-ioam-nb-pot:disable-sfc-ioam-pot-rendered-path

{
 "input": {
 "sfc-ioam-pot-rsp-name": "rsp1"
 }
}

SNBI User Guide

This section describes how to use the SNBI feature in OpenDaylight and
contains configuration, administration, and management section for the
feature.

Overview

Key distribution in a scaled network has always been a challenge.
Typically, operators must perform some manual key distribution process
before secure communication is possible between a set of network
devices. The Secure Network Bootstrapping Infrastructure (SNBI) project
securely and automatically brings up an integrated set of network
devices and controllers, simplifying the process of bootstrapping
network devices with the keys required for secure communication. SNBI
enables connectivity to the network devices by assigning unique IPv6
addresses and bootstrapping devices with the required keys. Admission
control of devices into a specific domain is achieved using whitelist of
authorized devices.

SNBI Architecture

At a high level, SNBI architecture consists of the following components:

	SNBI Registrar

	SNBI Forwarding Element (FE)

[image: SNBI Architecture Diagram]
SNBI Architecture Diagram

SNBI Registrar

Registrar is a device in a network that validates device against a
whitelist and delivers device domain certificate. Registrar includes the
following:

	RESCONF API for Domain Whitelist Configuration

	SNBI Southbound Plugin

	Certificate Authority

RESTCONF API for Domain Whitelist Configuration:.

Below is the YANG model to configure the whitelist of devices for a
particular domain.

module snbi {
 //The yang version - today only 1 version exists. If omitted defaults to 1.
 yang-version 1;

 //a unique namespace for this SNBI module, to uniquely identify it from other modules that may have the same name.
 namespace "http://netconfcentral.org/ns/snbi";

 //a shorter prefix that represents the namespace for references used below
 prefix snbi;

 //Defines the organization which defined / owns this .yang file.
 organization "Netconf Central";

 //defines the primary contact of this yang file.
 contact "snbi-dev";

 //provides a description of this .yang file.
 description "YANG version for SNBI.";

 //defines the dates of revisions for this yang file
 revision "2024-07-02" {
 description "SNBI module";
 }

 typedef UDI {
 type string;
 description "Unique Device Identifier";
 }

 container snbi-domain {
 leaf domain-name {
 type string;
 description "The SNBI domain name";
 }

 list device-list {
 key "list-name";

 leaf list-name {
 type string;
 description "Name of the device list";
 }

 leaf list-type {
 type enumeration {
 enum "white";
 }
 description "Indicates the type of the list";
 }

 leaf active {
 type boolean;
 description "Indicates whether the list is active or not";
 }

 list devices {
 key "device-identifier";
 leaf device-identifier {
 type union {
 type UDI;
 }
 }
 }
 }
 }
}

Southbound Plugin:.

The Southbound Plugin implements the protocol state machine necessary to
exchange device identifiers, and deliver certificates.

Certificate Authority:.

A simple certificate authority is implemented using the Bouncy Castle
package. The Certificate Authority creates the certificates from the
device CSR requests received from the devices. The certificates thus
generated are delivered to the devices using the Southbound Plugin.

SNBI Forwarding Element

The forwarding element must be installed or unpacked on a Linux host
whose network layer traffic must be secured. The FE performs the
following functions:

	Neighour Discovery

	Bootstrap

	Host Configuration

Neighbour Discovery:.

Neighbour Discovery (ND) is the first step in accommodating devices in a
secure network. SNBI performs periodic neighbour discovery of SNBI
agents by transmitting ND hello packets. The discovered devices are
populated in an ND table. Neighbour Discovery is periodic and
bidirectional. ND hello packets are transmitted every 10 seconds. A 40
second refresh timer is set for each discovered neighbour. On expiry of
the refresh timer, the Neighbour Adjacency is removed from the ND table
as the Neighbour Adjacency is no longer valid. It is possible that the
same SNBI neighbour is discovered on multiple links, the expiry of a
device on one link does not automatically remove the device entry from
the ND table.

Bootstrapping:.

Bootstrapping a device involves the following sequential steps:

	Authenticate a device using device identifier (UDI or SUDI)

	Allocate the appropriate device ID and IPv6 address to uniquely
identify the device in the network

	Allocate the required keys by installing a Device Domain Certificate

	Accommodate the device in the domain

Host Configuration:.

Involves configuring a host to create a secure overlay network,
assigning appropriate ipv6 address, setting up gre tunnels, securing the
tunnels traffic via IPsec and enabling connectivity via a routing
protocol.

The SNBI Forwarding Element is packaged in a docker container available
at this link: https://hub.docker.com/r/snbi/boron/. For more information
on docker, refer to this link: https://docs.docker.com/linux/.

Prerequisites for Configuring SNBI

Before proceeding further, ensure that the following system requirements
are met:

	64bit Ubunutu 14.04 LTS

	4GB RAM

	4GB of hard disk space, sufficient enough to store certificates

	Java Virtual Machine 1.8 or above

	Apache Maven 3.3.3 or above

	Make sure the time on all the devices or synced either manually or
using NTP

	The docker version must be greater than 1.0 on a 14.04 Ubuntu

Configuring SNBI

This section contains the following:

	Setting up SNBI Registrar on the controller

	Configuring Whitelist

	Setting up SNBI FE on Linux Hosts

Setting up SNBI Registrar on the controller

This section contains the following:

	Configuring the Registrar Host

	Installing Karaf Package

	Configuring SNBI Registrar

Configuring the Registrar Host:.

Before enabling the SNBI registrar service, assign an IPv6 address to an
interface on the registrar host. This is to bind the registrar service
to an IPv6 address (fd08::aaaa:bbbb:1/128).

sudo ip link add snbi-ra type dummy
sudo ip addr add fd08::aaaa:bbbb:1/128 dev snbi-ra
sudo ifconfig snbi-ra up

Installing Karaf Package:.

Download the karaf package from this link:
http://www.opendaylight.org/software/downloads, unzip and run the
karaf executable present in the bin folder. Here is an example of
this step:

cd distribution-karaf-0.3.0-Boron/bin
./karaf

Additional information on useful Karaf commands are available at this
link:
https://wiki.opendaylight.org/view/CrossProject:Integration_Group:karaf.

Configuring SNBI Registrar:.

Before you perform this step, ensure that you have completed the tasks
above:

To use RESTCONF APIs, install the RESTCONF feature available in the
Karaf package. If required, install mdsal-apidocs module for access to
documentation. Refer
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf_API_Explorer
for more information on MDSAL API docs.

Use the commands below to install the required features and verify the
same.

feature:install odl-restconf
feature:install odl-mdsal-apidocs
feature:install odl-snbi-all
feature:list -i

After confirming that the features are installed, use the following
command to start SNBI registrar:

snbi:start <domain-name>

Configuring Whitelist

The registrar must be configured with a whitelist of devices that are
accommodated in a specific domain. The YANG for configuring the domain
and the associated whitelist in the controller is avaialble at this
link:
https://wiki.opendaylight.org/view/SNBI_Architecture_and_Design#Registrar_YANG_Definition.
It is recommended to use Postman to configure the registrar using
RESTCONF.

This section contains the following:

	Installing PostMan

	Configuring Whitelist using REST API

Installing PostMan:.

Follow the steps below to install postman on your Google Chrome Browser.

	Install Postman via Google Chrome browser available at this link:
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en

	In the chrome browser address bar, enter: chrome://apps/

	Click Postman.

	Enter the URL.

	Click Headers.

	Enter Accept: header.

	Click Basic Auth tab to create user credentials, such as user name
and password.

	Send.

You can download a sample Postman configuration to get started from this
link: https://www.getpostman.com/collections/c929a2a4007ffd0a7b51

Configuring Whitelist using REST API:.

The POST method below configures a domain - “secure-domain” and
configures a whitelist set of devices to be accommodated to the domain.

{
 "snbi-domain": {
 "domain-name": "secure-domain",
 "device-list": [
 {
 "list-name": "demo list",
 "list-type": "white",
 "active": true,
 "devices": [
 {
 "device-id": "UDI-FirstFE"
 },
 {
 "device-id": "UDI-dev1"
 },
 {
 "device-id": "UDI-dev2"
 }
]
 }
]
 }
}

The associated device ID must be configured on the SNBI FE (see below).
You can also use REST APIs using the API docs interface to push the
domain and whitelist information. The API docs could be accessed at
link:http://localhost:8080/apidoc/explorer. More details on the API docs
is available at
link:https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf_API_Explorer

Setting up SNBI FE on Linux Hosts

The SNBI Daemon is used to bootstrap the host device with a valid device
domain certificate and IP address for connectivity and to create a
reachable overlay network by interacting with multiple software modules.

Device UDI:.

The Device UDI or the device Unique Identifier can be derived from a
multitude of parameters in the host machine, but most derived parameters
are already known or do not remain constant across reloads. Therefore,
every SNBI FE must be configured explicitly with a UDI that is present
in the device whitelist.

First Forwarding Element:.

The registrar service IP address must be provided to the first host
(Forwarding Element) to be bootstrapped. As mentioned in the
“Configuring the Registrar Host” section, the registrar service IP
address is fd08::aaaa:bbbb:1. The First Forwarding Element must be
configured with this IPv6 address.

Running the SNBI docker image:.

The SNBI FE in the docker image picks the UDI of the ForwardingElement
via an environment variable provided when executing docker instance. If
the Forwarding Element is a first forwarding element, the IP address of
the registrar service should also be provided.

sudo docker run -v /etc/timezone:/etc/timezone:ro --net=host --privileged=true
--rm -t -i -e SNBI_UDI=UDI-FirstFE -e SNBI_REGISTRAR=fd08::aaaa:bbbb:1 snbi/boron:latest /bin/bash

After the docker image is executed, you are placed in the snbi.d command
prompt.

A new Forwarding Element is bootstrapped in the same way, except that
the registrar IP address is not required while running the docker image.

sudo docker run --net=host --privileged=true --rm -t -i -e SNBI_UDI=UDI-dev1 snbi/boron:latest /bin/bash

Administering or Managing SNBI

The SNBI daemon provides various show commands to verify the current
state of the daemon. The commands are completed automatically when you
press Tab in your keyboard. There are help strings ”?” to list commands.

snbi.d > show snbi
 device Host deevice
 neighbors SNBI Neighbors
 debugs Debugs enabled
 certificate Certificate information

SNMP Plugin User Guide

Installing Feature

The SNMP Plugin can be installed using a single karaf feature:
odl-snmp-plugin

After starting Karaf:

	Install the feature: feature:install odl-snmp-plugin

	Expose the northbound API: feature:install odl-restconf

Northbound APIs

There are two exposed northbound APIs: snmp-get & snmp-set

SNMP GET

Default URL: http://localhost:8181/restconf/operations/snmp:snmp-get

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	ip-address
	Ipv4 Address
	The IPv4
Address of the
desired
network node
	10.86.3.13
	Yes

	oid
	String
	The Object
Identifier of
the desired
MIB
table/object
	1.3.6.1.2.1.1.
1
	Yes

	get-type
	ENUM (GET,
GET-NEXT,
GET-BULK,
GET-WALK)
	The type of
get request to
send
	GET-BULK
	Yes

	community
	String
	The community
string to use
for the SNMP
request
	private
	No. (Default:
public)

Example.

{
 "input": {
 "ip-address": "10.86.3.13",
 "oid" : "1.3.6.1.2.1.1.1",
 "get-type" : "GET-BULK",
 "community" : "private"
 }
}

POST Output

	Field Name
	Type
	Description

	results
	List of { “value” :
String } pairs
	The results of the SNMP
query

Example.

{
 "snmp:results": [
 {
 "value": "Ethernet0/0/0",
 "oid": "1.3.6.1.2.1.2.2.1.2.1"
 },
 {
 "value": "FastEthernet0/0/0",
 "oid": "1.3.6.1.2.1.2.2.1.2.2"
 },
 {
 "value": "GigabitEthernet0/0/0",
 "oid": "1.3.6.1.2.1.2.2.1.2.3"
 }
]
}

SNMP SET

Default URL: http://localhost:8181/restconf/operations/snmp:snmp-set

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	ip-address
	Ipv4 Address
	The Ipv4
address of the
desired
network node
	10.86.3.13
	Yes

	oid
	String
	The Object
Identifier of
the desired
MIB object
	1.3.6.2.1.1.1
	Yes

	value
	String
	The value to
set on the
network device
	“Hello World”
	Yes

	community
	String
	The community
string to use
for the SNMP
request
	private
	No. (Default:
public)

Example.

{
 "input": {
 "ip-address": "10.86.3.13",
 "oid" : "1.3.6.1.2.1.1.1.0",
 "value" : "Sample description",
 "community" : "private"
 }
}

POST Output

On a successful SNMP-SET, no output is presented, just a HTTP status of
200.

Errors

If any errors happen in the set request, you will be presented with an
error message in the output.

For example, on a failed set request you may see an error like:

{
 "errors": {
 "error": [
 {
 "error-type": "application",
 "error-tag": "operation-failed",
 "error-message": "SnmpSET failed with error status: 17, error index: 1. StatusText: Not writable"
 }
]
 }
}

which corresponds to Error status 17 in the SNMPv2 RFC:
https://tools.ietf.org/html/rfc1905.

SNMP4SDN User Guide

Overview

We propose a southbound plugin that can control the off-the-shelf
commodity Ethernet switches for the purpose of building SDN using
Ethernet switches. For Ethernet switches, forwarding table, VLAN table,
and ACL are where one can install flow configuration on, and this is
done via SNMP and CLI in the proposed plugin. In addition, some settings
required for Ethernet switches in SDN, e.g., disabling STP and flooding,
are proposed.

[image: SNMP4SDN as an OpenDaylight southbound plugin]
SNMP4SDN as an OpenDaylight southbound plugin

Configuration

Just follow the steps:

Prepare the switch list database file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file],
and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN
Plugin can automatically load this file. Note that the first line is
title and should not be removed.

Prepare the vendor-specific configuration file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file],
and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin
can automatically load this file.

Install SNMP4SDN Plugin

If using SNMP4SDN Plugin provided in OpenDaylight release, just do the
following from the Karaf CLI:

feature:install odl-snmp4sdn-all

Troubleshooting

Installation Troubleshooting

Feature installation failure

When trying to install a feature, if the following failure occurs:

Error executing command: Could not start bundle ...
Reason: Missing Constraint: Require-Capability: osgi.ee; filter="(&(osgi.ee=JavaSE)(version=1.7))"

A workaround: exit Karaf, and edit the file
<karaf_directory>/etc/config.properties, remove the line
${services-${karaf.framework}} and the ”, \” in the line above.

Runtime Troubleshooting

Problem starting SNMP Trap Interface

It is possible to get the following exception during controller startup.
(The error would not be printed in Karaf console, one may see it in
<karaf_directory>/data/log/karaf.log)

2014-01-31 15:00:44.688 CET [fileinstall-./plugins] WARN o.o.snmp4sdn.internal.SNMPListener - Problem starting SNMP Trap Interface: {}
 java.net.BindException: Permission denied
 at java.net.PlainDatagramSocketImpl.bind0(Native Method) ~[na:1.7.0_51]
 at java.net.AbstractPlainDatagramSocketImpl.bind(AbstractPlainDatagramSocketImpl.java:95) ~[na:1.7.0_51]
 at java.net.DatagramSocket.bind(DatagramSocket.java:376) ~[na:1.7.0_51]
 at java.net.DatagramSocket.<init>(DatagramSocket.java:231) ~[na:1.7.0_51]
 at java.net.DatagramSocket.<init>(DatagramSocket.java:284) ~[na:1.7.0_51]
 at java.net.DatagramSocket.<init>(DatagramSocket.java:256) ~[na:1.7.0_51]
 at org.snmpj.SNMPTrapReceiverInterface.<init>(SNMPTrapReceiverInterface.java:126) ~[org.snmpj-1.4.3.jar:na]
 at org.snmpj.SNMPTrapReceiverInterface.<init>(SNMPTrapReceiverInterface.java:99) ~[org.snmpj-1.4.3.jar:na]
 at org.opendaylight.snmp4sdn.internal.SNMPListener.<init>(SNMPListener.java:75) ~[bundlefile:na]
 at org.opendaylight.snmp4sdn.core.internal.Controller.start(Controller.java:174) [bundlefile:na]
...

This indicates that the controller is being run as a user which does not
have sufficient OS privileges to bind the SNMPTRAP port (162/UDP)

Switch list file missing

The SNMP4SDN Plugin needs a switch list file, which is necessary for
topology discovery and should be provided by the administrator (so
please prepare one for the first time using SNMP4SDN Plugin, here is the
sample [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file]).
The default file path is /etc/snmp4sdn_swdb.csv. SNMP4SDN Plugin would
automatically load this file and start topology discovery. If this file
is not ready there, the following message like this will pop up:

2016-02-02 04:21:52,476 | INFO| Event Dispatcher | CmethUtil | 466 - org.opendaylight.snmp4sdn - 0.3.0.SNAPSHOT | CmethUtil.readDB() err: {}
java.io.FileNotFoundException: /etc/snmp4sdn_swdb.csv (No such file or directory)
 at java.io.FileInputStream.open0(Native Method)[:1.8.0_65]
 at java.io.FileInputStream.open(FileInputStream.java:195)[:1.8.0_65]
 at java.io.FileInputStream.<init>(FileInputStream.java:138)[:1.8.0_65]
 at java.io.FileInputStream.<init>(FileInputStream.java:93)[:1.8.0_65]
 at java.io.FileReader.<init>(FileReader.java:58)[:1.8.0_65]
 at org.opendaylight.snmp4sdn.internal.util.CmethUtil.readDB(CmethUtil.java:66)
 at org.opendaylight.snmp4sdn.internal.util.CmethUtil.<init>(CmethUtil.java:43)
...

Configuration

Just follow the steps:

1. Prepare the switch list database file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file],
and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN
Plugin can automatically load this file.

Note

The first line is title and should not be removed.

2. Prepare the vendor-specific configuration file

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file],
and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin
can automatically load this file.

3. Install SNMP4SDN Plugin

If using SNMP4SDN Plugin provided in OpenDaylight release, just do the
following:

Launch Karaf in Linux console:

cd <Boron_controller_directory>/bin
(for example, cd distribution-karaf-x.x.x-Boron/bin)

./karaf

Then in Karaf console, execute:

feature:install odl-snmp4sdn-all

4. Load switch list

For initialization, we need to feed SNMP4SDN Plugin the switch list.
Actually SNMP4SDN Plugin automatically try to load the switch list at
/etc/snmp4sdn_swdb.csv if there is. If so, this step could be skipped.
In Karaf console, execute:

snmp4sdn:ReadDB <switch_list_path>
(For example, snmp4sdn:ReadDB /etc/snmp4sdn_swdb.csv)
(in Windows OS, For example, snmp4sdn:ReadDB D://snmp4sdn_swdb.csv)

A sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:switch_list_file],
and we suggest to save it as /etc/snmp4sdn_swdb.csv so that SNMP4SDN
Plugin can automatically load this file.

Note

The first line is title and should not be removed.

5. Show switch list

snmp4sdn:PrintDB

Tutorial

Topology Service

Execute topology discovery

The SNMP4SDN Plugin automatically executes topology discovery on
startup. One may use the following commands to invoke topology discovery
manually. Note that you may need to wait for seconds for itto complete.

Note

Currently, one needs to manually execute snmp4sdn:TopoDiscover
first (just once), then later the automatic topology discovery can
be successful. If switches change (switch added or removed),
snmp4sdn:TopoDiscover is also required. A future version will fix
it to eliminate these requirements.

snmp4sdn:TopoDiscover

If one like to discover all inventory (i.e. switches and their ports)
but not edges, just execute “TopoDiscoverSwitches”:

snmp4sdn:TopoDiscoverSwitches

If one like to only discover all edges but not inventory, just execute
“TopoDiscoverEdges”:

snmp4sdn:TopoDiscoverEdges

You can also trigger topology discovery via the REST API by using
curl from the Linux console (or any other REST client):

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:rediscover

You can change the periodic topology discovery interval via a REST API:

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:set-discovery-interval -d "{"input":{"interval-second":'<interval_time>'}}"
For example, set the interval as 15 seconds:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:set-discovery-interval -d "{"input":{"interval-second":'15'}}"

Show the topology

SNMP4SDN Plugin supports to show topology via REST API:

	Get topology

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:get-edge-list

	Get switch list

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:get-node-list

	Get switches’ ports list

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/topology:get-node-connector-list

	The three commands above are just for user to get the latest topology
discovery result, it does not trigger SNMP4SDN Plugin to do topology
discovery.

	To trigger SNMP4SDN Plugin to do topology discover, as described in
aforementioned Execute topology discovery.

Flow configuration

FDB configuration

SNMP4SDN supports to add entry on FDB table via REST API:

	Get FDB table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:get-fdb-table -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:get-fdb-table -d "{input:{"node-id":158969157063648}}"

	Get FDB table entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:get-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:get-fdb-entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr":158969157063648}}"

	Set FDB table entry

(Notice invalid value: (1) non unicast mac (2) port not in the VLAN)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:set-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-address-in-number>, "port":<port-in-number>, "type":'<type>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:set-fdb-entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr":187649984473770, "port":23, "type":'MGMT'}}"

	Delete FDB table entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/fdb:del-fdb-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "dest-mac-addr":<destination-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/fdb:del-fdb-entry -d "{input:{"node-id":158969157063648, "vlan-id":1, "dest-mac-addr":187649984473770}}"

VLAN configuration

SNMP4SDN supports to add entry on VLAN table via REST API:

	Get VLAN table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:get-vlan-table -d "{input:{node-id:<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:get-vlan-table -d "{input:{node-id:158969157063648}}"

	Add VLAN

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:add-vlan -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "vlan-name":'<vlan-name>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:add-vlan -d "{"input":{"node-id":158969157063648, "vlan-id":123, "vlan-name":'v123'}}"

	Delete VLAN

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:delete-vlan -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:delete-vlan -d "{"input":{"node-id":158969157063648, "vlan-id":123}}"

	Add VLAN and set ports

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:add-vlan-and-set-ports -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "vlan-name":'<vlan-name>', "tagged-port-list":'<tagged-ports-separated-by-comma>', "untagged-port-list":'<untagged-ports-separated-by-comma>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:add-vlan-and-set-ports -d "{"input":{"node-id":158969157063648, "vlan-id":123, "vlan-name":'v123', "tagged-port-list":'1,2,3', "untagged-port-list":'4,5,6'}}"

	Set VLAN ports

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/vlan:set-vlan-ports -d "{"input":{"node-id":<switch-mac-address-in-number>, "vlan-id":<vlan-id-in-number>, "tagged-port-list":'<tagged-ports-separated-by-comma>', "untagged-port-list":'<untagged-ports-separated-by-comma>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vlan:set-vlan-ports -d "{"input":{"node-id":"158969157063648", "vlan-id":"123", "tagged-port-list":'4,5', "untagged-port-list":'2,3'}}"

ACL configuration

SNMP4SDN supports to add flow on ACL table via REST API. However, it is
so far only implemented for the D-Link DGS-3120 switch.

ACL configuration via CLI is vendor-specific, and SNMP4SDN will support
configuration with vendor-specific CLI in future release.

To do ACL configuration using the REST APIs, use commands like the
following:

	Clear ACL table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:clear-acl-table -d "{"input":{"nodeId":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:clear-acl-table -d "{"input":{"nodeId":158969157063648}}"

	Create ACL profile (IP layer)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"acl-layer":'IP',"vlan-mask":<vlan_mask_in_number>,"src-ip-mask":'<src_ip_mask>',"dst-ip-mask":"<destination_ip_mask>"}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":'profile_1',"acl-layer":'IP',"vlan-mask":1,"src-ip-mask":'255.255.0.0',"dst-ip-mask":'255.255.255.255'}}"

	Create ACL profile (MAC layer)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"acl-layer":'ETHERNET',"vlan-mask":<vlan_mask_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:create-acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":2,"profile-name":'profile_2',"acl-layer":'ETHERNET',"vlan-mask":4095}}"

	Delete ACL profile

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":158969157063648,"profile-id":1}}"

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-name":"<profile_name>"}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-profile -d "{input:{"nodeId":158969157063648,"profile-name":'profile_2'}}"

	Set ACL rule

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:set-acl-rule -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"rule-id":<rule_id_in_number>,"port-list":[<port_number>,<port_number>,...],"acl-layer":'<acl_layer>',"vlan-id":<vlan_id_in_number>,"src-ip":"<src_ip_address>","dst-ip":'<dst_ip_address>',"acl-action":'<acl_action>'}}"
(<acl_layer>: IP or ETHERNET)
(<acl_action>: PERMIT as permit, DENY as deny)

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:set-acl-rule -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":'profile_1',"rule-id":1,"port-list":[1,2,3],"acl-layer":'IP',"vlan-id":2,"src-ip":'1.1.1.1',"dst-ip":'2.2.2.2',"acl-action":'PERMIT'}}"

	Delete ACL rule

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/acl:del-acl-rule -d "{input:{"nodeId":<switch-mac-address-in-number>,"profile-id":<profile_id_in_number>,"profile-name":'<profile_name>',"rule-id":<rule_id_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/acl:del-acl-rule -d "{input:{"nodeId":158969157063648,"profile-id":1,"profile-name":'profile_1',"rule-id":1}}"

Special configuration

SNMP4SDN supports setting the following special configurations via REST
API:

	Set STP port state

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:set-stp-port-state -d "{input:{"node-id":<switch-mac-address-in-number>, "port":<port_number>, enable:<true_or_false>}}"
(true: enable, false: disable)

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:set-stp-port-state -d "{input:{"node-id":158969157063648, "port":2, enable:false}}"

	Get STP port state

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-stp-port-state -d "{input:{"node-id":<switch-mac-address-in-number>, "port":<port_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-stp-port-state -d "{input:{"node-id":158969157063648, "port":2}}"

	Get STP port root

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-stp-port-root -d "{input:{"node-id":<switch-mac-address-in-number>, "port":<port_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-stp-port-root -d "{input:{"node-id":158969157063648, "port":2}}"

	Enable STP

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:enable-stp -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:enable-stp -d "{input:{"node-id":158969157063648}}"

	Disable STP

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:disable-stp -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:disable-stp -d "{input:{"node-id":158969157063648}}"

	Get ARP table

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-arp-table -d "{input:{"node-id":<switch-mac-address-in-number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-arp-table -d "{input:{"node-id":158969157063648}}"

	Set ARP entry

(Notice to give IP address with subnet prefix)

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:set-arp-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "ip-address":'<ip_address>', "mac-address":<mac_address_in_number>}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:set-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9', "mac-address":1}}"

	Get ARP entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:get-arp-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "ip-address":'<ip_address>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:get-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9'}}"

	Delete ARP entry

curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://<controller_ip_address>:8181/restconf/operations/config:delete-arp-entry -d "{input:{"node-id":<switch-mac-address-in-number>, "ip-address":'<ip_address>'}}"

For example:
curl --user "admin":"admin" -H "Accept: application/json" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/config:delete-arp-entry -d "{input:{"node-id":158969157063648, "ip-address":'10.217.9.9'}}"

Using Postman to invoke REST API

Besides using the curl tool to invoke REST API, like the examples
aforementioned, one can also use GUI tool like Postman for better data
display.

	Install Postman: Install Postman in the Chrome
browser [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

	In the chrome browser bar enter

chrome://apps/

	Click on Postman.

Example: Get VLAN table using Postman

As the screenshot shown below, one needs to fill in required fields.

URL:
http://<controller_ip_address>:8181/restconf/operations/vlan:get-vlan-table

Accept header:
application/json

Content-type:
application/json

Body:
{input:{"node-id":<node_id>}}
for example:
{input:{"node-id":158969157063648}}

[image: Example: Get VLAN table using Postman]
Example: Get VLAN table using Postman

Multi-vendor support

So far the supported vendor-specific configurations:

	Add VLAN and set ports

	(More functions are TBD)

The SNMP4SDN Plugin would examine whether the configuration is described
in the vendor-specific configuration file. If yes, the configuration
description would be adopted, otherwise just use the default
configuration. For example, adding VLAN and setting the ports is
supported via SNMP standard MIB. However we found some special cases,
for example, certain Accton switch requires to add VLAN first and then
allows to set the ports. So one may describe this in the vendor-specific
configuration file.

A vendor-specific configuration file sample is
here [https://wiki.opendaylight.org/view/SNMP4SDN:snmp4sdn_VendorSpecificSwitchConfig_file],
and we suggest to save it as
/etc/snmp4sdn_VendorSpecificSwitchConfig.xml so that SNMP4SDN Plugin
can automatically load it.

Help

	SNMP4SDN Wiki [https://wiki.opendaylight.org/view/SNMP4SDN:Main]

	SNMP4SDN Mailing Lists:
(user [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-users],
developer [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-dev])

	Latest
troubleshooting [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Troubleshooting]
in Wiki

SXP User Guide

Overview

SXP (Source-Group Tag eXchange Protocol) project is an effort to enhance
OpenDaylight platform with IP-SGT (IP Address to Source Group Tag)
bindings that can be learned from connected SXP-aware network nodes. The
current implementation supports SXP protocol version 4 according to the
Smith, Kandula - SXP IETF
draft [https://tools.ietf.org/html/draft-smith-kandula-sxp-04] and
grouping of peers and creating filters based on ACL/Prefix-list syntax
for filtering outbound and inbound IP-SGT bindings. All protocol legacy
versions 1-3 are supported as well. Additionally, version 4 adds
bidirectional connection type as an extension of a unidirectional one.

SXP Architecture

The SXP Server manages all connected clients in separate threads and a
common SXP protocol agreement is used between connected peers. Each SXP
network peer is modelled with its pertaining class, e.g., SXP Server
represents the SXP Speaker, SXP Listener the Client. The server program
creates the ServerSocket object on a specified port and waits until a
client starts up and requests connect on the IP address and port of the
server. The client program opens a Socket that is connected to the
server running on the specified host IP address and port.

The SXP Listener maintains connection with its speaker peer. From an
opened channel pipeline, all incoming SXP messages are processed by
various handlers. Message must be decoded, parsed and validated.

The SXP Speaker is a counterpart to the SXP Listener. It maintains a
connection with its listener peer and sends composed messages.

The SXP Binding Handler extracts the IP-SGT binding from a message and
pulls it into the SXP-Database. If an error is detected during the
IP-SGT extraction, an appropriate error code and sub-code is selected
and an error message is sent back to the connected peer. All transitive
messages are routed directly to the output queue of SXP Binding
Dispatcher.

The SXP Binding Dispatcher represents a selector that will decides how
many data from the SXP-database will be sent and when. It is responsible
for message content composition based on maximum message length.

The SXP Binding Filters handles filtering of outgoing and incoming
IP-SGT bindings according to BGP filtering using ACL and Prefix List
syntax for specifying filter or based on Peer-sequence length.

The SXP Domains feature provides isolation of SXP peers and bindings
learned between them, also exchange of Bindings is possible across
SXP-Domains by ACL, Prefix List or Peer-Sequence filters

Configuring SXP

The OpenDaylight Karaf distribution comes pre-configured with baseline
SXP configuration. Configuration of SXP Nodes is also possible via
NETCONF.

	22-sxp-controller-one-node.xml (defines the basic parameters)

Administering or Managing SXP

By RPC (response is XML document containing requested data or operation
status):

	Get Connections POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-connections

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <domain-name>global</domain-name>
 <requested-node>0.0.0.100</requested-node>
</input>

	Add Connection POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-connection

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <connections>
 <connection>
 <peer-address>172.20.161.50</peer-address>
 <tcp-port>64999</tcp-port>
 <!-- Password setup: default | none leave empty -->
 <password>default</password>
 <!-- Mode: speaker/listener/both -->
 <mode>speaker</mode>
 <version>version4</version>
 <description>Connection to ASR1K</description>
 <!-- Timers setup: 0 to disable specific timer usability, the default value will be used -->
 <connection-timers>
 <!-- Speaker -->
 <hold-time-min-acceptable>45</hold-time-min-acceptable>
 <keep-alive-time>30</keep-alive-time>
 </connection-timers>
 </connection>
 <connection>
 <peer-address>172.20.161.178</peer-address>
 <tcp-port>64999</tcp-port>
 <!-- Password setup: default | none leave empty-->
 <password>default</password>
 <!-- Mode: speaker/listener/both -->
 <mode>listener</mode>
 <version>version4</version>
 <description>Connection to ISR</description>
 <!-- Timers setup: 0 to disable specific timer usability, the default value will be used -->
 <connection-timers>
 <!-- Listener -->
 <reconciliation-time>120</reconciliation-time>
 <hold-time>90</hold-time>
 <hold-time-min>90</hold-time-min>
 <hold-time-max>180</hold-time-max>
 </connection-timers>
 </connection>
 </connections>
</input>

	Delete Connection POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-connection

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <peer-address>172.20.161.50</peer-address>
</input>

	Add Binding Entry POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <ip-prefix>192.168.2.1/32</ip-prefix>
 <sgt>20</sgt >
</input>

	Update Binding Entry POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <original-binding>
 <ip-prefix>192.168.2.1/32</ip-prefix>
 <sgt>20</sgt>
 </original-binding>
 <new-binding>
 <ip-prefix>192.168.3.1/32</ip-prefix>
 <sgt>30</sgt>
 </new-binding>
</input>

	Delete Binding Entry POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-entry

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <ip-prefix>192.168.3.1/32</ip-prefix>
 <sgt>30</sgt >
</input>

	Get Node Bindings

This RPC gets particular device bindings. An SXP-aware node is
identified with a unique Node-ID. If a user requests bindings for a
Speaker 20.0.0.2, the RPC will search for an appropriate path, which
contains 20.0.0.2 Node-ID, within locally learnt SXP data in the SXP
database and replies with associated bindings. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-node-bindings

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>20.0.0.2</requested-node>
 <bindings-range>all</bindings-range>
 <domain-name>global</domain-name>
</input>

	Get Binding SGTs POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-binding-sgts

<input xmlns:xsi="urn:opendaylight:sxp:controller">
 <requested-node>0.0.0.100</requested-node>
 <domain-name>global</domain-name>
 <ip-prefix>192.168.12.2/32</ip-prefix>
</input>

	Add PeerGroup with or without filters to node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <sxp-peer-group>
 <name>TEST</name>
 <sxp-peers>
 </sxp-peers>
 <sxp-filter>
 <filter-type>outbound</filter-type>
 <acl-entry>
 <entry-type>deny</entry-type>
 <entry-seq>1</entry-seq>
 <sgt-start>1</sgt-start>
 <sgt-end>100</sgt-end>
 </acl-entry>
 <acl-entry>
 <entry-type>permit</entry-type>
 <entry-seq>45</entry-seq>
 <matches>1</matches>
 <matches>3</matches>
 <matches>5</matches>
 </acl-entry>
 </sxp-filter>
 </sxp-peer-group>
</input>

	Delete PeerGroup with peer-group-name from node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
</input>

	Get PeerGroup with peer-group-name from node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:get-peer-group

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
</input>

	Add Filter to peer group on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-filter

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
 <sxp-filter>
 <filter-type>outbound</filter-type>
 <acl-entry>
 <entry-type>deny</entry-type>
 <entry-seq>1</entry-seq>
 <sgt-start>1</sgt-start>
 <sgt-end>100</sgt-end>
 </acl-entry>
 <acl-entry>
 <entry-type>permit</entry-type>
 <entry-seq>45</entry-seq>
 <matches>1</matches>
 <matches>3</matches>
 <matches>5</matches>
 </acl-entry>
 </sxp-filter>
</input>

	Delete Filter from peer group on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-filter

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
 <filter-type>outbound</filter-type>
</input>

	Update Filter of the same type in peer group on node request-node.
POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:update-filter

<input xmlns="urn:opendaylight:sxp:controller">
 <requested-node>127.0.0.1</requested-node>
 <peer-group-name>TEST</peer-group-name>
 <sxp-filter>
 <filter-type>outbound</filter-type>
 <acl-entry>
 <entry-type>deny</entry-type>
 <entry-seq>1</entry-seq>
 <sgt-start>1</sgt-start>
 <sgt-end>100</sgt-end>
 </acl-entry>
 <acl-entry>
 <entry-type>permit</entry-type>
 <entry-seq>45</entry-seq>
 <matches>1</matches>
 <matches>3</matches>
 <matches>5</matches>
 </acl-entry>
 </sxp-filter>
</input>

	Add new SXP aware Node POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-node

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
 <source-ip>0.0.0.0</source-ip>
 <timers>
 <retry-open-time>5</retry-open-time>
 <hold-time-min-acceptable>120</hold-time-min-acceptable>
 <delete-hold-down-time>120</delete-hold-down-time>
 <hold-time-min>90</hold-time-min>
 <reconciliation-time>120</reconciliation-time>
 <hold-time>90</hold-time>
 <hold-time-max>180</hold-time-max>
 <keep-alive-time>30</keep-alive-time>
 </timers>
 <mapping-expanded>150</mapping-expanded>
 <security>
 <password>password</password>
 </security>
 <tcp-port>64999</tcp-port>
 <version>version4</version>
 <description>ODL SXP Controller</description>
 <master-database></master-database>
</input>

	Delete SXP aware node POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-node

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
</input>

	Add SXP Domain on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:add-domain

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
 <domain-name>global</domain-name>
</input>

	Delete SXP Domain on node request-node. POST
http://127.0.0.1:8181/restconf/operations/sxp-controller:delete-domain

<input xmlns="urn:opendaylight:sxp:controller">
 <node-id>1.1.1.1</node-id>
 <domain-name>global</domain-name>
</input>

Use cases for SXP

Cisco has a wide installed base of network devices supporting SXP. By
including SXP in OpenDaylight, the binding of policy groups to IP
addresses can be made available for possible further processing to a
wide range of devices, and applications running on OpenDaylight. The
range of applications that would be enabled is extensive. Here are just
a few of them:

OpenDaylight based applications can take advantage of the IP-SGT binding
information. For example, access control can be defined by an operator
in terms of policy groups, while OpenDaylight can configure access
control lists on network elements using IP addresses, e.g., existing
technology.

Interoperability between different vendors. Vendors have different
policy systems. Knowing the IP-SGT binding for Cisco makes it possible
to maintain policy groups between Cisco and other vendors.

OpenDaylight can aggregate the binding information from many devices and
communicate it to a network element. For example, a firewall can use the
IP-SGT binding information to know how to handle IPs based on the
group-based ACLs it has set. But to do this with SXP alone, the firewall
has to maintain a large number of network connections to get the binding
information. This incurs heavy overhead costs to maintain all of the SXP
peering and protocol information. OpenDaylight can aggregate the
IP-group information so that the firewall need only connect to
OpenDaylight. By moving the information flow outside of the network
elements to a centralized position, we reduce the overhead of the CPU
consumption on the enforcement element. This is a huge savings - it
allows the enforcement point to only have to make one connection rather
than thousands, so it can concentrate on its primary job of forwarding
and enforcing.

OpenDaylight can relay the binding information from one network element
to others. Changes in group membership can be propagated more readily
through a centralized model. For example, in a security application a
particular host (e.g., user or IP Address) may be found to be acting
suspiciously or violating established security policies. The defined
response is to put the host into a different source group for
remediation actions such as a lower quality of service, restricted
access to critical servers, or special routing conditions to ensure
deeper security enforcement (e.g., redirecting the host’s traffic
through an IPS with very restrictive policies). Updated group membership
for this host needs to be communicated to multiple network elements as
soon as possible; a very efficient and effective method of propagation
can be performed using OpenDaylight as a centralized point for relaying
the information.

OpenDaylight can create filters for exporting and receiving IP-SGT
bindings used on specific peer groups, thus can provide more complex
maintaining of policy groups.

Although the IP-SGT binding is only one specific piece of information,
and although SXP is implemented widely in a single vendor’s equipment,
bringing the ability of OpenDaylight to process and distribute the
bindings, is a very specific immediate useful implementation of policy
groups. It would go a long way to develop both the usefulness of
OpenDaylight and of policy groups.

TSDR User Guide

This document describes how to use HSQLDB, HBase, and Cassandra data
stores to capture time series data using Time Series Data Repository
(TSDR) features in OpenDaylight. This document contains configuration,
administration, management, usage, and troubleshooting sections for the
features.

Overview

The Time Series Data Repository (TSDR) project in OpenDaylight (ODL)
creates a framework for collecting, storing, querying, and maintaining
time series data. TSDR provides the framework for plugging in proper
data collectors to collect various time series data and store the data
into TSDR Data Stores. With a common data model and generic TSDR data
persistence APIs, the user can choose various data stores to be plugged
into the TSDR persistence framework. Currently, three types of data
stores are supported: HSQLDB relational database, HBase NoSQL database,
and Cassandra NoSQL database.

With the capabilities of data collection, storage, query, aggregation,
and purging provided by TSDR, network administrators can leverage
various data driven appliations built on top of TSDR for security risk
detection, performance analysis, operational configuration optimization,
traffic engineering, and network analytics with automated intelligence.

TSDR Architecture

TSDR has the following major components:

	Data Collection Service

	Data Storage Service

	TSDR Persistence Layer with data stores as plugins

	TSDR Data Stores

	Data Query Service

	Grafana integration for time series data visualization

	Data Aggregation Service

	Data Purging Service

The Data Collection Service handles the collection of time series data
into TSDR and hands it over to the Data Storage Service. The Data
Storage Service stores the data into TSDR through the TSDR Persistence
Layer. The TSDR Persistence Layer provides generic Service APIs allowing
various data stores to be plugged in. The Data Aggregation Service
aggregates time series fine-grained raw data into course-grained roll-up
data to control the size of the data. The Data Purging Service
periodically purges both fine-grained raw data and course-granined
aggregated data according to user-defined schedules.

We have implemented The Data Collection Service, Data Storage Service,
TSDR Persistence Layer, TSDR HSQLDB Data Store, TSDR HBase Data Store,
and TSDR Cassandra Datastore. Among these services and components, time
series data is communicated using a common TSDR data model, which is
designed and implemented for the abstraction of time series data
commonalities. With these functions, TSDR is able to collect the data
from the data sources and store them into one of the TSDR data stores:
HSQLDB Data Store, HBase Data Store or Cassandra Data Store. Besides a
simple query command from Karaf console to retrieve data from the TSDR
data stores, we also provided a Data Query Service for the user to use
REST API to query the data from the data stores. Moreover, the user can
use Grafana, which is a time series visualization tool to view the data
stored in TSDR in various charting formats.

Configuring TSDR Data Stores

To Configure HSQLDB Data Store

The HSQLDB based storage files get stored automatically in <karaf
install folder>/tsdr/ directory. If you want to change the default
storage location, the configuration file to change can be found in
<karaf install folder>/etc directory. The filename is
org.ops4j.datasource-metric.cfg. Change the last portion of the
url=jdbc:hsqldb:./tsdr/metric to point to different directory.

To Configure HBase Data Store

After installing HBase Server on the same machine as OpenDaylight, if
the user accepts the default configuration of the HBase Data Store, the
user can directly proceed with the installation of HBase Data Store from
Karaf console.

Optionally, the user can configure TSDR HBase Data Store following HBase
Data Store Configuration Procedure.

	HBase Data Store Configuration Steps
	Open the file etc/tsdr-persistence-hbase.peroperties under karaf
distribution directory.

	Edit the following parameters:
	HBase server name

	HBase server port

	HBase client connection pool size

	HBase client write buffer size

After the configuration of HBase Data Store is complete, proceed with
the installation of HBase Data Store from Karaf console.

	HBase Data Store Installation Steps
	Start Karaf Console

	Run the following commands from Karaf Console: feature:install
odl-tsdr-hbase

To Configure Cassandra Data Store

Currently, there’s no configuration needed for Cassandra Data Store. The
user can use Cassandra data store directly after installing the feature
from Karaf console.

Additionally separate commands have been implemented to install various
data collectors.

Administering or Managing TSDR Data Stores

To Administer HSQLDB Data Store

Once the TSDR default datastore feature (odl-tsdr-hsqldb-all) is
enabled, the TSDR captured OpenFlow statistics metrics can be accessed
from Karaf Console by executing the command

tsdr:list <metric-category> <starttimestamp> <endtimestamp>

wherein

	<metric-category> = any one of the following categories
FlowGroupStats, FlowMeterStats, FlowStats, FlowTableStats, PortStats,
QueueStats

	<starttimestamp> = to filter the list of metrics starting this
timestamp

	<endtimestamp> = to filter the list of metrics ending this timestamp

	<starttimestamp> and <endtimestamp> are optional.

	Maximum 1000 records will be displayed.

To Administer HBase Data Store

	Using Karaf Command to retrieve data from HBase Data Store

The user first need to install hbase data store from karaf console:

feature:install odl-tsdr-hbase

The user can retrieve the data from HBase data store using the following
commands from Karaf console:

tsdr:list
tsdr:list <CategoryName> <StartTime> <EndTime>

Typing tab will get the context prompt of the arguments when typeing the
command in Karaf console.

To Administer Cassandra Data Store

The user first needs to install Cassandra data store from Karaf console:

feature:install odl-tsdr-cassandra

Then the user can retrieve the data from Cassandra data store using the
following commands from Karaf console:

tsdr:list
tsdr:list <CategoryName> <StartTime> <EndTime>

Typing tab will get the context prompt of the arguments when typeing the
command in Karaf console.

Installing TSDR Data Collectors

When the user uses HSQLDB data store and installed “odl-tsdr-hsqldb-all”
feature from Karaf console, besides the HSQLDB data store, OpenFlow data
collector is also installed with this command. However, if the user
needs to use other collectors, such as NetFlow Collector, Syslog
Collector, SNMP Collector, and Controller Metrics Collector, the user
needs to install them with separate commands. If the user uses HBase or
Cassandra data store, no collectors will be installed when the data
store is installed. Instead, the user needs to install each collector
separately using feature install command from Karaf console.

The following is the list of supported TSDR data collectors with the
associated feature install commands:

	OpenFlow Data Collector

feature:install odl-tsdr-openflow-statistics-collector

	SNMP Data Collector

feature:install odl-tsdr-snmp-data-collector

	NetFlow Data Collector

feature:install odl-tsdr-netflow-statistics-collector

	sFlow Data Collector feature:install
odl-tsdr-sflow-statistics-colletor

	Syslog Data Collector

feature:install odl-tsdr-syslog-collector

	Controller Metrics Collector

feature:install odl-tsdr-controller-metrics-collector

In order to use controller metrics collector, the user needs to install
Sigar library.

The following is the instructions for installing Sigar library on
Ubuntu:

	Install back end library by “sudo apt-get install
libhyperic-sigar-java”

	Execute “export
LD_LIBRARY_PATH=/usr/lib/jni/:/usr/lib:/usr/local/lib” to set the
path of the JNI (you can add this to the ”.bashrc” in your home
directory)

	Download the file “sigar-1.6.4.jar”. It might be also in your ”.m2”
directory under “~/.m2/resources/org/fusesource/sigar/1.6.4”

	Create the directory “org/fusesource/sigar/1.6.4” under the “system”
directory in your controller home directory and place the
“sigar-1.6.4.jar” there

Configuring TSDR Data Collectors

	SNMP Data Collector Device Credential Configuration

After installing SNMP Data Collector, a configuration file under etc/
directory of ODL distribution is generated: etc/tsdr.snmp.cfg is
created.

The following is a sample tsdr.snmp.cfg file:

credentials=[192.168.0.2,public],[192.168.0.3,public]

The above credentials indicate that TSDR SNMP Collector is going to
connect to two devices. The IPAddress and Read community string of these
two devices are (192.168.0.2, public), and (192.168.0.3) respectively.

The user can make changes to this configuration file any time during
runtime. The configuration will be picked up by TSDR in the next cycle
of data collection.

Polling interval configuration for SNMP Collector and OpenFlow Stats Collector

The default polling interval of SNMP Collector and OpenFlow Stats
Collector is 30 seconds and 15 seconds respectively. The user can change
the polling interval through restconf APIs at any time. The new polling
interval will be picked up by TSDR in the next collection cycle.

	Retrieve Polling Interval API for SNMP Collector

	URL:
http://localhost:8181/restconf/config/tsdr-snmp-data-collector:TSDRSnmpDataCollectorConfig

	Verb: GET

	Update Polling Interval API for SNMP Collector

	URL:
http://localhost:8181/restconf/operations/tsdr-snmp-data-collector:setPollingInterval

	Verb: POST

	Content Type: application/json

	Input Payload:

{
 "input": {
 "interval": "15000"
 }
}

	Retrieve Polling Interval API for OpenFlowStats Collector

	URL:
http://localhost:8181/restconf/config/tsdr-openflow-statistics-collector:TSDROSCConfig

	Verb: GET

	Update Polling Interval API for OpenFlowStats Collector

	URL:
http://localhost:8181/restconf/operations/tsdr-openflow-statistics-collector:setPollingInterval

	Verb: POST

	Content Type: application/json

	Input Payload:

{
 "input": {
 "interval": "15000"
 }
}

Querying TSDR from REST APIs

TSDR provides two REST APIs for querying data stored in TSDR data
stores.

	Query of TSDR Metrics

	URL: http://localhost:8181/tsdr/metrics/query

	Verb: GET

	Parameters:

	tsdrkey=[NID=][DC=][MN=][RK=]

The TSDRKey format indicates the NodeID(NID), DataCategory(DC), MetricName(MN), and RecordKey(RK) of the monitored objects.
For example, the following is a valid tsdrkey:
[NID=openflow:1][DC=FLOWSTATS][MN=PacketCount][RK=Node:openflow:1,Table:0,Flow:3]
The following is also a valid tsdrkey:
tsdrkey=[NID=][DC=FLOWSTATS][MN=][RK=]
In the case when the sections in the tsdrkey is empty, the query will return all the records in the TSDR data store that matches the filled tsdrkey. In the above example, the query will return all the data in FLOWSTATS data category.
The query will return only the first 1000 records that match the query criteria.

	from=<time_in_seconds>

	until=<time_in_seconds>

The following is an example curl command for querying metric data from
TSDR data store:

curl -G -v -H “Accept: application/json” -H “Content-Type:
application/json” “http://localhost:8181/tsdr/metrics/query”
–data-urlencode “tsdrkey=[NID=][DC=FLOWSTATS][MN=][RK=]”
–data-urlencode “from=0” –data-urlencode “until=240000000000”|more

	Query of TSDR Log type of data

	URL:http://localhost:8181/tsdr/logs/query

	Verb: GET

	Parameters:

	tsdrkey=tsdrkey=[NID=][DC=][RK=]

The TSDRKey format indicates the NodeID(NID), DataCategory(DC), and RecordKey(RK) of the monitored objects.
For example, the following is a valid tsdrkey:
[NID=openflow:1][DC=NETFLOW][RK]
The query will return only the first 1000 records that match the query criteria.

	from=<time_in_seconds>

	until=<time_in_seconds>

The following is an example curl command for querying log type of data
from TSDR data store:

curl -G -v -H “Accept: application/json” -H “Content-Type:
application/json” “http://localhost:8181/tsdr/logs/query”
–data-urlencode “tsdrkey=[NID=][DC=NETFLOW][RK=]” –data-urlencode
“from=0” –data-urlencode “until=240000000000”|more

Grafana integration with TSDR

TSDR provides northbound integration with Grafana time series data
visualization tool. All the metric type of data stored in TSDR data
store can be visualized using Grafana.

For the detailed instruction about how to install and configure Grafana
to work with TSDR, please refer to the following link:

https://wiki.opendaylight.org/view/Grafana_Integration_with_TSDR_Step-by-Step

Purging Service configuration

After the data stores are installed from Karaf console, the purging
service will be installed as well. A configuration file called
tsdr.data.purge.cfg will be generated under etc/ directory of ODL
distribution.

The following is the sample default content of the tsdr.data.purge.cfg
file:

host=127.0.0.1 data_purge_enabled=true data_purge_time=23:59:59
data_purge_interval_in_minutes=1440 retention_time_in_hours=168

The host indicates the IPAddress of the data store. In the case when the
data store is together with ODL controller, 127.0.0.1 should be the
right value for the host IP. The other attributes are self-explained.
The user can change those attributes at any time. The configuration
change will be picked up right away by TSDR Purging service at runtime.

How to use TSDR to collect, store, and view OpenFlow Interface Statistics

Overview

This tutorial describes an example of using TSDR to collect, store, and
view one type of time series data in OpenDaylight environment.

Prerequisites

You would need to have the following as prerequisits:

	One or multiple OpenFlow enabled switches. Alternatively, you can use
mininet to simulate such a switch.

	Successfully installed OpenDaylight Controller.

	Successfully installed HBase Data Store following TSDR HBase Data
Store Installation Guide.

	Connect the OpenFlow enabled switch(es) to OpenDaylight Controller.

Target Environment

HBase data store is only supported in Linux operation system.

Instructions

	Start OpenDaylight.

	Connect OpenFlow enabled switch(es) to the controller.
	If using mininet, run the following commands from mininet command
line:
	mn –topo single,3 –controller
remote,ip=172.17.252.210,port=6653 –switch
ovsk,protocols=OpenFlow13

	Install tsdr hbase feature from Karaf:
	feature:install odl-tsdr-hbase

	Install OpenFlow Statistics Collector from Karaf:
	feature:install odl-tsdr-openflow-statistics-collector

	run the following command from Karaf console:
	tsdr:list PORTSTATS

You should be able to see the interface statistics of the switch(es)
from the HBase Data Store. If there are too many rows, you can use
“tsdr:list InterfaceStats|more” to view it page by page.

By tabbing after “tsdr:list”, you will see all the supported data
categories. For example, “tsdr:list FlowStats” will output the Flow
statistics data collected from the switch(es).

Troubleshooting

Karaf logs

All TSDR features and components write logging information including
information messages, warnings, errors and debug messages into
karaf.log.

HBase and Cassandra logs

For HBase and Cassandra data stores, the database level logs are written
into HBase log and Cassandra logs.

	HBase log
	HBase log is under <HBase-installation-directory>/logs/.

	Cassandra log
	Cassandra log is under {cassandra.logdir}/system.log. The default
{cassandra.logdir} is /var/log/cassandra/.

Security

TSDR gets the data from a variety of sources, which can be secured in
different ways.

	OpenFlow Security
	The OpenFlow data can be configured with Transport Layer Security
(TLS) since the OpenFlow Plugin that TSDR depends on provides this
security support.

	SNMP Security
	The SNMP version3 has security support. However, since ODL SNMP
Plugin that TSDR depends on does not support version 3, we (TSDR)
will not have security support at this moment.

	NetFlow Security
	NetFlow, which cannot be configured with security so we recommend
making sure it flows only over a secured management network.

	Syslog Security
	Syslog, which cannot be configured with security so we recommend
making sure it flows only over a secured management network.

Support multiple data stores simultaneously at runtime

TSDR supports running multiple data stores simultaneously at runtim. For
example, it is possible to configure TSDR to push log type of data into
Cassandra data store, while pushing metrics type of data into HBase.

When you install one TSDR data store from karaf console, such as using
feature:install odl-tsdr-hsqldb, a properties file will be generated
under <Karaf-distribution-directory>/etc/. For example, when you install
hsqldb, a file called tsdr-persistence-hsqldb.properties is generated
under that directory.

By default, all the types of data are supported in the data store. For
example, the default content of tsdr-persistence-hsqldb.properties is as
follows:

metric-persistency=true
log-persistency=true
binary-persistency=true

When the user would like to use different data stores to support
different types of data, he/she could enable or disable a particular
type of data persistence in the data stores by configuring the
properties file accordingly.

For example, if the user would like to store the log type of data in
HBase, and store the metric and binary type of data in Cassandra, he/she
needs to install both hbase and cassandra data stores from Karaf
console. Then the user needs to modify the properties file under
<Karaf-distribution-directory>/etc as follows:

	tsdr-persistence-hbase.properties

metric-persistency=false
log-persistency=true
binary-persistency=true

	tsdr-persistence-cassandra.properties

metric-psersistency=true
log-persistency=false
binary-persistency=false

TTP CLI Tools User Guide

Overview

Table Type Patterns are a specification developed by the Open
Networking Foundation [https://www.opennetworking.org/] to enable the
description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it
enables the to describe what features they do (and thus also what
features they do not) support. More details can be found in the full
specification listed on the OpenFlow specifications
page [https://www.opennetworking.org/sdn-resources/onf-specifications/openflow].

TTP CLI Tools Architecture

The TTP CLI Tools use the TTP Model and the YANG Tools/RESTCONF codecs
to translate between the Data Transfer Objects (DTOs) and JSON/XML.

User Network Interface Manager Plug-in (Unimgr)

Overview

The User Network Interface Manager (Unimgr) is an experimental/proof of concept
(PoC) project formed to initiate the development of data models and APIs
facilitating the use by software applications and/or service orchestrators of
OpenDaylight to configure and provision connectivity services, in particular
Carrier Ethernet services as defined by Metro Ethernet Forum (MEF), in physical
or virtual network elements.

MEF as defined the LSO Reference Architecture for the management and control of
domains and entities that enable cooperative LSO capabilities across one or
more service provider networks. The architecture also identifies the Management
Interface Reference Points (LSO Reference Points), the logical points of
interaction between specific functional management components. These LSO
Reference Points are further defined by interface profiles and instantiated by
APIs.

The LSO High Level Management Reference Architecture is shown below. Note that
this is a functional architecture that does not describe how the management
components are implemented (e.g., single vs. multiple instances), but rather
identifies management components that provide logical functionality as well as
the points of interaction among them.

Unimgr provides support for both the Legato as well as the Presto interfaces.
These interface, and the APIs associated with them, are defined by YANG models
developed within MEF in collaboration with ONF and IETF. For the Boron release,
these are as follows:

Legato YANG modules:
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/boron

Presto YANG modules:
https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/boron

An application/user can interact with Unimgr at either the service
orchestration layer (Legato) or the network resource provisioning layer
(Presto).

Unimgr Components

Unimgr is comprised of the following OpenDaylight Karaf features:

	odl-unimgr-api
	OpenDaylight :: UniMgr :: api

	odl-unimgr
	OpenDaylight :: UniMgr

	odl-unimgr-console
	OpenDaylight :: UniMgr :: CLI

	odl-unimgr-rest
	OpenDaylight :: UniMgr :: REST

	odl-unimgr-ui
	OpenDaylight :: UniMgr :: UI

Installing Unimgr

After launching OpenDaylight, install the feature for Unimgr. From the karaf
command prompt execute the following command:

$ feature:install odl-unimgr-ui

Explore and exercise the Unimgr REST API

To see the Unimgr API, browse to this URL:
http://localhost:8181/apidoc/explorer/index.html

Replace localhost with the IP address or hostname where OpenDaylight is
running if you are not running OpenDaylight locally on your machine.

See also the Unimgr Developer Guide for a full listing of the API.

Unified Secure Channel

This document describes how to use the Unified Secure Channel (USC)
feature in OpenDaylight. This document contains configuration,
administration, and management sections for the feature.

Overview

In enterprise networks, more and more controller and network management
systems are being deployed remotely, such as in the cloud. Additionally,
enterprise networks are becoming more heterogeneous - branch, IoT,
wireless (including cloud access control). Enterprise customers want a
converged network controller and management system solution. This
feature is intended for device and network administrators looking to use
unified secure channels for their systems.

USC Channel Architecture

	USC Agent
	The USC Agent provides proxy and agent functionality on top of all
standard protocols supported by the device. It initiates call-home
with the controller, maintains live connections with with the
controller, acts as a demuxer/muxer for packets with the USC
header, and authenticates the controller.

	USC Plugin
	The USC Plugin is responsible for communication between the
controller and the USC agent . It responds to call-home with the
controller, maintains live connections with the devices, acts as a
muxer/demuxer for packets with the USC header, and provides
support for TLS/DTLS.

	USC Manager
	The USC Manager handles configurations, high availability,
security, monitoring, and clustering support for USC.

	USC UI
	The USC UI is responsible for displaying a graphical user
interface representing the state of USC in the OpenDaylight DLUX
UI.

Installing USC Channel

To install USC, download OpenDaylight and use the Karaf console to
install the following feature:

odl-usc-channel-ui

Configuring USC Channel

This section gives details about the configuration settings for various
components in USC.

The USC configuration files for the Karaf distribution are located in
distribution/karaf/target/assembly/etc/usc

	certificates
	The certificates folder contains the client key, pem, and rootca
files as is necessary for security.

	akka.conf
	This file contains configuration related to clustering. Potential
configuration properties can be found on the akka website at
http://doc.akka.io

	usc.properties
	This file contains configuration related to USC. Use this file to
set the location of certificates, define the source of additional
akka configurations, and assign default settings to the USC
behavior.

Administering or Managing USC Channel

After installing the odl-usc-channel-ui feature from the Karaf console,
users can administer and manage USC channels from the the UI or APIDOCS
explorer.

Go to
http://${ipaddress}:8181/index.html,
sign in, and click on the USC side menu tab. From there, users can view
the state of USC channels.

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the usc-channel panel. From there, users can execute
various API calls to test their USC deployment such as add-channel,
delete-channel, and view-channel.

Tutorials

Below are tutorials for USC Channel

Viewing USC Channel

The purpose of this tutorial is to view USC Channel

Overview

This tutorial walks users through the process of viewing the USC Channel
environment topology including established channels connecting the
controllers and devices in the USC topology.

Prerequisites

For this tutorial, we assume that a device running a USC agent is
already installed.

Instructions

	Run the OpenDaylight distribution and install odl-usc-channel-ui from
the Karaf console.

	Go to
http://${ipaddress}:8181/apidoc/explorer/index.html

	Execute add-channel with the following json data:
	{“input”:{“channel”:{“hostname”:”127.0.0.1”,”port”:1068,”remote”:false}}}

	Go to
http://${ipaddress}:8181/index.html

	Click on the USC side menu tab.

	The UI should display a table including the added channel from step
3.

Usecplugin-AAA User Guide

The Usecplugin User Guide contains information about configuration,
administration, management, using and troubleshooting the feature.

Overview

AAA plugin provides authorization, authentication and accounting
services to OpenDaylight. A user logs in to OpenDaylight through the
username and password provided by AAA plugin. Usecplugin-AAA collects
and stores information about both successful and failed login attempts
to OpenDaylight.

Usecplugin-AAA Architecture

AAA plugin creates log messages about successful and failed login
attempts to OpenDaylight. Usecplugin-AAA continuously reads this log
file and checks for either successful and failed attempt information.
Whenever Usecpluin-AAA identifies a new attempt entry in the log file it
is stored in YANG Data Store and its own log file.

Administering or Managing Usecplugin-AAA

	Install feature odl-usecplugin-aaa

	Enable odl-aaa log using command
log:set DEBUG org.opendaylight.aaa.shiro.filters

	Login to the RESTCONF documentation.

	Check operational datastore for login attempts.

	POST URI ::
http://localhost:8181/restconf/operations/usecpluginaaa:attemptFromIP
	Sample Input :: {“usecpluginaaa:input”:{“ScrIP”:”10.0.0.1”}}

	POST URI ::
http://localhost:8181/restconf/operations/usecpluginaaa:attemptOnDateTime
	Sample Input :: {“usecpluginaaa:input”:{“dateTime”:”2016-07-27
14:11:18”}}

Usecplugin-OpenFlow User Guide

The Usecplugin-OpenFlow User Guide contains information about
configuration, administration, management, using and troubleshooting the
feature.

Overview

Usecplugin-OpenFlow collects information about potential OpenFlow
Packet_In attacks to OpenDaylight. A threshold (water mark) can be set
for the Packet_In rate which when breached will trigger Packet_In
message information collection.

Usecplugin Architecture

Usecplugin listens on OpenFlow southbound interface for Packet_In
messages. When the rate of Packet_In breaches the high water mark the
application parses the message for header information which is
subsequently stored in YANG Data Store and a log file. Usecplugin has
PacketHandler class that implements the PacketProcessing interface to
override the OnPacketReceived notification by which the application is
notified of Packet_In messages.

Configuring Usecplugin-OpenFlow

Install the Usecplugin-OpenFlow feautre in OpenDaylight with the
feature:install odl-usecplugin-openflow at the Karaf CLI.

A user can set the low water mark and high water mark for Packet_In
rates as well as number of samples for checking the time interval to
calculate Packet_In rate.

	URI

	http://localhost:8181/apidoc/explorer/index.html#!/usecplugin(2015-01-05)

High Water Mark Configuration

	PUT URI

	http://localhost:8181/restconf/config/usecplugin:sample-data-hwm/

	Sample Input

	{"usecplugin:sample-data-hwm": { "samples":"3000","highWaterMark":"3000"}}

Low Water Mark Configuration

	PUT URI

	http://localhost:8181/restconf/config/usecplugin:sample-data-lwm/

	Sample Input

	{"usecplugin:sample-data-lwm": { "samples-lwm":"2000","lowWaterMark-lwm":"2000"}}

Administering or Managing Usecplugin-OpenFlow

Use RPC POST APIs in the following format for getting the attack related
information.

attackID

	URI

	http://localhost:8181/restconf/operations/usecplugin:attackID

	Sample Input

	{"usecplugin:input": { "NodeID":"openflow:1"}}

attacksFromIP

	URI

	http://localhost:8181/restconf/operations/usecplugin:attacksFromIP

	Sample Input

	{"usecplugin:input": { "SrcIP":"10.0.0.1"}}

attacksToIP

	URI

	http://localhost:8181/restconf/operations/usecplugin:attacksToIP

	Sample Input

	{"usecplugin:input": { "DstIP":"10.0.0.2"}}

Virtual Tenant Network (VTN)

VTN Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that
provides multi-tenant virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating
expenses are needed because the network is configured as a silo for each
department and system. So, various network appliances must be installed
for each tenant and those boxes cannot be shared with others. It is a
heavy work to design, implement and operate the entire complex network.

The uniqueness of VTN is a logical abstraction plane. This enables the
complete separation of logical plane from physical plane. Users can
design and deploy any desired network without knowing the physical
network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of
conventional L2/L3 network. Once the network is designed on VTN, it will
automatically be mapped into underlying physical network, and then
configured on the individual switch leveraging SDN control protocol. The
definition of logical plane makes it possible not only to hide the
complexity of the underlying network but also to better manage network
resources. It achieves reducing reconfiguration time of network services
and minimizing network configuration errors.

[image: VTN Overview]
VTN Overview

It is implemented as two major components

	VTN Manager

	VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement
the components of the VTN model. It also provides a REST interface to
configure VTN components in OpenDaylight. VTN Manager is implemented as
one plugin to the OpenDaylight. This provides a REST interface to
create/update/delete VTN components. The user command in VTN Coordinator
is translated as REST API to VTN Manager by the OpenDaylight Driver
component. In addition to the above mentioned role, it also provides an
implementation to the OpenStack L2 Network Functions API.

Features Overview

	odl-vtn-manager provides VTN Manager’s JAVA API.

	odl-vtn-manager-rest provides VTN Manager’s REST API.

	odl-vtn-manager-neutron provides the integration with Neutron
interface.

REST API

VTN Manager provides REST API for virtual network functions.

Here is an example of how to create a virtual tenant network.

curl --user "admin":"admin" -H "Accept: application/json" -H \
"Content-type: application/json" -X POST \
http://localhost:8181/restconf/operations/vtn:update-vtn \
-d '{"input":{"tenant-name":"vtn1"}}'

You can check the list of all tenants by executing the following
command.

curl --user "admin":"admin" -H "Accept: application/json" -H \
"Content-type: application/json" -X GET \
http://localhost:8181/restconf/operational/vtn:vtns

REST Conf documentation for VTN Manager, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

VTN Coordinator

The VTN Coordinator is an external application that provides a REST
interface for an user to use OpenDaylight VTN Virtualization. It
interacts with VTN Manager plugin to implement the user configuration.
It is also capable of multiple OpenDaylight orchestration. It realizes
Virtual Tenant Network (VTN) provisioning in OpenDaylight instances. In
the OpenDaylight architecture VTN Coordinator is part of the network
application, orchestration and services layer. VTN Coordinator will use
the REST interface exposed by the VTN Manger to realize the virtual
network using OpenDaylight. It uses OpenDaylight APIs (REST) to
construct the virtual network in OpenDaylight instances. It provides
REST APIs for northbound VTN applications and supports virtual networks
spanning across multiple OpenDaylight by coordinating across
OpenDaylight.

For VTN Coordinator REST API, please refer to:
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi

Network Virtualization Function

The user first defines a VTN. Then, the user maps the VTN to a physical
network, which enables communication to take place according to the VTN
definition. With the VTN definition, L2 and L3 transfer functions and
flow-based traffic control functions (filtering and redirect) are
possible.

Virtual Network Construction

The following table shows the elements which make up the VTN. In the
VTN, a virtual network is constructed using virtual nodes (vBridge,
vRouter) and virtual interfaces and links. It is possible to configure a
network which has L2 and L3 transfer function, by connecting the virtual
intrefaces made on virtual nodes via virtual links.

	vBridge
	The logical representation of L2
switch function.

	vRouter
	The logical representation of router
function.

	vTep
	The logical representation of Tunnel
End Point - TEP.

	vTunnel
	The logical representation of
Tunnel.

	vBypass
	The logical representation of
connectivity between controlled
networks.

	Virtual interface
	The representation of end point on
the virtual node.

	Virtual Linkv(vLink)
	The logical representation of L1
connectivity between virtual
interfaces.

The following figure shows an example of a constructed virtual network.
VRT is defined as the vRouter, BR1 and BR2 are defined as vBridges.
interfaces of the vRouter and vBridges are connected using vLinks.

[image: VTN Construction]
VTN Construction

Mapping of Physical Network Resources

Map physical network resources to the constructed virtual network.
Mapping identifies which virtual network each packet transmitted or
received by an OpenFlow switch belongs to, as well as which interface in
the OpenFlow switch transmits or receives that packet. There are two
mapping methods. When a packet is received from the OFS, port mapping is
first searched for the corresponding mapping definition, then VLAN
mapping is searched, and the packet is mapped to the relevant vBridge
according to the first matching mapping.

	Port mapping
	Maps physical network resources to
an interface of vBridge using Switch
ID, Port ID and VLAN ID of the
incoming L2 frame. Untagged frame
mapping is also supported.

	VLAN mapping
	Maps physical network resources to a
vBridge using VLAN ID of the
incoming L2 frame.Maps physical
resources of a particular switch to
a vBridge using switch ID and VLAN
ID of the incoming L2 frame.

	MAC mapping
	Maps physical resources to an
interface of vBridge using MAC
address of the incoming L2 frame(The
initial contribution does not
include this method).

VTN can learn the terminal information from a terminal that is connected
to a switch which is mapped to VTN. Further, it is possible to refer
that terminal information on the VTN.

	Learning terminal information VTN learns the information of a
terminal that belongs to VTN. It will store the MAC address and VLAN
ID of the terminal in relation to the port of the switch.

	Aging of terminal information Terminal information, learned by the
VTN, will be maintained until the packets from terminal keep flowing
in VTN. If the terminal gets disconnected from the VTN, then the
aging timer will start clicking and the terminal information will be
maintained till timeout.

The following figure shows an example of mapping. An interface of BR1 is
mapped to port GBE0/1 of OFS1 using port mapping. Packets received from
GBE0/1 of OFS1 are regarded as those from the corresponding interface of
BR1. BR2 is mapped to VLAN 200 using VLAN mapping. Packets with VLAN tag
200 received from any ports of any OFSs are regarded as those from an
interface of BR2.

[image: VTN Mapping]
VTN Mapping

vBridge Functions

The vBridge provides the bridge function that transfers a packet to the
intended virtual port according to the destination MAC address. The
vBridge looks up the MAC address table and transmits the packet to the
corresponding virtual interface when the destination MAC address has
been learned. When the destination MAC address has not been learned, it
transmits the packet to all virtual interfaces other than the receiving
port (flooding). MAC addresses are learned as follows.

	MAC address learning The vBridge learns the MAC address of the
connected host. The source MAC address of each received frame is
mapped to the receiving virtual interface, and this MAC address is
stored in the MAC address table created on a per-vBridge basis.

	MAC address aging The MAC address stored in the MAC address table is
retained as long as the host returns the ARP reply. After the host is
disconnected, the address is retained until the aging timer times
out. To have the vBridge learn MAC addresses statically, you can
register MAC addresses manually.

vRouter Functions

The vRouter transfers IPv4 packets between vBridges. The vRouter
supports routing, ARP learning, and ARP aging functions. The following
outlines the functions.

	Routing function When an IP address is registered with a virtual
interface of the vRouter, the default routing information for that
interface is registered. It is also possible to statically register
routing information for a virtual interface.

	ARP learning function The vRouter associates a destination IP
address, MAC address and a virtual interface, based on an ARP request
to its host or a reply packet for an ARP request, and maintains this
information in an ARP table prepared for each routing domain. The
registered ARP entry is retained until the aging timer, described
later, times out. The vRouter transmits an ARP request on an
individual aging timer basis and deletes the associated entry from
the ARP table if no reply is returned. For static ARP learning, you
can register ARP entry information manually.

	DHCP relay agent function The vRouter also provides the DHCP relay
agent function.

Flow Filter Functions

Flow Filter function is similar to ACL. It is possible to allow or
prohibit communication with only certain kind of packets that meet a
particular condition. Also, it can perform a processing called
Redirection - WayPoint routing, which is different from the existing
ACL. Flow Filter can be applied to any interface of a vNode within VTN,
and it is possible to the control the packets that pass interface. The
match conditions that could be specified in Flow Filter are as follows.
It is also possible to specify a combination of multiple conditions.

	Source MAC address

	Destination MAC address

	MAC ether type

	VLAN Priority

	Source IP address

	Destination IP address

	DSCP

	IP Protocol

	TCP/UDP source port

	TCP/UDP destination port

	ICMP type

	ICMP code

The types of Action that can be applied on packets that match the Flow
Filter conditions are given in the following table. It is possible to
make only those packets, which match a particular condition, to pass
through a particular server by specifying Redirection in Action. E.g.,
path of flow can be changed for each packet sent from a particular
terminal, depending upon the destination IP address. VLAN priority
control and DSCP marking are also supported.

	Action
	Function

	Pass
	Pass particular packets matching the
specified conditions.

	Drop
	Discards particular packets matching
the specified conditions.

	Redirection
	Redirects the packet to a desired
virtual interface. Both Transparent
Redirection (not changing MAC
address) and Router Redirection
(changing MAC address) are
supported.

The following figure shows an example of how the flow filter function
works.

If there is any matching condition specified by flow filter when a
packet being transferred within a virtual network goes through a virtual
interface, the function evaluates the matching condition to see whether
the packet matches it. If the packet matches the condition, the function
applies the matching action specified by flow filter. In the example
shown in the figure, the function evaluates the matching condition at
BR1 and discards the packet if it matches the condition.

[image: VTN FlowFilter]
VTN FlowFilter

Multiple SDN Controller Coordination

With the network abstractions, VTN enables to configure virtual network
across multiple SDN controllers. This provides highly scalable network
system.

VTN can be created on each SDN controller. If users would like to manage
those multiple VTNs with one policy, those VTNs can be integrated to a
single VTN.

As a use case, this feature is deployed to multi data center
environment. Even if those data centers are geographically separated and
controlled with different controllers, a single policy virtual network
can be realized with VTN.

Also, one can easily add a new SDN Controller to an existing VTN or
delete a particular SDN Controller from VTN.

In addition to this, one can define a VTN which covers both OpenFlow
network and Overlay network at the same time.

Flow Filter, which is set on the VTN, will be automatically applied on
the newly added SDN Controller.

Coordination between OpenFlow Network and L2/L3 Network

It is possible to configure VTN on an environment where there is mix of
L2/L3 switches as well. L2/L3 switch will be shown on VTN as vBypass.
Flow Filter or policing cannot be configured for a vBypass. However, it
is possible to treat it as a virtual node inside VTN.

Virtual Tenant Network (VTN) API

VTN provides Web APIs. They are implemented by REST architecture and
provide the access to resources within VTN that are identified by URI.
User can perform the operations like GET/PUT/POST/DELETE against the
virtual network resources (e.g. vBridge or vRouter) by sending a message
to VTN through HTTPS communication in XML or JSON format.

[image: VTN API]
VTN API

Function Outline

VTN provides following operations for various network resources.

	Resources
	GET
	POST
	PUT
	DELETE

	VTN
	Yes
	Yes
	Yes
	Yes

	vBridge
	Yes
	Yes
	Yes
	Yes

	vRouter
	Yes
	Yes
	Yes
	Yes

	vTep
	Yes
	Yes
	Yes
	Yes

	vTunnel
	Yes
	Yes
	Yes
	Yes

	vBypass
	Yes
	Yes
	Yes
	Yes

	vLink
	Yes
	Yes
	Yes
	Yes

	Interface
	Yes
	Yes
	Yes
	Yes

	Port map
	Yes
	No
	Yes
	Yes

	Vlan map
	Yes
	Yes
	Yes
	Yes

	Flowfilter
(ACL/redirect)
	Yes
	Yes
	Yes
	Yes

	Controller
information
	Yes
	Yes
	Yes
	Yes

	Physical
topology
information
	Yes
	No
	No
	No

	Alarm
information
	Yes
	No
	No
	No

Example usage

The following is an example of the usage to construct a virtual network.

	Create VTN

 curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"vtn":{"vtn_name":"VTN1"}}' http://172.1.0.1:8083/vtn-webapi/vtns.json

	Create Controller Information

 curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"controller": {"controller_id":"CONTROLLER1","ipaddr":"172.1.0.1","type":"odc","username":"admin", \
"password":"admin","version":"1.0"}}' http://172.1.0.1:8083/vtn-webapi/controllers.json

	Create vBridge under VTN

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"vbridge":{"vbr_name":"VBR1","controller_id": "CONTROLLER1","domain_id": "(DEFAULT)"}}' \
http://172.1.0.1:8083/vtn-webapi/vtns/VTN1/vbridges.json

	Create the interface under vBridge

curl --user admin:adminpass -X POST -H 'content-type: application/json' \
-d '{"interface":{"if_name":"IF1"}}' http://172.1.0.1:8083/vtn-webapi/vtns/VTN1/vbridges/VBR1/interfaces.json

VTN OpenStack Configuration

This guide describes how to set up OpenStack for integration with
OpenDaylight Controller.

While OpenDaylight Controller provides several ways to integrate with
OpenStack, this guide focus on the way which uses VTN features available
on OpenDaylight. In the integration, VTN Manager work as network service
provider for OpenStack.

VTN Manager features, enable OpenStack to work in pure OpenFlow
environment in which all switches in data plane are OpenFlow switch.

Requirements

	OpenDaylight Controller. (VTN features must be installed)

	OpenStack Control Node.

	OpenStack Compute Node.

	OpenFlow Switch like mininet(Not Mandatory).

The VTN features support multiple OpenStack nodes. You can deploy
multiple OpenStack Compute Nodes. In management plane, OpenDaylight
Controller, OpenStack nodes and OpenFlow switches should communicate
with each other. In data plane, Open vSwitches running in OpenStack
nodes should communicate with each other through a physical or logical
OpenFlow switches. The core OpenFlow switches are not mandatory.
Therefore, you can directly connect to the Open vSwitch’s.

[image: Openstack Overview]
Openstack Overview

Sample Configuration

Below steps depicts the configuration of single OpenStack Control node
and OpenStack Compute node setup. Our test setup is as follows

[image: LAB Setup]
LAB Setup

Server Preparation

	Install Ubuntu 14.04 LTS in two servers (OpenStack Control node and
Compute node respectively)

	While installing, Ubuntu mandates creation of a User, we created the
user “stack”(We will use the same user for running devstack)

	Proceed with the below mentioned User Settings and Network Settings
in both the Control and Compute nodes.

User Settings for devstack - Login to both servers - Disable Ubuntu
Firewall

sudo ufw disable

	Install the below packages (optional, provides ifconfig and route
coammnds, handy for debugging!!)

sudo apt-get install net-tools

	Edit sudo vim /etc/sudoers and add an entry as follows

stack ALL=(ALL) NOPASSWD: ALL

Network Settings - Checked the output of ifconfig -a, two interfaces
were listed eth0 and eth1 as indicated in the image above. - We had
connected eth0 interface to the Network where OpenDaylight is reachable.
- eth1 interface in both servers were connected to a different network
to act as data plane for the VM’s created using the OpenStack. -
Manually edited the file : sudo vim /etc/network/interfaces and made
entries as follows

 stack@ubuntu-devstack:~/devstack$ cat /etc/network/interfaces
 # This file describes the network interfaces available on your system
 # and how to activate them. For more information, see interfaces(5).
 # The loop-back network interface
 auto lo
 iface lo inet loopback
 # The primary network interface
 auto eth0
 iface eth0 inet static
 address <IP_ADDRESS_TO_REACH_ODL>
 netmask <NET_MASK>
 broadcast <BROADCAST_IP_ADDRESS>
 gateway <GATEWAY_IP_ADDRESS>
auto eth1
iface eth1 inet static
 address <IP_ADDRESS_UNIQ>
 netmask <NETMASK>

Note

Please ensure that the eth0 interface is the default route and it is
able to reach the ODL_IP_ADDRESS NOTE: The entries for eth1 are
not mandatory, If not set, we may have to manually do “ifup eth1”
after the stacking is complete to activate the interface

Finalize the user and network settings - Please reboot both nodes
after the user and network settings to have the network settings applied
to the network - Login again and check the output of ifconfig to ensure
that both interfaces are listed

OpenDaylight Settings and Execution

VTN Configuration for OpenStack Integration:

	VTN uses the configuration parameters from “90-vtn-neutron.xml” file
for the OpenStack integration.

	These values will be set for the OpenvSwitch, in all the
participating OpenStack nodes.

	A configuration file “90-vtn-neutron.xml” will be generated
automatically by following the below steps,

	Download the latest Boron karaf distribution from the below link,

http://www.opendaylight.org/software/downloads

	cd “distribution-karaf-0.5.0-Boron” and run karaf by using the
following command ”./bin/karaf”.

	Install the below feature to generate “90-vtn-neutron.xml”

feature:install odl-vtn-manager-neutron

	Logout from the karaf console and Check “90-vtn-neutron.xml” file
from the following path
“distribution-karaf-0.5.0-Boron/etc/opendaylight/karaf/”.

	The contents of “90-vtn-neutron.xml” should be as follows:

bridgename=br-int portname=eth1 protocols=OpenFlow13 failmode=secure

	The values of the configuration parameters must be changed based on
the user environment.

	Especially, “portname” should be carefully configured, because if the
value is wrong, OpenDaylight fails to forward packets.

	Other parameters works fine as is for general use cases.
	bridgename
	The name of the bridge in Open vSwitch, that will be created by
OpenDaylight Controller.

	It must be “br-int”.

	portname
	The name of the port that will be created in the vbridge in
Open vSwitch.

	This must be the same name of the interface of OpenStack Nodes
which is used for interconnecting OpenStack Nodes in data
plane.(in our case:eth1)

	By default, if 90-vtn-neutron.xml is not created, VTN uses
ens33 as portname.

	protocols
	OpenFlow protocol through which OpenFlow Switch and Controller
communicate.

	The values can be OpenFlow13 or OpenFlow10.

	failmode
	The value can be “standalone” or “secure”.

	Please use “secure” for general use cases.

Start ODL Controller

	Please refer to the Installation Pages to run ODL with VTN Feature
enabled.

	After running ODL Controller, please ensure ODL Controller listens to
the ports:6633,6653, 6640 and 8080

	Please allow the ports in firewall for the devstack to be able to
communicate with ODL Controller.

Note

	6633/6653 - OpenFlow Ports

	6640 - OVS Manager Port

	8080 - Port for REST API

Devstack Setup

Get Devstack (All nodes)

	Install git application using

	sudo apt-get install git

	Get devstack

	git clone https://git.openstack.org/openstack-dev/devstack;

	Switch to stable/Juno Version branch

	cd devstack

git checkout stable/juno

Note

If you want to use stable/kilo Version branch, Please execute the
below command in devstack folder

git checkout stable/kilo

Note

If you want to use stable/liberty Version branch, Please execute the
below command in devstack folder

git checkout stable/liberty

Stack Control Node

	local.conf:

	cd devstack in the controller node

	Copy the contents of local.conf for juno (devstack control node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
and save it as “local.conf” in the “devstack”.

	Copy the contents of local.conf for kilo and liberty (devstack
control node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
and save it as “local.conf” in the “devstack”.

	Please modify the IP Address values as required.

	Stack the node

./stack.sh

Verify Control Node stacking

	stack.sh prints out Horizon is now available at
http://<CONTROL_NODE_IP_ADDRESS>:8080/

	Execute the command sudo ovs-vsctl show in the control node
terminal and verify if the bridge br-int is created.

	Typical output of the ovs-vsctl show is indicated below:

e232bbd5-096b-48a3-a28d-ce4a492d4b4f
 Manager "tcp:192.168.64.73:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:192.168.64.73:6633"
 is_connected: true
 fail_mode: secure
 Port "eth1"
 Interface "eth1"
 ovs_version: "2.0.2"

Stack Compute Node

	local.conf:

	cd devstack in the controller node

	Copy the contents of local.conf for juno (devstack compute node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack
and save it as “local.conf” in the “devstack”.

	Copy the contents of local.conf file for kilo and liberty (devstack
compute node) from
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:devstack_post_juno_versions
and save it as “local.conf” in the “devstack”.

	Please modify the IP Address values as required.

	Stack the node

./stack.sh

Verify Compute Node Stacking

	stack.sh prints out This is your host ip:
<COMPUTE_NODE_IP_ADDRESS>

	Execute the command sudo ovs-vsctl show in the control node
terminal and verify if the bridge br-int is created.

	The output of the ovs-vsctl show will be similar to the one seen in
control node.

Additional Verifications

	Please visit the OpenDaylight DLUX GUI after stacking all the nodes,
http://<ODL_IP_ADDRESS>:8181/index.html.
The switches, topology and the ports that are currently read can be
validated.

http://<controller-ip>:8181/index.html

Tip

If the interconnected between the Open vSwitch is not seen, Please
bring up the interface for the dataplane manually using the below
comamnd

ifup <interface_name>

	Please Accept Promiscuous mode in the networks involving the
interconnect.

Create VM from Devstack Horizon GUI

	Login to
http://<CONTROL_NODE_IP>:8080/
to check the horizon GUI.

[image: Horizon GUI]
Horizon GUI

Enter the value for User Name as admin and enter the value for Password
as labstack.

	We should first ensure both the hypervisors(control node and compute
node) are mapped under hypervisors by clicking on Hpervisors tab.

[image: Hypervisors]
Hypervisors

	Create a new Network from Horizon GUI.

	Click on Networks Tab.

	click on the Create Network button.

[image: Create Network]
Create Network

	A popup screen will appear.

	Enter network name and click Next button.

[image: Step 1]
Step 1

	Create a sub network by giving Network Address and click Next button
.

[image: Step 2]
Step 2

	Specify the additional details for subnetwork (please refer the image
for your reference).

[image: Step 3]
Step 3

	Click Create button

	Create VM Instance

	Navigate to Instances tab in the GUI.

[image: Instance Creation]
Instance Creation

	Click on Launch Instances button.

[image: Launch Instance]
Launch Instance

	Click on Details tab to enter the VM details.For this demo we are
creating Ten VM’s(instances).

	In the Networking tab, we must select the network,for this we need to
drag and drop the Available networks to Selected Networks (i.e.,)
Drag vtn1 we created from Available networks to Selected Networks and
click Launch to create the instances.

[image: Launch Network]
Launch Network

	Ten VM’s will be created.

[image: Load All Instances]
Load All Instances

	Click on any VM displayed in the Instances tab and click the Console
tab.

[image: Instance Console]
Instance Console

	Login to the VM console and verify with a ping command.

[image: Ping]
Ping

Verification of Control and Compute Node after VM creation

	Every time a new VM is created, more interfaces are added to the
br-int bridge in Open vSwitch.

	Use sudo ovs-vsctl show to list the number of interfaces added.

	Please visit the DLUX GUI to list the new nodes in every switch.

Getting started with DLUX

Ensure that you have created a topology and enabled MD-SAL feature in
the Karaf distribution before you use DLUX for network management.

Logging In

To log in to DLUX, after installing the application: * Open a browser
and enter the login URL. If you have installed DLUX as a stand-alone,
then the login URL is http://localhost:9000/DLUX/index.html. However if
you have deployed DLUX with Karaf, then the login URL is
http://<your IP>:8181/dlux/index.html. * Login
to the application with user ID and password credentials as admin.
NOTE:admin is the only user type available for DLUX in this release.

Working with DLUX

To get a complete DLUX feature list, install restconf, odl l2 switch,
and switch while you start the DLUX distribution.

[image: DLUX_GUI]
DLUX_GUI

Note

DLUX enables only those modules, whose APIs are responding. If you
enable just the MD-SAL in beginning and then start dlux, only MD-SAL
related tabs will be visible. While using the GUI if you enable
AD-SAL karaf features, those tabs will appear automatically.

Viewing Network Statistics

The Nodes module on the left pane enables you to view the network
statistics and port information for the switches in the network. * To
use the Nodes module: ** Select Nodeson the left pane.

The right pane displays atable that lists all the nodes, node connectors and the statistics.

	Enter a node ID in the Search Nodes tab to search by node connectors.

	Click on the Node Connector number to view details such as port ID,
port name, number of ports per switch, MAC Address, and so on.

	Click Flows in the Statistics column to view Flow Table Statistics
for the particular node like table ID, packet match, active flows and
so on.

	Click Node Connectors to view Node Connector Statistics for the
particular node ID.

Viewing Network Topology

To view network topology: * Select Topology on the left pane. You will
view the graphical representation on the right pane.

In the diagram
blue boxes represent the switches,black represents the hosts available, and lines represents how switches are connected.

Note

DLUX UI does not provide ability to add topology information. The
Topology should be created using an open flow plugin. Controller
stores this information in the database and displays on the DLUX
page, when the you connect to the controller using OpenFlow.

[image: Topology]
Topology

OpenStack PackStack Installation Steps

	Please go through the below wiki page for OpenStack PackStack
installation steps.
	https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support

References

	http://devstack.org/guides/multinode-lab.html

	https://wiki.opendaylight.org/view/File:Vtn_demo_hackfest_2014_march.pdf

VTN Manager Usage Examples

How to provision virtual L2 Network

Overview

This page explains how to provision virtual L2 network using VTN
Manager. This page targets Boron release, so the procedure described
here does not work in other releases.

[image: Virtual L2 network for host1 and host3]
Virtual L2 network for host1 and host3

Requirements

Mininet

	To provision OpenFlow switches, this page uses Mininet. Mininet
details and set-up can be referred at the following page:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

	Start Mininet and create three switches(s1, s2, and s3) and four
hosts(h1, h2, h3, and h4) in it.

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=192.168.0.100 --topo tree,2

Note

Replace “192.168.0.100” with the IP address of OpenDaylight
controller based on your environment.

	you can check the topology that you have created by executing “net”
command in the Mininet console.

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

	In this guide, you will provision the virtual L2 network to establish
communication between h1 and h3.

Configuration

To provision the virtual L2 network for the two hosts (h1 and h3),
execute REST API provided by VTN Manager as follows. It uses curl
command to call the REST API.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1"}}'

	Create two interfaces into the virtual bridge by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2"}}'

	Configure two mappings on the created interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet.
	The h1 is connected to the port “s2-eth1”.

	The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet.
	The h3 is connected to the port “s3-eth1”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:2", "port-name":"s2-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3", "port-name":"s3-eth1"}}'

Verification

	Please execute ping from h1 to h3 to verify if the virtual L2 network
for h1 and h3 is provisioned successfully.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=243 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.341 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.078 ms
64 bytes from 10.0.0.3: icmp_seq=4 ttl=64 time=0.079 ms

	You can also verify the configuration by executing the following REST
API. It shows all configuration in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns/

	The result of the command should be like this.

{
 "vtns": {
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "idle-timeout": 300,
 "hard-timeout": 0
 },
 "vbridge": [
 {
 "name": "vbr1",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vbridge-config": {
 "age-interval": 600
 },
 "vinterface": [
 {
 "name": "if2",
 "vinterface-status": {
 "entity-state": "UP",
 "state": "UP",
 "mapped-port": "openflow:3:3"
 },
 "vinterface-config": {
 "enabled": true
 },
 "port-map-config": {
 "vlan-id": 0,
 "port-name": "s3-eth1",
 "node": "openflow:3"
 }
 },
 {
 "name": "if1",
 "vinterface-status": {
 "entity-state": "UP",
 "state": "UP",
 "mapped-port": "openflow:2:1"
 },
 "vinterface-config": {
 "enabled": true
 },
 "port-map-config": {
 "vlan-id": 0,
 "port-name": "s2-eth1",
 "node": "openflow:2"
 }
 }
]
 }
]
 }
]
 }
}

Cleaning Up

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

How To Test Vlan-Map In Mininet Environment

Overview

This page explains how to test Vlan-map in a multi host scenario using
mininet. This page targets Boron release, so the procedure described
here does not work in other releases.

[image: Example that demonstrates vlanmap testing in Mininet Environment]
Example that demonstrates vlanmap testing in Mininet Environment

Requirements

Save the mininet script given below as vlan_vtn_test.py and run the
mininet script in the mininet environment where Mininet is installed.

Mininet Script

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan

	Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo mytopo

Note

Replace “192.168.64.13” with the IP address of OpenDaylight
controller based on your environment.

	You can check the topology that you have created by executing “net”
command in the Mininet console.

mininet> net
h1 h1-eth0.200:s1-eth1
h2 h2-eth0.300:s2-eth2
h3 h3-eth0.200:s2-eth3
h4 h4-eth0.300:s2-eth4
h5 h5-eth0.200:s3-eth2
h6 h6-eth0.300:s3-eth3
s1 lo: s1-eth1:h1-eth0.200 s1-eth2:s2-eth1 s1-eth3:s3-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0.300 s2-eth3:h3-eth0.200 s2-eth4:h4-eth0.300
s3 lo: s3-eth1:s1-eth3 s3-eth2:h5-eth0.200 s3-eth3:h6-eth0.300
c0

Configuration

To test vlan-map, execute REST API provided by VTN Manager as follows.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Configure a vlan map with vlanid 200 for vBridge vbr1 by executing
the add-vlan-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vlan-map.html#add-vlan-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map -d '{"input":{"vlan-id":200,"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create a virtual bridge named vbr2 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr2"}}'

	Configure a vlan map with vlanid 300 for vBridge vbr2 by executing
the add-vlan-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vlan-map.html#add-vlan-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vlan-map:add-vlan-map -d '{"input":{"vlan-id":300,"tenant-name":"vtn1","bridge-name":"vbr2"}}'

Verification

	Please execute pingall in mininet environment to view the host
reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

	You can also verify the configuration by executing the following REST
API. It shows all configurations in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

	The result of the command should be like this.

{
 "vtns": {
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "hard-timeout": 0,
 "idle-timeout": 300,
 "description": "creating vtn"
 },
 "vbridge": [
 {
 "name": "vbr2",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vbr2"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vlan-map": [
 {
 "map-id": "ANY.300",
 "vlan-map-config": {
 "vlan-id": 300
 },
 "vlan-map-status": {
 "active": true
 }
 }
]
 },
 {
 "name": "vbr1",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vbr1"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vlan-map": [
 {
 "map-id": "ANY.200",
 "vlan-map-config": {
 "vlan-id": 200
 },
 "vlan-map-status": {
 "active": true
 }
 }
]
 }
]
 }
]
 }
}

Cleaning Up

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

How To Configure Service Function Chaining using VTN Manager

Overview

This page explains how to configure VTN Manager for Service Chaining.
This page targets Boron release, so the procedure described here
does not work in other releases.

[image: Service Chaining With One Service]
Service Chaining With One Service

Requirements

	Please refer to the Installation
Pages [https://wiki.opendaylight.org/view/VTN:Boron:Installation_Guide]
to run ODL with VTN Feature enabled.

	Please ensure Bridge-Utils package is installed in mininet
environment before running the mininet script.

	To install Bridge-Utils package run sudo apt-get install bridge-utils
(assuming Ubuntu is used to run mininet, If not then this is not
required).

	Save the mininet script given below as topo_handson.py and run the
mininet script in the mininet environment where Mininet is installed.

Mininet Script

	Script for emulating network with multiple
hosts [https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet].

	Before executing the mininet script, please confirm Controller is up
and running.

	Run the mininet script.

	Replace <path> and <Controller IP> based on your environment

sudo mn --controller=remote,ip=<Controller IP> --custom <path>\topo_handson.py --topo mytopo2

mininet> net
h11 h11-eth0:s1-eth1
h12 h12-eth0:s1-eth2
h21 h21-eth0:s2-eth1
h22 h22-eth0:s2-eth2
h23 h23-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
srvc2 srvc2-eth0:s3-eth4 srvc2-eth1:s4-eth4
s1 lo: s1-eth1:h11-eth0 s1-eth2:h12-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h21-eth0 s2-eth2:h22-eth0 s2-eth3:h23-eth0 s2-eth4:s1-eth3 s2-eth5:s4-eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0 s3-eth4:srvc2-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1 s4-eth4:srvc2-eth1

Configurations

Mininet

	Please follow the below steps to configure the network in mininet as
in the below image:

[image: Mininet Configuration]
Mininet Configuration

Configure service nodes

	Please execute the following commands in the mininet console where
mininet script is executed.

mininet> srvc1 ip addr del 10.0.0.6/8 dev srvc1-eth0
mininet> srvc1 brctl addbr br0
mininet> srvc1 brctl addif br0 srvc1-eth0
mininet> srvc1 brctl addif br0 srvc1-eth1
mininet> srvc1 ifconfig br0 up
mininet> srvc1 tc qdisc add dev srvc1-eth1 root netem delay 200ms
mininet> srvc2 ip addr del 10.0.0.7/8 dev srvc2-eth0
mininet> srvc2 brctl addbr br0
mininet> srvc2 brctl addif br0 srvc2-eth0
mininet> srvc2 brctl addif br0 srvc2-eth1
mininet> srvc2 ifconfig br0 up
mininet> srvc2 tc qdisc add dev srvc2-eth1 root netem delay 300ms

Controller

Multi-Tenancy

	Please execute the below commands to configure the network topology
in the controller as in the below image:

[image: Tenant2]
Tenant2

Please execute the below commands in controller

Note

The below commands are for the difference in behavior of Manager in
Boron topology. The Link below has the details for this bug:
https://bugs.opendaylight.org/show_bug.cgi?id=3818.

curl --user admin:admin -H 'content-type: application/json' -H 'ipaddr:127.0.0.1' -X PUT http://localhost:8181/restconf/config/vtn-static-topology:vtn-static-topology/static-edge-ports -d '{"static-edge-ports": {"static-edge-port": [{"port": "openflow:3:3"}, {"port": "openflow:3:4"}, {"port": "openflow:4:3"}, {"port": "openflow:4:4"}]}}'

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1","update-mode":"CREATE","operation":"SET","description":"creating vtn","idle-timeout":300,"hard-timeout":0}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"creating vbr","tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create interface if1 into the virtual bridge vbr1 by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vbrif1 interface","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

	Configure port mapping on the interface by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface if1 of the virtual bridge will be mapped to the port
“s1-eth2” of the switch “openflow:1” of the Mininet.
	The h12 is connected to the port “s1-eth2”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","node":"openflow:1","port-name":"s1-eth2"}}'

	Create interface if2 into the virtual bridge vbr1 by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vbrif2 interface","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

	Configure port mapping on the interface by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface if2 of the virtual bridge will be mapped to the port
“s2-eth2” of the switch “openflow:2” of the Mininet.
	The h22 is connected to the port “s2-eth2”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2","node":"openflow:2","port-name":"s2-eth2"}}'

	Create interface if3 into the virtual bridge vbr1 by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vbrif3 interface","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if3"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface if3 of the virtual bridge will be mapped to the port
“s2-eth3” of the switch “openflow:2” of the Mininet.
	The h23 is connected to the port “s2-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"vlan-id":0,"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if3","node":"openflow:2","port-name":"s2-eth3"}}'

Traffic filtering

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].
	For option source and destination-network, get inet address of
host h12(src) and h22(dst) from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1","vtn-flow-match":[{"index":1,"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.2/32","destination-network":"10.0.0.4/32"}}]}}'

	Flow filter demonstration with DROP action-type. Create Flowfilter in
VBR Interface if1 by executing the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","index":10,"vtn-drop-filter":{}}]}}'

Service Chaining

With One Service

	Please execute the below commands to configure the network topology
which sends some specific traffic via a single service(External
device) in the controller as in the below image:

[image: Service Chaining With One Service LLD]
Service Chaining With One Service LLD

	Create a virtual terminal named vt_srvc1_1 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc1_1","description":"Creating vterminal"}}'

	Create interface IF into the virtual terminal vt_srvc1_1 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc1_1","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface IF of the virtual terminal will be mapped to the
port “s3-eth3” of the switch “openflow:3” of the Mininet.
	The h12 is connected to the port “s3-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc1_1","interface-name":"IF","node":"openflow:3","port-name":"s3-eth3"}}'

	Create a virtual terminal named vt_srvc1_2 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","description":"Creating vterminal"}}'

	Create interface IF into the virtual terminal vt_srvc1_2 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface IF of the virtual terminal will be mapped to the
port “s4-eth3” of the switch “openflow:4” of the Mininet.
	The h22 is connected to the port “s4-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","node":"openflow:4","port-name":"s4-eth3"}}'

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].
	For option source and destination-network, get inet address of
host h12(src) and h22(dst) from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1","vtn-flow-match":[{"index":1,"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.2/32","destination-network":"10.0.0.4/32"}}]}}'

	Create flowcondition named cond_any by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_any","vtn-flow-match":[{"index":1}]}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in virtual terminal vt_srvc1_2 interface IF by executing
the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].
	Flowfilter redirects vt_srvc1_2 to bridge1-IF2

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{"redirect-destination":{"bridge-name":"vbr1","interface-name":"if2"},"output":"true"}}]}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in vbridge vbr1 interface if1 by executing the
set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].
	Flow filter redirects Bridge1-IF1 to vt_srvc1_1

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","index":10,"vtn-redirect-filter":{"redirect-destination":{"terminal-name":"vt_srvc1_1","interface-name":"IF"},"output":"true"}}]}}'

Verification

[image: Service Chaining With One Service]
Service Chaining With One Service

	Ping host12 to host22 to view the host rechability, a delay of 200ms
will be taken to reach host22 as below.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=35 ttl=64 time=209 ms
64 bytes from 10.0.0.4: icmp_seq=36 ttl=64 time=201 ms
64 bytes from 10.0.0.4: icmp_seq=37 ttl=64 time=200 ms
64 bytes from 10.0.0.4: icmp_seq=38 ttl=64 time=200 ms

With two services

	Please execute the below commands to configure the network topology
which sends some specific traffic via two services(External device)
in the controller as in the below image.

[image: Service Chaining With Two Services LLD]
Service Chaining With Two Services LLD

	Create a virtual terminal named vt_srvc2_1 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc2_1","description":"Creating vterminal"}}'

	Create interface IF into the virtual terminal vt_srvc2_1 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc2_1","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface IF of the virtual terminal will be mapped to the
port “s3-eth4” of the switch “openflow:3” of the Mininet.
	The host h12 is connected to the port “s3-eth4”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc2_1","interface-name":"IF","node":"openflow:3","port-name":"s3-eth4"}}'

	Create a virtual terminal named vt_srvc2_2 in the tenant vtn1 by
executing the update-vterminal
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vterminal.html#update-vterminal].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vterminal:update-vterminal -d '{"input":{"update-mode":"CREATE","operation":"SET","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","description":"Creating vterminal"}}'

	Create interfaces IF into the virtual terminal vt_srvc2_2 by
executing the update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"update-mode":"CREATE","operation":"SET","description":"Creating vterminal IF","enabled":"true","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF"}}'

	Configure port mapping on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface IF of the virtual terminal will be mapped to the
port “s4-eth4” of the switch “openflow:4” of the mininet.
	The host h22 is connected to the port “s4-eth4”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF","node":"openflow:4","port-name":"s4-eth4"}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in virtual terminal vt_srvc2_2 interface IF by executing
the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].
	Flow filter redirects vt_srvc2_2 to Bridge1-IF2.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc2_2","interface-name":"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{"redirect-destination":{"bridge-name":"vbr1","interface-name":"if2"},"output":"true"}}]}}'

	Flow filter demonstration with redirect action-type. Create
Flowfilter in virtual terminal vt_srvc2_2 interface IF by executing
the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].
	Flow filter redirects vt_srvc1_2 to vt_srvc2_1.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input":{"output":"false","tenant-name":"vtn1","terminal-name":"vt_srvc1_2","interface-name":"IF","vtn-flow-filter":[{"condition":"cond_any","index":10,"vtn-redirect-filter":{"redirect-destination":{"terminal-name":"vt_srvc2_1","interface-name":"IF"},"output":"true"}}]}}'

Verification

[image: Service Chaining With Two Service]
Service Chaining With Two Service

	Ping host12 to host22 to view the host rechability, a delay of 500ms
will be taken to reach host22 as below.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=512 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=501 ms
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=500 ms
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=500 ms

	You can verify the configuration by executing the following REST API.
It shows all configuration in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns

{
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "hard-timeout": 0,
 "idle-timeout": 300,
 "description": "creating vtn"
 },
 "vbridge": [
 {
 "name": "vbr1",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vbr"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "if1",
 "vinterface-status": {
 "mapped-port": "openflow:1:2",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:1",
 "port-name": "s1-eth2"
 },
 "vinterface-config": {
 "description": "Creating vbrif1 interface",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 10,
 "condition": "cond_1",
 "vtn-redirect-filter": {
 "output": true,
 "redirect-destination": {
 "terminal-name": "vt_srvc1_1",
 "interface-name": "IF"
 }
 }
 }
]
 }
 },
 {
 "name": "if2",
 "vinterface-status": {
 "mapped-port": "openflow:2:2",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:2",
 "port-name": "s2-eth2"
 },
 "vinterface-config": {
 "description": "Creating vbrif2 interface",
 "enabled": true
 }
 },
 {
 "name": "if3",
 "vinterface-status": {
 "mapped-port": "openflow:2:3",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:2",
 "port-name": "s2-eth3"
 },
 "vinterface-config": {
 "description": "Creating vbrif3 interface",
 "enabled": true
 }
 }
]
 }
],
 "vterminal": [
 {
 "name": "vt_srvc2_2",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:4:4",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:4",
 "port-name": "s4-eth4"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 10,
 "condition": "cond_any",
 "vtn-redirect-filter": {
 "output": true,
 "redirect-destination": {
 "bridge-name": "vbr1",
 "interface-name": "if2"
 }
 }
 }
]
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 },
 {
 "name": "vt_srvc1_1",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:3:3",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:3",
 "port-name": "s3-eth3"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 },
 {
 "name": "vt_srvc1_2",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:4:3",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:4",
 "port-name": "s4-eth3"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 10,
 "condition": "cond_any",
 "vtn-redirect-filter": {
 "output": true,
 "redirect-destination": {
 "terminal-name": "vt_srvc2_1",
 "interface-name": "IF"
 }
 }
 }
]
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 },
 {
 "name": "vt_srvc2_1",
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "IF",
 "vinterface-status": {
 "mapped-port": "openflow:3:4",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:3",
 "port-name": "s3-eth4"
 },
 "vinterface-config": {
 "description": "Creating vterminal IF",
 "enabled": true
 }
 }
],
 "vterminal-config": {
 "description": "Creating vterminal"
 }
 }
]
 }
]
}

Cleaning Up

	To clean up both VTN and flowconditions.

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	You can delete the flowcondition cond_1 and cond_any by executing
the remove-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_any"}}'

How To View Dataflows

Overview

This page explains how to view Dataflows using VTN Manager. This page
targets Boron release, so the procedure described here does not work
in other releases.

Dataflow feature enables retrieval and display of data flows in the
OpenFlow network. The data flows can be retrieved based on an OpenFlow
switch or a switch port or a L2 source host.

The flow information provided by this feature are

	Location of virtual node which maps the incoming packet and outgoing
packets.

	Location of physical switch port where incoming and outgoing packets
is sent and received.

	A sequence of physical route info which represents the packet route
in the physical network.

Configuration

	To view Dataflow information, configure with VLAN Mapping
https://wiki.opendaylight.org/view/VTN:Mananger:How_to_test_Vlan-map_using_mininet.

Verification

After creating vlan mapping configuration from the above page, execute
as below in mininet to get switch details.

mininet> net
h1 h1-eth0.200:s1-eth1
h2 h2-eth0.300:s2-eth2
h3 h3-eth0.200:s2-eth3
h4 h4-eth0.300:s2-eth4
h5 h5-eth0.200:s3-eth2
h6 h6-eth0.300:s3-eth3
s1 lo: s1-eth1:h1-eth0.200 s1-eth2:s2-eth1 s1-eth3:s3-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0.300 s2-eth3:h3-eth0.200 s2-eth4:h4-eth0.300
s3 lo: s3-eth1:s1-eth3 s3-eth2:h5-eth0.200 s3-eth3:h6-eth0.300
c0
mininet>

Please execute ping from h1 to h3 to check hosts reachability.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=11.4 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.654 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.093 ms

Parallely execute below Restconf command to get data flow information of
node “openflow:1” and its port “s1-eth1”.

	Get the Dataflows information by executing the get-data-flow
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow.html#get-data-flow].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow:get-data-flow -d '{"input":{"tenant-name":"vtn1","mode":"DETAIL","node":"openflow:1","data-flow-port":{"port-id":"1","port-name":"s1-eth1"}}}'

{
 "output": {
 "data-flow-info": [
 {
 "averaged-data-flow-stats": {
 "packet-count": 1.1998800119988002,
 "start-time": 1455241209151,
 "end-time": 1455241219152,
 "byte-count": 117.58824117588242
 },
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "physical-egress-port": {
 "port-name": "s2-eth1",
 "port-id": "1"
 },
 "node": "openflow:2",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s1-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "node": "openflow:1",
 "order": 1
 }
],
 "data-egress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "hard-timeout": 0,
 "idle-timeout": 300,
 "data-flow-stats": {
 "duration": {
 "nanosecond": 640000000,
 "second": 362
 },
 "packet-count": 134,
 "byte-count": 12932
 },
 "data-egress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "data-ingress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:2",
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "creation-time": 1455240855753,
 "data-flow-match": {
 "vtn-ether-match": {
 "vlan-id": 200,
 "source-address": "6a:ff:e2:81:86:bb",
 "destination-address": "26:9f:82:70:ec:66"
 }
 },
 "virtual-route": [
 {
 "reason": "VLANMAPPED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 0
 },
 {
 "reason": "FORWARDED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 1
 }
],
 "flow-id": 16
 },
 {
 "averaged-data-flow-stats": {
 "packet-count": 1.1998800119988002,
 "start-time": 1455241209151,
 "end-time": 1455241219152,
 "byte-count": 117.58824117588242
 },
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s1-eth2",
 "port-id": "2"
 },
 "node": "openflow:1",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s2-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "node": "openflow:2",
 "order": 1
 }
],
 "data-egress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "hard-timeout": 0,
 "idle-timeout": 300,
 "data-flow-stats": {
 "duration": {
 "nanosecond": 587000000,
 "second": 362
 },
 "packet-count": 134,
 "byte-count": 12932
 },
 "data-egress-port": {
 "node": "openflow:2",
 "port-name": "s2-eth3",
 "port-id": "3"
 },
 "data-ingress-node": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "creation-time": 1455240855747,
 "data-flow-match": {
 "vtn-ether-match": {
 "vlan-id": 200,
 "source-address": "26:9f:82:70:ec:66",
 "destination-address": "6a:ff:e2:81:86:bb"
 }
 },
 "virtual-route": [
 {
 "reason": "VLANMAPPED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 0
 },
 {
 "reason": "FORWARDED",
 "virtual-node-path": {
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "order": 1
 }
],
 "flow-id": 15
 }
]
 }
}

How To Create Mac Map In VTN

Overview

	This page demonstrates Mac Mapping. This demonstration aims at
enabling communication between two hosts and denying communication of
particular host by associating a Vbridge to the hosts and configuring
Mac Mapping (mac address) to the Vbridge.

	This page targets Boron release, so the procedure described here
does not work in other releases.

[image: Single Controller Mapping]
Single Controller Mapping

Requirement

Configure mininet and create a topology

	Script for emulating network with multiple
hosts [https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_Multiple_Hosts_for_Service_Function_Chain].

	Before executing the mininet script, please confirm Controller is up
and running.

	Run the mininet script.

	Replace <path> and <Controller IP> based on your environment.

sudo mn --controller=remote,ip=<Controller IP> --custom <path>\topo_handson.py --topo mytopo2

mininet> net
h11 h11-eth0:s1-eth1
h12 h12-eth0:s1-eth2
h21 h21-eth0:s2-eth1
h22 h22-eth0:s2-eth2
h23 h23-eth0:s2-eth3
srvc1 srvc1-eth0:s3-eth3 srvc1-eth1:s4-eth3
srvc2 srvc2-eth0:s3-eth4 srvc2-eth1:s4-eth4
s1 lo: s1-eth1:h11-eth0 s1-eth2:h12-eth0 s1-eth3:s2-eth4 s1-eth4:s3-eth2
s2 lo: s2-eth1:h21-eth0 s2-eth2:h22-eth0 s2-eth3:h23-eth0 s2-eth4:s1-eth3 s2-eth5:s4-eth1
s3 lo: s3-eth1:s4-eth2 s3-eth2:s1-eth4 s3-eth3:srvc1-eth0 s3-eth4:srvc2-eth0
s4 lo: s4-eth1:s2-eth5 s4-eth2:s3-eth1 s4-eth3:srvc1-eth1 s4-eth4:srvc2-eth1

Configuration

To create Mac Map in VTN, execute REST API provided by VTN Manager as
follows. It uses curl command to call REST API.

	Create a virtual tenant named Tenant1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"Tenant1"}}'

	Create a virtual bridge named vBridge1 in the tenant Tenant1 by
executing the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"Tenant1","bridge-name":"vBridge1"}}'

	Configuring Mac Mappings on the vBridge1 by giving the mac address of
host h12 and host h22 as follows to allow the communication by
executing the set-mac-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-mac-map.html#set-mac-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-mac-map:set-mac-map -d '{"input":{"operation":"SET","allowed-hosts":["de:05:40:c4:96:76@0","62:c5:33:bc:d7:4e@0"],"tenant-name":"Tenant1","bridge-name":"vBridge1"}}'

Note

Mac Address of host h12 and host h22 can be obtained with the
following command in mininet.

mininet> h12 ifconfig
h12-eth0 Link encap:Ethernet HWaddr 62:c5:33:bc:d7:4e
inet addr:10.0.0.2 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::60c5:33ff:febc:d74e/64 Scope:Link

mininet> h22 ifconfig
h22-eth0 Link encap:Ethernet HWaddr de:05:40:c4:96:76
inet addr:10.0.0.4 Bcast:10.255.255.255 Mask:255.0.0.0
inet6 addr: fe80::dc05:40ff:fec4:9676/64 Scope:Link

	MAC Mapping will not be activated just by configuring it, a two end
communication needs to be established to activate Mac Mapping.

	Ping host h22 from host h12 in mininet, the ping will not happen
between the hosts as only one way activation is enabled.

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
From 10.0.0.2 icmp_seq=1 Destination Host Unreachable
From 10.0.0.2 icmp_seq=2 Destination Host Unreachable

	Ping host h12 from host h22 in mininet, now the ping communication
will take place as the two end communication is enabled.

mininet> h22 ping h12
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=91.8 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.510 ms

	After two end communication enabled, now host h12 can ping host h22

mininet> h12 ping h22
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.4: icmp_req=2 ttl=64 time=0.079 ms

Verification

	To view the configured Mac Map of allowed host execute the following
command.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns/vtn/Tenant1/vbridge/vBridge1/mac-map

{
 "mac-map": {
 "mac-map-status": {
 "mapped-host": [
 {
 "mac-address": "c6:44:22:ba:3e:72",
 "vlan-id": 0,
 "port-id": "openflow:1:2"
 },
 {
 "mac-address": "f6:e0:43:b6:3a:b7",
 "vlan-id": 0,
 "port-id": "openflow:2:2"
 }
]
 },
 "mac-map-config": {
 "allowed-hosts": {
 "vlan-host-desc-list": [
 {
 "host": "c6:44:22:ba:3e:72@0"
 },
 {
 "host": "f6:e0:43:b6:3a:b7@0"
 }
]
 }
 }
 }
}

Note

When Deny is configured a broadcast message is sent to all the hosts
connected to the vBridge, so a two end communication need not be
establihed like allow, the hosts can communicate directly without
any two way communication enabled.

	To Deny host h23 communication from hosts connected on vBridge1, the
following configuration can be applied.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-mac-map:set-mac-map -d '{"input":{"operation": "SET", "denied-hosts": ["0a:d3:ea:3d:8f:a5@0"],"tenant-name": "Tenant1","bridge-name": "vBridge1"}}'

Cleaning Up

	You can delete the virtual tenant Tenant1 by executing the
remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"Tenant1"}}'

How To Configure Flowfilters

Overview

	This page explains how to provision flowfilter using VTN Manager.
This page targets Boron release, so the procedure described here
does not work in other releases.

	The flow-filter function discards, permits, or redirects packets of
the traffic within a VTN, according to specified flow conditions. The
table below lists the actions to be applied when a packet matches the
condition:

	Action
	Function

	Pass
	
Permits the packet to pass along the determined
path.

As options, packet transfer priority (set
priority) and DSCP change (set ip-dscp) is
specified.

	Drop
	Discards the packet.

	Redirect
	
Redirects the packet to a desired virtual
interface.

As an option, it is possible to change the MAC
address when the packet is transferred.

[image: Flow Filter Example]
Flow Filter Example

	Following steps explain flow-filter function:
	when a packet is transferred to an interface within a virtual
network, the flow-filter function evaluates whether the
transferred packet matches the condition specifed in the
flow-list.

	If the packet matches the condition, the flow-filter applies the
flow-list matching action specified in the flow-filter.

Requirements

To apply the packet filter, configure the following:

	Create a flow condition.

	Specify where to apply the flow-filter, for example VTN, vBridge, or
interface of vBridge.

To provision OpenFlow switches, this page uses Mininet. Mininet details
and set-up can be referred at the below page:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

Start Mininet, and create three switches (s1, s2, and s3) and four hosts
(h1, h2, h3 and h4) in it.

sudo mn --controller=remote,ip=192.168.0.100 --topo tree,2

Note

Replace “192.168.0.100” with the IP address of OpenDaylight
controller based on your environment.

You can check the topology that you have created by executing “net”
command in the Mininet console.

mininet> net
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2

In this guide, you will provision flowfilters to establish communication
between h1 and h3.

Configuration

To provision the virtual L2 network for the two hosts (h1 and h3),
execute REST API provided by VTN Manager as follows. It uses curl
command to call the REST API.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create two interfaces into the virtual bridge by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

	Configure two mappings on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet.
	The h1 is connected to the port “s2-eth1”.

	The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet.
	The h3 is connected to the port “s3-eth1”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:2", "port-name":"s2-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3", "port-name":"s3-eth1"}}'

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].
	For option source and destination-network, get inet address of
host h1 and h3 from mininet.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.3/32"},"index":"1"}]}}'

	Flowfilter can be applied either in VTN, VBR or VBR Interfaces. Here
in this page we provision flowfilter with VBR Interface and
demonstrate with action type drop and then pass.

	Flow filter demonstration with DROP action-type. Create Flowfilter in
VBR Interface if1 by executing the set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input": {"tenant-name": "vtn1", "bridge-name": "vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","vtn-drop-filter":{},"vtn-flow-action":[{"order": "1","vtn-set-inet-src-action":{"ipv4-address":"10.0.0.1/32"}},{"order": "2","vtn-set-inet-dst-action":{"ipv4-address":"10.0.0.3/32"}}],"index": "1"}]}}'

Verification of the drop filter

	Please execute ping from h1 to h3. As we have applied the action type
“drop” , ping should fail with no packet flows between hosts h1 and
h3 as below,

mininet> h1 ping h3

Configuration for pass filter

	Update the flow filter to pass the packets by executing the
set-flow-filter
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-filter.html#set-flow-filter].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-filter:set-flow-filter -d '{"input": {"tenant-name": "vtn1", "bridge-name": "vbr1","interface-name":"if1","vtn-flow-filter":[{"condition":"cond_1","vtn-pass-filter":{},"vtn-flow-action":[{"order": "1","vtn-set-inet-src-action":{"ipv4-address":"10.0.0.1/32"}},{"order": "2","vtn-set-inet-dst-action":{"ipv4-address":"10.0.0.3/32"}}],"index": "1"}]}}'

Verification For Packets Success

	As we have applied action type PASS now ping should happen between
hosts h1 and h3.

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

	You can also verify the configurations by executing the following
REST API. It shows all configuration in VTN Manager.

curl --user "admin":"admin" -H "Content-type: application/json" -X GET http://localhost:8181/restconf/operational/vtn:vtns/vtn/vtn1

{
 "vtn": [
 {
 "name": "vtn1",
 "vtenant-config": {
 "hard-timeout": 0,
 "idle-timeout": 300,
 "description": "creating vtn"
 },
 "vbridge": [
 {
 "name": "vbr1",
 "vbridge-config": {
 "age-interval": 600,
 "description": "creating vBridge1"
 },
 "bridge-status": {
 "state": "UP",
 "path-faults": 0
 },
 "vinterface": [
 {
 "name": "if1",
 "vinterface-status": {
 "mapped-port": "openflow:2:1",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:2",
 "port-name": "s2-eth1"
 },
 "vinterface-config": {
 "description": "Creating if1 interface",
 "enabled": true
 },
 "vinterface-input-filter": {
 "vtn-flow-filter": [
 {
 "index": 1,
 "condition": "cond_1",
 "vtn-flow-action": [
 {
 "order": 1,
 "vtn-set-inet-src-action": {
 "ipv4-address": "10.0.0.1/32"
 }
 },
 {
 "order": 2,
 "vtn-set-inet-dst-action": {
 "ipv4-address": "10.0.0.3/32"
 }
 }
],
 "vtn-pass-filter": {}
 },
 {
 "index": 10,
 "condition": "cond_1",
 "vtn-drop-filter": {}
 }
]
 }
 },
 {
 "name": "if2",
 "vinterface-status": {
 "mapped-port": "openflow:3:1",
 "state": "UP",
 "entity-state": "UP"
 },
 "port-map-config": {
 "vlan-id": 0,
 "node": "openflow:3",
 "port-name": "s3-eth1"
 },
 "vinterface-config": {
 "description": "Creating if2 interface",
 "enabled": true
 }
 }
]
 }
]
 }
]
}

Cleaning Up

	To clean up both VTN and flowcondition.

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	You can delete the flowcondition cond_1 by executing the
remove-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_1"}}'

How to use VTN to change the path of the packet flow

Overview

	This page explains how to create specific VTN Pathmap using VTN
Manager. This page targets Boron release, so the procedure
described here does not work in other releases.

[image: Pathmap]
Pathmap

Requirement

	Save the mininet script given below as pathmap_test.py and run the
mininet script in the mininet environment where Mininet is installed.

	Create topology using the below mininet script:

from mininet.topo import Topo
class MyTopo(Topo):
 "Simple topology example."
 def __init__(self):
 "Create custom topo."
 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s1')
 middleSwitch = self.addSwitch('s2')
 middleSwitch2 = self.addSwitch('s4')
 rightSwitch = self.addSwitch('s3')
 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, middleSwitch)
 self.addLink(leftSwitch, middleSwitch2)
 self.addLink(middleSwitch, rightSwitch)
 self.addLink(middleSwitch2, rightSwitch)
 self.addLink(rightSwitch, rightHost)
topos = { 'mytopo': (lambda: MyTopo()) }

	After creating new file with the above script start the mininet as
below,

sudo mn --controller=remote,ip=10.106.138.124 --custom pathmap_test.py --topo mytopo

Note

Replace “10.106.138.124” with the IP address of OpenDaylight
controller based on your environment.

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s3-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
c0

	Generate traffic by pinging between host h1 and host h2 before
creating the portmaps respectively.

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

	To change the path of the packet flow, execute REST API provided by
VTN Manager as follows. It uses curl command to call the REST API.

	Create a virtual tenant named vtn1 by executing the update-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#update-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:update-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	Create a virtual bridge named vbr1 in the tenant vtn1 by executing
the update-vbridge
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vbridge.html#update-vbridge].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vbridge:update-vbridge -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1"}}'

	Create two interfaces into the virtual bridge by executing the
update-vinterface
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-vinterface.html#update-vinterface].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-vinterface:update-vinterface -d '{"input":{"tenant-name":"vtn1","bridge-name":"vbr1","interface-name":"if2"}}'

	Configure two mappings on the interfaces by executing the
set-port-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-port-map.html#set-port-map].
	The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:1” of the Mininet.
	The h1 is connected to the port “s1-eth1”.

	The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet.
	The h3 is connected to the port “s3-eth3”.

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if1", "node":"openflow:1", "port-name":"s1-eth1"}}'

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-port-map:set-port-map -d '{"input":{"tenant-name":"vtn1", "bridge-name":"vbr1", "interface-name":"if2", "node":"openflow:3", "port-name":"s3-eth3"}}'

	Genarate traffic by pinging between host h1 and host h2 after
creating the portmaps respectively.

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.861 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.101 ms

	Get the Dataflows information by executing the get-data-flow
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow.html#get-data-flow].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow:get-data-flow -d '{"input":{"tenant-name":"vtn1","mode":"DETAIL","node":"openflow:1","data-flow-port":{"port-id":1,"port-name":"s1-eth1"}}}'

	Create flowcondition named cond_1 by executing the
set-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#set-flow-condition].
	For option source and destination-network, get inet address of
host h1 or host h2 from mininet

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.2/32"},"index":"1"}]}}'

	Create pathmap with flowcondition cond_1 by executing the
set-path-map
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-path-map.html#set-path-map].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-map:set-path-map -d '{"input":{"tenant-name":"vtn1","path-map-list":[{"condition":"cond_1","policy":"1","index": "1","idle-timeout":"300","hard-timeout":"0"}]}}'

	Create pathpolicy by executing the set-path-policy
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-path-policy.html#set-path-policy].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-policy:set-path-policy -d '{"input":{"operation":"SET","id": "1","default-cost": "10000","vtn-path-cost": [{"port-desc":"openflow:1,3,s1-eth3","cost":"1000"},{"port-desc":"openflow:4,2,s4-eth2","cost":"1000"},{"port-desc":"openflow:3,3,s3-eth3","cost":"100000"}]}}'

Verification

	Before applying Path policy get node information by executing get
dataflow command.

"data-flow-info": [
{
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "physical-egress-port": {
 "port-name": "s3-eth1",
 "port-id": "1"
 },
 "node": "openflow:3",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s2-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s2-eth1",
 "port-id": "1"
 },
 "node": "openflow:2",
 "order": 1
 },
 {
 "physical-ingress-port": {
 "port-name": "s1-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "node": "openflow:1",
 "order": 2
 }
],
 "data-egress-node": {
 "interface-name": "if1",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-egress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "data-ingress-node": {
 "interface-name": "if2",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:3",
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "flow-id": 32
 },
}

	After applying Path policy get node information by executing get
dataflow command.

"data-flow-info": [
{
 "physical-route": [
 {
 "physical-ingress-port": {
 "port-name": "s1-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s1-eth3",
 "port-id": "3"
 },
 "node": "openflow:1",
 "order": 0
 },
 {
 "physical-ingress-port": {
 "port-name": "s4-eth1",
 "port-id": "1"
 },
 "physical-egress-port": {
 "port-name": "s4-eth2",
 "port-id": "2"
 },
 "node": "openflow:4",
 "order": 1
 },
 {
 "physical-ingress-port": {
 "port-name": "s3-eth2",
 "port-id": "2"
 },
 "physical-egress-port": {
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "node": "openflow:3",
 "order": 2
 }
],
 "data-egress-node": {
 "interface-name": "if2",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-egress-port": {
 "node": "openflow:3",
 "port-name": "s3-eth3",
 "port-id": "3"
 },
 "data-ingress-node": {
 "interface-name": "if1",
 "bridge-name": "vbr1",
 "tenant-name": "vtn1"
 },
 "data-ingress-port": {
 "node": "openflow:1",
 "port-name": "s1-eth1",
 "port-id": "1"
 },
}

Cleaning Up

	To clean up both VTN and flowcondition.

	You can delete the virtual tenant vtn1 by executing the remove-vtn
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn.html#remove-vtn].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn:remove-vtn -d '{"input":{"tenant-name":"vtn1"}}'

	You can delete the flowcondition cond_1 by executing the
remove-flow-condition
RPC [https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/models/vtn-flow-condition.html#remove-flow-condition].

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:remove-flow-condition -d '{"input":{"name":"cond_1"}}'

VTN Coordinator Usage Examples

How to configure L2 Network with Single Controller

Overview

This example provides the procedure to demonstrate configuration of VTN
Coordinator with L2 network using VTN Virtualization(single controller).
Here is the Example for vBridge Interface Mapping with Single Controller
using mininet. mininet details and set-up can be referred at below URL:
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

[image: EXAMPLE DEMONSTRATING SINGLE CONTROLLER]
EXAMPLE DEMONSTRATING SINGLE CONTROLLER

Requirements

	Configure mininet and create a topology:

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree,2

	mininet> net

s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
h1 h1-eth0:s1-eth1
h2 h2-eth0:s2-eth2

Configuration

	Create a Controller named controllerone and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

	Get the list of logical ports configured

Curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/logical_ports.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet. The h1 is connected
to the port “s2-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet. The h3 is connected
to the port “s3-eth1”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

Verification

Please verify whether the Host1 and Host3 are pinging.

	Send packets from Host1 to Host3

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.079 ms

How to configure L2 Network with Multiple Controllers

	This example provides the procedure to demonstrate configuration of
VTN Coordinator with L2 network using VTN Virtualization Here is the
Example for vBridge Interface Mapping with Multi-controller using
mininet.

[image: EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS]
EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS

Requirements

	Configure multiple controllers using the mininet script given below:
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_multiple_switches_and_OpenFlow_controllers

Configuration

	Create a VTN named vtn3 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn3"}}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create two Controllers named odc1 and odc2 with its ip-address in the
below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "odc1", "ipaddr":"10.100.9.52", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "odc2", "ipaddr":"10.100.9.61", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create two vBridges in the VTN like, vBridge1 in Controller1 and
vBridge2 in Controller2

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vbr1","controller_id":"odc1","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vbr2","controller_id":"odc2","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges.json

	Create two Interfaces if1, if2 for the two vBridges vbr1 and vbr2.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces.json

	Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.1:8083/vtn-webapi/controllers/odc1/domains/\(DEFAULT\)/logical_ports/detail.json

	Create boundary and vLink for the two controllers

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"boundary": {"boundary_id": "b1", "link": {"controller1_id": "odc1", "domain1_id": "(DEFAULT)", "logical_port1_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth3", "controller2_id": "odc2", "domain2_id": "(DEFAULT)", "logical_port2_id": "PP-OF:00:00:00:00:00:00:00:04-s4-eth3"}}}' http://127.0.0.1:8083/vtn-webapi/boundaries.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vlink": {"vlk_name": "vlink1" , "vnode1_name": "vbr1", "if1_name":"if2", "vnode2_name": "vbr2", "if2_name": "if2", "boundary_map": {"boundary_id":"b1","vlan_id": "50"}}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vlinks.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the vbr1 will be mapped to the port “s2-eth2” of
the switch “openflow:2” of the Mininet. The h2 is connected to the port
“s2-eth2”.

The interface if2 of the vbr2 will be mapped to the port “s5-eth2” of
the switch “openflow:5” of the Mininet. The h6 is connected to the port
“s5-eth2”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces/if1/portmap.json

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:05-s5-eth2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces/if1/portmap.json

Verification

Please verify whether Host h2 and Host h6 are pinging.

	Send packets from h2 to h6

mininet> h2 ping h6

PING 10.0.0.6 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.6: icmp_req=1 ttl=64 time=0.780 ms
64 bytes from 10.0.0.6: icmp_req=2 ttl=64 time=0.079 ms

How To Test Vlan-Map In Mininet Environment

Overview

This example explains how to test vlan-map in a multi host scenario.

[image: Example that demonstrates vlanmap testing in Mininet Environment]
Example that demonstrates vlanmap testing in Mininet Environment

Requirements

	Save the mininet script given below as vlan_vtn_test.py and run the
mininet script in the mininet environment where Mininet is installed.

Mininet Script

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan

	Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo mytopo

Configuration

Please follow the below steps to test a vlan map using mininet:

	Create a Controller named controllerone and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers

	Create a VTN named vtn1 by executing the create-vtn command

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create a vlan map with vlanid 200 for vBridge vBridge1

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vlanmap" : {"vlan_id": 200 }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/vlanmaps.json

	Create a vBridge named vBridge2 in the vtn1 by executing the
create-vbr command.

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vbridge" : {"vbr_name":"vBridge2","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create a vlan map with vlanid 300 for vBridge vBridge2

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' -d '{"vlanmap" : {"vlan_id": 300 }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge2/vlanmaps.json

Verification

Ping all in mininet environment to view the host reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

How To View Specific VTN Station Information.

This example demonstrates on how to view a specific VTN Station
information.

[image: EXAMPLE DEMONSTRATING VTN STATIONS]
EXAMPLE DEMONSTRATING VTN STATIONS

Requirement

	Configure mininet and create a topology:

 $ sudo mn --custom /home/mininet/mininet/custom/topo-2sw-2host.py --controller=remote,ip=10.100.9.61 --topo mytopo
mininet> net

 s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
 s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
 h1 h1-eth0:s1-eth1
 h2 h2-eth0:s2-eth2

	Generate traffic by pinging between hosts h1 and h2 after configuring
the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=16.7 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=13.2 ms

Configuration

	Create a Controller named controllerone and mention its ip-address in
the below create-controller command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.100.9.61", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s1-eth1” of the switch “openflow:1” of the Mininet. The h1 is connected
to the port “s1-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s1-eth2” of the switch “openflow:1” of the Mininet. The h2 is connected
to the port “s1-eth2”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}' http://17.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

	Get the VTN stations information

curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?controller_id=controllerone&vtn_name=vtn1"

Verification

curl -X GET -H 'content-type: application/json' -H 'username: admin' -H 'password: adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?controller_id=controllerone&vtn_name=vtn1"
{
 "vtnstations": [
 {
 "domain_id": "(DEFAULT)",
 "interface": {},
 "ipaddrs": [
 "10.0.0.2"
],
 "macaddr": "b2c3.06b8.2dac",
 "no_vlan_id": "true",
 "port_name": "s2-eth2",
 "station_id": "178195618445172",
 "switch_id": "00:00:00:00:00:00:00:02",
 "vnode_name": "vBridge1",
 "vnode_type": "vbridge",
 "vtn_name": "vtn1"
 },
 {
 "domain_id": "(DEFAULT)",
 "interface": {},
 "ipaddrs": [
 "10.0.0.1"
],
 "macaddr": "ce82.1b08.90cf",
 "no_vlan_id": "true",
 "port_name": "s1-eth1",
 "station_id": "206130278144207",
 "switch_id": "00:00:00:00:00:00:00:01",
 "vnode_name": "vBridge1",
 "vnode_type": "vbridge",
 "vtn_name": "vtn1"
 }
]
}

How To View Dataflows in VTN

This example demonstrates on how to view a specific VTN Dataflow
information.

Configuration

The same Configuration as Vlan Mapping
Example(https://wiki.opendaylight.org/view/VTN:Coordinator:Beryllium:HowTos:How_To_test_vlanmap_using_mininet)

Verification

Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass' "http://127.0.0.1:8083/vtn-webapi/dataflows?controller_id=controllerone&srcmacaddr=924c.e4a3.a743&vlan_id=300&switch_id=openflow:2&port_name=s2-eth1"

{
 "dataflows": [
 {
 "controller_dataflows": [
 {
 "controller_id": "controllerone",
 "controller_type": "odc",
 "egress_domain_id": "(DEFAULT)",
 "egress_port_name": "s3-eth3",
 "egress_station_id": "3",
 "egress_switch_id": "00:00:00:00:00:00:00:03",
 "flow_id": "29",
 "ingress_domain_id": "(DEFAULT)",
 "ingress_port_name": "s2-eth2",
 "ingress_station_id": "2",
 "ingress_switch_id": "00:00:00:00:00:00:00:02",
 "match": {
 "macdstaddr": [
 "4298.0959.0e0b"
],
 "macsrcaddr": [
 "924c.e4a3.a743"
],
 "vlan_id": [
 "300"
]
 },
 "pathinfos": [
 {
 "in_port_name": "s2-eth2",
 "out_port_name": "s2-eth1",
 "switch_id": "00:00:00:00:00:00:00:02"
 },
 {
 "in_port_name": "s1-eth2",
 "out_port_name": "s1-eth3",
 "switch_id": "00:00:00:00:00:00:00:01"
 },
 {
 "in_port_name": "s3-eth1",
 "out_port_name": "s3-eth3",
 "switch_id": "00:00:00:00:00:00:00:03"
 }
]
 }
],
 "reason": "success"
 }
]
}

How To Configure Flow Filters Using VTN

Overview

The flow-filter function discards, permits, or redirects packets of the
traffic within a VTN, according to specified flow conditions The table
below lists the actions to be applied when a packet matches the
condition:

	Action
	Function

	Pass
	Permits the packet to pass. As
options, packet transfer priority
(set priority) and DSCP change (se t
ip-dscp) is specified.

	Drop
	Discards the packet.

	Redirect
	Redirects the packet to a desired
virtual interface. As an option, it
is possible to change the MAC
address when the packet is
transferred.

[image: Flow Filter]
Flow Filter

Following steps explain flow-filter function:

	When a packet is transferred to an interface within a virtual
network, the flow-filter function evaluates whether the transferred
packet matches the condition specified in the flow-list.

	If the packet matches the condition, the flow-filter applies the
flow-list matching action specified in the flow-filter.

Requirements

To apply the packet filter, configure the following:

	Create a flow-list and flow-listentry.

	Specify where to apply the flow-filter, for example VTN, vBridge, or
interface of vBridge.

Configure mininet and create a topology:

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree

Please generate the following topology

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo tree,2
mininet> net
c0
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2

Configuration

	Create a Controller named controller1 and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "controller1", "ipaddr":"10.100.9.61", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers

	Create a VTN named vtn_one by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn_one","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vbr_two in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vbr_one^C"controller_id":"controller1","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" :
{"vbr_name":"vbr_two","controller_id":"controller1","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges.json

	Create two Interfaces named if1 and if2 into the vbr_two

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json

	Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http://127.0.0.1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/logical_ports.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s2-eth1” of the switch “openflow:2” of the Mininet. The h1 is connected
to the port “s2-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s3-eth1” of the switch “openflow:3” of the Mininet. The h3 is connected
to the port “s3-eth1”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if2/portmap.json

	Create Flowlist

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"flowlist": {"fl_name": "flowlist1", "ip_version":"IP"}}' http://127.0.0.1:8083/vtn-webapi/flowlists.json

	Create Flowlistentry

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"flowlistentry": {"seqnum": "233","macethertype": "0x8000","ipdstaddr": "10.0.0.3","ipdstaddrprefix": "2","ipsrcaddr": "10.0.0.2","ipsrcaddrprefix": "2","ipproto": "17","ipdscp": "55","icmptypenum":"232","icmpcodenum": "232"}}' http://127.0.0.1:8083/vtn-webapi/flowlists/flowlist1/flowlistentries.json

	Create vBridge Interface Flowfilter

curl --user admin:adminpass -X POST -H 'content-type: application/json' -d '{"flowfilter" : {"ff_type": "in"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters.json

Flow filter demonstration with DROP action-type

curl --user admin:adminpass -X POST -H 'content-type: application/json' -d '{"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1", "action_type":"drop", "priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters/in/flowfilterentries.json

Verification

As we have applied the action type “drop” , ping should fail.

mininet> h1 ping h3
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable

Flow filter demonstration with PASS action-type

curl --user admin:adminpass -X PUT -H 'content-type: application/json' -d '{"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1", "action_type":"pass", "priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters/in/flowfilterentries/233.json

Verification

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

How To Use VTN To Make Packets Take Different Paths

This example demonstrates on how to create a specific VTN Path Map
information.

[image: PathMap]
PathMap

Requirement

	Save the mininet script given below as pathmap_test.py and run the
mininet script in the mininet environment where Mininet is installed.

	Create topology using the below mininet script:

from mininet.topo import Topo
class MyTopo(Topo):
 "Simple topology example."
 def __init__(self):
 "Create custom topo."
 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s1')
 middleSwitch = self.addSwitch('s2')
 middleSwitch2 = self.addSwitch('s4')
 rightSwitch = self.addSwitch('s3')
 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, middleSwitch)
 self.addLink(leftSwitch, middleSwitch2)
 self.addLink(middleSwitch, rightSwitch)
 self.addLink(middleSwitch2, rightSwitch)
 self.addLink(rightSwitch, rightHost)
topos = { 'mytopo': (lambda: MyTopo()) }

mininet> net
c0
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
h1 h1-eth0:s1-eth1
h2 h2-eth0:s3-eth3

	Generate traffic by pinging between hosts h1 and h2 before creating
the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

	Create a Controller named controller1 and mention its ip-address in
the below create-controller command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"controller": {"controller_id": "odc", "ipaddr":"10.100.9.42", "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-webapi/controllers.json

	Create a VTN named vtn1 by executing the create-vtn command

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

	Create a vBridge named vBridge1 in the vtn1 by executing the
create-vbr command.

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"odc","domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges.json

	Create two Interfaces named if1 and if2 into the vBridge1

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl --user admin:adminpass -H 'content-type: application/json' -X POST -d '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

	Configure two mappings on each of the interfaces by executing the
below command.

The interface if1 of the virtual bridge will be mapped to the port
“s1-eth1” of the switch “openflow:1” of the Mininet. The h1 is connected
to the port “s1-eth1”.

The interface if2 of the virtual bridge will be mapped to the port
“s3-eth3” of the switch “openflow:3” of the Mininet. The h2 is connected
to the port “s3-eth3”.

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth3"}}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/portmap.json

	Generate traffic by pinging between hosts h1 and h2 after creating
the portmaps respectively

mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=36.4 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.880 ms
64 bytes from 10.0.0.2: icmp_req=3 ttl=64 time=0.073 ms
64 bytes from 10.0.0.2: icmp_req=4 ttl=64 time=0.081 ms

	Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass' "http://127.0.0.1:8083/vtn-webapi/dataflows?&switch_id=00:00:00:00:00:00:00:01&port_name=s1-eth1&controller_id=odc&srcmacaddr=de3d.7dec.e4d2&no_vlan_id=true"

	Create a Flowcondition in the VTN

(The flowconditions, pathmap and pathpolicy commands have to be
executed in the controller).

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-flow-condition:set-flow-condition -d '{"input":{"operation":"SET","present":"false","name":"cond_1", "vtn-flow-match":[{"vtn-ether-match":{},"vtn-inet-match":{"source-network":"10.0.0.1/32","protocol":1,"destination-network":"10.0.0.2/32"},"index":"1"}]}}'

	Create a Pathmap in the VTN

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-map:set-path-map -d '{"input":{"tenant-name":"vtn1","path-map-list":[{"condition":"cond_1","policy":"1","index": "1","idle-timeout":"300","hard-timeout":"0"}]}}'

	Get the Path policy information

curl --user "admin":"admin" -H "Content-type: application/json" -X POST http://localhost:8181/restconf/operations/vtn-path-policy:set-path-policy -d '{"input":{"operation":"SET","id": "1","default-cost": "10000","vtn-path-cost": [{"port-desc":"openflow:1,3,s1-eth3","cost":"1000"},{"port-desc":"openflow:4,2,s4-eth2","cost":"100000"},{"port-desc":"openflow:3,3,s3-eth3","cost":"10000"}]}}'

Verification

	Before applying Path policy information in the VTN

{
 "pathinfos": [
 {
 "in_port_name": "s1-eth1",
 "out_port_name": "s1-eth3",
 "switch_id": "openflow:1"
 },
 {
 "in_port_name": "s4-eth1",
 "out_port_name": "s4-eth2",
 "switch_id": "openflow:4"
 },
 {
 "in_port_name": "s3-eth2",
 "out_port_name": "s3-eth3",
 "switch_id": "openflow:3"
 }
]
}

	After applying Path policy information in the VTN

{
 "pathinfos": [
 {
 "in_port_name": "s1-eth1",
 "out_port_name": "s1-eth2",
 "switch_id": "openflow:1"
 },
 {
 "in_port_name": "s2-eth1",
 "out_port_name": "s2-eth2",
 "switch_id": "openflow:2"
 },
 {
 "in_port_name": "s3-eth1",
 "out_port_name": "s3-eth3",
 "switch_id": "openflow:3"
 }
]
}

VTN Coordinator(Troubleshooting HowTo)

Overview

This page demonstrates Installation troubleshooting steps of VTN
Coordinator. OpenDaylight VTN provides multi-tenant virtual network
functions on OpenDaylight controllers. OpenDaylight VTN consists of two
parts:

	VTN Coordinator.

	VTN Manager.

VTN Coordinator orchestrates multiple VTN Managers running in
OpenDaylight Controllers, and provides VTN Applications with VTN API.
VTN Manager is OSGi bundles running in OpenDaylight Controller. Current
VTN Manager supports only OpenFlow switches. It handles PACKET_IN
messages, sends PACKET_OUT messages, manages host information, and
installs flow entries into OpenFlow switches to provide VTN Coordinator
with virtual network functions. The requirements for installing these
two are different.Therefore, we recommend that you install VTN Manager
and VTN Coordinator in different machines.

List of installation Troubleshooting How to’s

	https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator

After executing db_setup, you have encountered the error “Failed to
setup database”?

The error could be due to the below reasons

	Access Restriction

The user who owns /usr/local/vtn/ directory and installs VTN
Coordinator, can only start db_setup. Example :

The directory should appear as below (assuming the user as "vtn"):
ls -l /usr/local/
 drwxr-xr-x. 12 vtn vtn 4096 Mar 14 21:53 vtn
If the user doesnot own /usr/local/vtn/ then, please run the below command (assuming the username as vtn),
 chown -R vtn:vtn /usr/local/vtn

	Postgres not Present

1. In case of Fedora/CentOS/RHEL, please check if /usr/pgsql/<version> directory is present and also ensure the commands initdb, createdb,pg_ctl,psql are working. If, not please re-install postgres packages
2. In case of Ubuntu, check if /usr/lib/postgres/<version> directory is present and check for the commands as in the previous step.

	Not enough space to create tables

Please check df -k and ensure enough free space is available.

	If the above steps do not solve the problem, please refer to the log
file for the exact problem

/usr/local/vtn/var/dbm/unc_setup_db.log for the exact error.

	list of VTN Coordinator processes

	Run the below command ensure the Coordinator daemons are running.

 Command: /usr/local/vtn/bin/unc_dmctl status
 Name Type IPC Channel PID
----------- ----------- -------------- ------
 drvodcd DRIVER drvodcd 15972
 lgcnwd LOGICAL lgcnwd 16010
 phynwd PHYSICAL phynwd 15996

	Issue the curl command to fetch version and ensure the process is
able to respond.

How to debug a startup failure?.

The following activities take place in order during startup

	Database server is started after setting virtual memory to required
value,Any database startup errors will be reflected in any of the
below logs.

/usr/local/vtn/var/dbm/unc_db_script.log.
/usr/local/vtn/var/db/pg_log/postgresql-*.log (the pattern will have the date)

	uncd daemon is kicked off, The daemon in turn kicks off the rest of
the daemons.

Any uncd startup failures will be reflected in /usr/local/vtn/var/uncd/uncd_start.err.

After setting up the apache tomcat server, what are the aspects that should be checked.

Please check if catalina is running..

The command ps -ef | grep catalina | grep -v grep should list a catalina process

If you encounter an erroneous situation where the REST API is always
failing..

Please ensure the firewall settings for port:8181 (Beryllium release) or port:8083 (Post Beryllium release) and enable the same.

How to debug a REST API returning a failure message?.

Please check the /usr/share/java/apache-tomcat-7.0.39/logs/core/core.log
for failure details.

REST API for VTN configuration fails, how to debug?.

The default log level for all daemons is “INFO”, to debug the situation
TRACE or DEBUG logs may be needed. To increase the log level for
individual daemons, please use the commands suggested below

/usr/local/vtn/bin/lgcnw_control loglevel trace -- upll daemon log
 /usr/local/vtn/bin/phynw_control loglevel trace -- uppl daemon log
 /usr/local/vtn/bin/unc_control loglevel trace -- uncd daemon log
 /usr/local/vtn/bin/drvodc_control loglevel trace -- Driver daemon log

After setting the log levels, the operation can be repeated and the log
files can be referred for debugging.

Problems while Installing PostgreSQL due to openssl.

Errors may occur when trying to install postgreSQL rpms. Recently
PostgreSQL has upgraded all their binaries to use the latest openssl
versions with fix for http://en.wikipedia.org/wiki/Heartbleed Please
upgrade the openssl package to the latest version and re-install. For
RHEL 6.1/6.4 : If you have subscription, Please use the same and update
the rpms. The details are available in the following link
https://access.redhat.com/site/solutions/781793 ACCESS-REDHAT

rpm -Uvh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-1.0.1e-15.el6.x86_64.rpm
rpm -ivh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-devel-1.0.1e-15.el6.x86_64.rpm

For other linux platforms, Please do yum update, the public respositroes
will have the latest openssl, please install the same.

Support for Microsoft SCVMM 2012 R2 with ODL VTN

Introduction

System Center Virtual Machine Manager (SCVMM) is Microsoft’s virtual
machine support center for window’s based emulations. SCVMM is a
management solution for the virtualized data center. You can use it to
configure and manage your virtualization host, networking, and storage
resources in order to create and deploy virtual machines and services to
private clouds that you have created.

The VSEM Provider is a plug-in to bridge between SCVMM and OpenDaylight.

Microsoft Hyper-V is a server virtualization developed by Microsoft,
which provides virtualization services through hypervisor-based
emulations.

[image: Set-Up Diagram]
Set-Up Diagram

The topology used in this set-up is:

	A SCVMM with VSEM Provider installed and a running VTN Coordinator
and OpenDaylight with VTN Feature installed.

	PF1000 virtual switch extension has been installed in the two Hyper-V
servers as it implements the OpenFlow capability in Hyper-V.

	Three OpenFlow switches simulated using mininet and connected to
Hyper-V.

	Four VM’s hosted using SCVMM.

It is implemented as two major components:

	SCVMM

	OpenDaylight (VTN Feature)

	VTN Coordinator

VTN Coordinator

OpenDaylight VTN as Network Service provider for SCVMM where VSEM
provider is added in the Network Service which will handle all requests
from SCVMM and communicate with the VTN Coordinator. It is used to
manage the network virtualization provided by OpenDaylight.

Installing HTTPS in VTN Coordinator

	System Center Virtual Machine Manager (SCVMM) supports only https
protocol.

Apache Portable Runtime (APR) Installation Steps

	Enter the command “yum install apr” in VTN Coordinator installed
machine.

	In /usr/bin, create a soft link as “ln –s /usr/bin/apr-1-config
/usr/bin/apr-config”.

	Extract tomcat under “/usr/share/java” by using the below command
“tar -xvf apache-tomcat-8.0.27.tar.gz –C /usr/share/java”.

Note

Please go through the bleow link to download
apache-tomcat-8.0.27.tar.gz file,
https://archive.apache.org/dist/tomcat/tomcat-8/v8.0.27/bin/

	Please go to the directory “cd
/usr/share/java/apache-tomcat-8.0.27/bin and unzip tomcat-native.gz
using this command “tar -xvf tomcat-native.gz”.

	Go to the directory “cd
/usr/share/java/apache-tomcat-8.0.27/bin/tomcat-native-1.1.33-src/jni/native”.

	Enter the command ”./configure –with-os-type=bin
–with-apr=/usr/bin/apr-config”.

	Enter the command “make” and “make install”.

	Apr libraries are successfully installed in “/usr/local/apr/lib”.

Enable HTTP/HTTPS in VTN Coordinator

Enter the command “firewall-cmd –zone=public –add-port=8083/tcp
–permanent” and “firewall-cmd –reload” to enable firewall settings in
server.

Create a CA’s private key and a self-signed certificate in server

	Execute the following command “openssl req -x509 -days 365
-extensions v3_ca -newkey rsa:2048 –out /etc/pki/CA/cacert.pem
–keyout /etc/pki/CA/private/cakey.pem” in a single line.

	Argument
	Description

	Country Name
	
Specify the country code.

For example, JP

	State or Province
Name
	
Specify the state or province.

For example, Tokyo

	Locality Name
	
Locality Name

For example, Chuo-Ku

	Organization Name
	Specify the company.

	Organizational Unit
Name
	Specify the department, division, or the like.

	Common Name
	Specify the host name.

	Email Address
	Specify the e-mail address.

	Execute the following commands: “touch /etc/pki/CA/index.txt” and
“echo 00 > /etc/pki/CA/serial” in server after setting your CA’s
private key.

Create a private key and a CSR for web server

	Execute the following command “openssl req -new -newkey rsa:2048 -out
csr.pem –keyout /usr/local/vtn/tomcat/conf/key.pem” in a single line.

	Enter the PEM pass phrase: Same password you have given in CA’s
private key PEM pass phrase.

	Argument
	Description

	Country Name
	
Specify the country code.

For example, JP

	State or Province
Name
	
Specify the state or province.

For example, Tokyo

	Locality Name
	
Locality Name

For example, Chuo-Ku

	Organization Name
	Specify the company.

	Organizational Unit
Name
	Specify the department, division, or the like.

	Common Name
	Specify the host name.

	Email Address
	Specify the e-mail address.

	A challenge password
	Specify the challenge password.

	An optional company
name
	Specify an optional company name.

Create a certificate for web server

	Execute the following command “openssl ca –in csr.pem –out
/usr/local/vtn/tomcat/conf/cert.pem –days 365 –batch” in a single
line.

	Enter pass phrase for /etc/pki/CA/private/cakey.pem: Same password
you have given in CA’s private key PEM pass phrase.

	Open the tomcat file using “vim /usr/local/vtn/tomcat/bin/tomcat”.

	Include the line ” TOMCAT_PROPS=”$TOMCAT_PROPS
-Djava.library.path=\”/usr/local/apr/lib\”” ” in 131th line and
save the file.

Edit server.xml file and restart the server

	Open the server.xml file using “vim
/usr/local/vtn/tomcat/conf/server.xml” and add the below lines.

<Connector port="${vtn.port}" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
SSLCertificateFile="/usr/local/vtn/tomcat/conf/cert.pem"
SSLCertificateKeyFile="/usr/local/vtn/tomcat/conf/key.pem"
SSLPassword=same password you have given in CA's private key PEM pass phrase
connectionTimeout="20000" />

	Save the file and restart the server.

	To stop vtn use the following command.

/usr/local/vtn/bin/vtn_stop

	To start vtn use the following command.

/usr/local/vtn/bin/vtn_start

	Copy the created CA certificate from cacert.pem to cacert.crt by
using the following command,

openssl x509 –in /etc/pki/CA/cacert.pem –out cacert.crt

Checking the HTTP and HTTPS connection from client

	You can check the HTTP connection by using the following command:

curl -X GET -H 'contenttype:application/json' -H 'username:admin' -H 'password:adminpass' http://<server IP address>:8083/vtn-webapi/api_version.json

	You can check the HTTPS connection by using the following command:

curl -X GET -H 'contenttype:application/json' -H 'username:admin' -H 'password:adminpass' https://<server IP address>:8083/vtn-webapi/api_version.json --cacert /etc/pki/CA/cacert.pem

	The response should be like this for both HTTP and HTTPS:

{"api_version":{"version":"V1.4"}}

Prerequisites to create Network Service in SCVMM machine, Please follow the below steps

	Please go through the below link to download VSEM Provider zip file,
https://nexus.opendaylight.org/content/groups/public/org/opendaylight/vtn/application/vtnmanager-vsemprovider/1.2.0-Boron/vtnmanager-vsemprovider-1.2.0-Boron-bin.zip

	Unzip the vtnmanager-vsemprovider-1.2.0-Boron-bin.zip file
anywhere in your SCVMM machine.

	Stop SCVMM service from “service manager→tools→servers→select
system center virtual machine manager” and click stop.

	Go to “C:/Program Files” in your SCVMM machine. Inside
“C:/Program Files”, create a folder named as “ODLProvider”.

	Inside “C:/Program Files/ODLProvider”, create a folder named as
“Module” in your SCVMM machine.

	Inside “C:/Program Files/ODLProvider/Module”, Create two folders
named as “Odl.VSEMProvider” and “VSEMOdlUI” in your SCVMM
machine.

	Copy the “VSEMOdl.dll” file from
“ODL_SCVMM_PROVIDER/ODL_VSEM_PROVIDER” to “C:/Program
Files/ODLProvider/Module/Odl.VSEMProvider” in your SCVMM machine.

	Copy the “VSEMOdlProvider.psd1” file from
“application/vsemprovider/VSEMOdlProvider/VSEMOdlProvider.psd1”
to “C:/Program Files/ODLProvider/Module/Odl.VSEMProvider” in
your SCVMM machine.

	Copy the “VSEMOdlUI.dll” file from
“ODL_SCVMM_PROVIDER/ODL_VSEM_PROVIDER_UI” to “C:/Program
Files/ODLProvider/Module/VSEMOdlUI” in your SCVMM machine.

	Copy the “VSEMOdlUI.psd1” file from
“application/vsemprovider/VSEMOdlUI” to “C:/Program
Files/ODLProvider/Module/VSEMOdlUI” in your SCVMM machine.

	Copy the “reg_entry.reg” file from
“ODL_SCVMM_PROVIDER/Register_settings” to your SCVMM desktop
and double click the “reg_entry.reg” file to install registry
entry in your SCVMM machine.

	Download “PF1000.msi” from this link,
https://www.pf-info.com/License/en/index.php?url=index/index_non_buyer
and place into “C:/Program Files/Switch Extension Drivers” in
your SCVMM machine.

	Start SCVMM service from “service manager→tools→servers→select
system center virtual machine manager” and click start.

System Center Virtual Machine Manager (SCVMM)

It supports two major features:

	Failover Clustering

	Live Migration

Failover Clustering

A single Hyper-V can host a number of virtual machines. If the host were
to fail then all of the virtual machines that are running on it will
also fail, thereby resulting in a major outage. Failover clustering
treats individual virtual machines as clustered resources. If a host
were to fail then clustered virtual machines are able to fail over to a
different Hyper-V server where they can continue to run.

Live Migration

Live Migration is used to migrate the running virtual machines from one
Hyper-V server to another Hyper-V server without any interruptions.
Please go through the below video for more details,

	https://youtu.be/34YMOTzbNJM

SCVMM User Guide

	Please go through the below link for SCVMM user guide:
https://wiki.opendaylight.org/images/c/ca/ODL_SCVMM_USER_GUIDE_final.pdf

	Please go through the below links for more details
	OpenDaylight SCVMM VTN Integration: https://youtu.be/iRt4dxtiz94

	OpenDaylight Congestion Control with SCVMM VTN:
https://youtu.be/34YMOTzbNJM

YANG IDE User Guide

Overview

The YANG IDE project provides an Eclipse plugin that is used to create,
view, and edit Yang model files. It currently supports version 1.0 of
the Yang specification.

The YANG IDE project uses components from the OpenDaylight project for
parsing and verifying Yang model files. The “yangtools” parser in
OpenDaylight is generally used for generating Java code associated with
Yang models. If you are just using the YANG IDE to view and edit Yang
models, you do not need to know any more about this.

Although the YANG IDE plugin is used in Eclipse, it is not necessary to
be familiar with the Java programming language to use it effectively.

The YANG IDE also uses the Maven build tool, but you do not have to be a
Maven expert to use it, or even know that much about it. Very little
configuration of Maven files will have to be done by you. In fact, about
the only thing you will likely ever need to change can be done entirely
in the Eclipse GUI forms, without even seeing the internal structure of
the Maven POM file (Project Object Model).

The YANG IDE plugin provides features that are similar to other
programming language plugins in the Eclipse ecosystem.

For instance, you will find support for the following:

	Immediate “as-you-type” display of syntactic and semantic errors

	Intelligent completion of language tokens, limited to only choices
valid in the current scope and namespace

	Consistent (and customizable) color-coding of syntactic and semantic
symbols

	Provides access to remote Yang models by specifying dependency on
Maven artifact containing models (or by manual inclusion in project)

	One-click navigation to referenced symbols in external files

	Mouse hovers display descriptions of referenced components

	Tools for refactoring or renaming components respect namespaces

	Code templates can be entered for common conventions

Forthcoming sections of this manual will step through how to utilize
these features.

Creating a Yang Project

After the plugin is installed, the next thing you have to do is create a
Yang Project. This is done from the “File” menu, selecting “New”, and
navigating to the “Yang” section and selecting “YANG Project”, and then
clicking “Next” for more items to configure.

Some shortcuts for these steps are the following:

	Typically, the key sequence “Ctrl+n” (press “n” while holding down
one of the “ctrl” keys) is bound to the “new” function

	In the “New” wizard dialog, the initial focus is in the filter field,
where you can enter “yang” to limit the choices to only the functions
provided by the YANG IDE plugin

	On the “New” wizard dialog, instead of clicking the “Next” button
with your mouse, you can press “Alt+n” (you will see a hint for this
with the “N” being underlined)

First Yang Project Wizard Page

After the “Next” button is pressed, it goes to the first wizard page
that is specific to creating Yang projects. you will see a subtitle on
this page of “YANG Tools Configuration”. In almost all cases, you should
be able to click “Next” again on this page to go to the next wizard
page.

However, some information about the fields on this page would be
helpful.

You will see the following labeled fields and sections:

Yang Files Root Directory

This defaults to “src/main/yang”. Except when creating your first Yang
file, you, you do not even have to know this, as Eclipse presents the
same interface to view your Yang files no matter what you set this to.

Source Code Generators

If you do not know what this is, you do not need to know about it. The
“yangtools” Yang parser from OpenDaylight uses a “code generator”
component to generate specific kinds of Java classes from the Yang
models. Again, if you do not need to work with the generated Java code,
you do not need to change this.

Create Example YANG File

This is likely the only field you will ever have any reason to change.
If this checkbox is set, when the YANG IDE creates the Yang project, it
will create a sample “acme-system.yang” file which you can view and edit
to demonstrate the features of the tool to yourself. If you do not need
this file, then either delete it from the project or uncheck the
checkbox to prevent its creation.

When done with the fields on this page, click the “Next” button to go to
the next wizard page.

Second Yang Project Wizard Page

This page has a subtitle of “New Maven project”. There are several
fields on this page, but you will only ever have to see and change the
setting of the first field, the “Create a simple project” checkbox. You
should always set this ON to avoid the selection of a Maven archetype,
which is something you do not need to do for creating a Yang project.

Click “Next” at the bottom of the page to move to the next wizard page.

Third Yang Project Wizard Page

This also has a subtitle of “New Maven project”, but with different
fields to set. You will likely only ever set the first two fields, and
completely ignore everything else.

The first field is labeled “Group id” in the “Artifact” section. It
really does not matter what you set this to, but it does have to be set
to something. For consistency, you might set this to the name or
nickname of your organization. Otherwise, there are no constraints on
the value of this field.

The second field is labeled “Artifact id”. The value of this field will
be used as the name of the project you create, so you will have to think
about what you want the project to be called. Also note that this name
has to be unique in the Eclipse workspace. You cannot have two projects
with the same name.

After you have set this field, you will notice that the “Next” button is
insensitive, but now the “Finish” button is sensitive. You can click
“Finish” now (or use the keyboard shortcut of “Alt+f”), and the Yang IDE
will finally create your project.

Creating a Yang File

Now that you have created your project, it is time to create your first
Yang file.

When you created the Yang project, you might have noticed the other
option next to “YANG Project”, which was “YANG File”. That is what you
will select now. Click “Next” to go to the first wizard page.

First Yang File Wizard Page

This wizard page lets you specify where the new file will be located,
and its name.

You have to select the particular project you want the file to go into,
and it needs to go into the “src/main/yang” folder (or a different
location if you changed that field when creating the project).

You then enter the desired name of the file in the “File name”. The file
name should have no spaces or “special characters” in it. You can
specify a ”.yang” extent if you want. If you do not specify an extent,
the YANG IDE will create it with the ”.yang” extent.

Click “Next” to go to the next wizard page.

Second Yang File Wizard Page

On this wizard page, you set some metadata about the module that is used
to initialize the contents of the Yang file.

It has the following fields:

Module Name

This will default to the “base name” of the file name you created. For
instance, if the file name you created was “network-setup.yang”, this
field will default to “network-setup”. You should leave this value as
is. There is no good reason to define a model with a name different from
the file name.

Namespace

This defaults to “urn:opendaylight:xxx”, where “xxx” is the “base name”
of the file name you created. You should put a lot of thought into
designing a namespace naming scheme that is used throughout your
organization. It is quite common for this namespace value to look like a
“http” URL, but note that that is just a convention, and will not
necessarily imply that there is a web page residing at that HTTP
address.

Prefix

This defaults to the “base name” of the file name you created. It mostly
does not technically matter what you set this to, as long as it is not
empty. Conventionally, it should be a “nickname” that is used to refer
to the given namespace in an abbreviated form, when referenced in an
“import” statement in another Yang model file.

Revision

This has to be a date value in the form of “yyyy-mm-dd”, representing
the last modified date of this Yang model. The value will default to the
current date.

Revision Description

This is just human-readable text, which will go into the “description”
field underneath the Yang “revision” field, which will describe what
went into this revision.

When all the fields have the content you want, click the “Finish” button
to set the YANG IDE create the file in the specified location. It will
then present the new file in the editor view for additional
modifications.

Accessing Artifacts for Yang Model Imports

You might be working on Yang models that are “abstract” or are intended
to be imported by other Yang models. You might also, and more likely, be
working on Yang models that import other “abstract” Yang models.

Assuming you are in that latter more common group, you need to consider
for yourself, and for your organization, how you are going to get access
to those models that you import.

You could use a very simple and primitive approach of somehow obtaining
those models from some source as plain files and just copying them into
the “src/main/yang” folder of your project. For a simple demo or a
“one-off” very short project, that might be sufficient.

A more robust and maintainable approach would be to reference
“coordinates” of the artifacts containing Yang models to import. When
you specify unique coordinates associated with that artifact, the Yang
IDE can retrieve the artifact in the background and make it available
for your “import” statements.

Those “coordinates” that I speak of refer to the Maven concepts of
“group id”, “artifact id”, and “version”. you may remember “group id”
and “artifact id” from the wizard page for creating a Yang project. It
is the same idea. If you ever produce Yang model artifacts that other
people are going to import, you will want to think more about what you
set those values to when you created the project.

For example, the OpenDaylight project produces several importable
artifacts that you can specify to get access to common Yang models.

Turning on Indexing for Maven Repositories

Before we talk about how to add dependencies to Maven artifacts with
Yang models for import, I need to explain how to make it easier to find
those artifacts.

In the Yang project that you have created, the “pom.xml” file (also
called a “POM file”) is the file that Maven uses to specify
dependencies. We will talk about that in a minute, but first we need to
talk about “repositories”. These are where artifacts are stored.

We are going to have Eclipse show us the “Maven Repositories” view. In
the main menu, select “Window” and then “Show View”, and then “Other”.
Like in the “New” dialog, you can enter “maven” in the filter field to
limit the list to views with “maven” in the name. Click on the “Maven
Repositories” entry and click OK.

This will usually create the view in the bottom panel of the window.

The view presents an outline view of four principal elements:

	Local Repositories

	Global Repositories

	Project Repositories

	Custom Repositories

For this purpose, the only section you care about is “Project
Repositories”, being the repositories that are only specified in the POM
for the project. There should be a “right-pointing arrow” icon on the
line. Click that to expand the entry.

You should see two entries there:

	opendaylight-release

	opendaylight-snapshot

You will also see internet URLs associated with each of those
repositories.

For this purpose, you only care about the first one. Right-click on that
entry and select “Full Index Enabled”. The first time you do this on the
first project you create, it will spend several minutes walking the
entire tree of artifacts available at that repository and “indexing” all
of those components. When this is done, searching for available
artifacts in that repository will go very quickly.

Adding Dependencies Containing Yang Models

Double-click the “pom.xml” file in your project. Instead of just
bringing up the view of an XML file (although you can see that if you
like), it presents a GUI form editor with a handful of tabs.

The first tab, “Overview”, shows things like the “Group Id”, “Artifact
Id”, and “Version”, which represents the “Maven coordinate” of your
project, which I have mentioned before.

Now click on the “Dependencies” tab. You will now see two list
components, labeled “Dependencies” and “Dependency Management”. You only
care about the “Dependencies” section.

In the “Dependencies” section, you should see one dependency for an
artifact called “yang-binding”. This artifact is part of OpenDaylight,
but you do not need to know anything about it.

Now click the “Add” button.

This brings up a dialog titled “Select Dependency”. It has three fields
at the top labeled “Group Id”, “Artifact Id”, and “Version”, with a
“Scope” dropdown. You will never have a need to change the “Scope”
dropdown, so ignore it. Despite the fact that you will need to get
values into these fields, in general usage, you will never have to
manually enter values into them, but you will see values being inserted
into these fields by the next steps I describe.

Below those fields is a field labeled “Enter groupId, artifactId …”.
This is effectively a “filter field”, like on the “New” dialog, but
instead of limiting the list from a short list of choices, the value you
enter there will be matched against all of the artifacts that were
indexed in the “opendaylight-release” repository (and others). It will
match the string you enter as a substring of any groupId or artifactId.

For all of the entries that match that substring, it will list an entry
showing the groupId and artifactId, with an expansion arrow. If you open
it by clicking on the arrow, you will see individual entries
corresponding to each available version of that artifact, along with
some metadata about the artifacts between square brackets, mostly
indicating what “type” of artifact is.

For your purposes, you only ever want to use “bundle” or “jar”
artifacts.

Let us consider an example that many people will probably be using.

In the filter field, enter “ietf-yang-types”. Depending on what versions
are available, you should see a small handful of “groupId, artifactId”
entries there. One of them should be groupId
“org.opendaylight.mdsal.model” and artifactId “ietf-yang-types”. Click
on the expansion arrow to open that.

What you will see at this point depends on what versions are available.
You will likely want to select the newest one (most likely top of the
list) that is also either a “bundle” or “jar” type artifact.

If you click on that resulting version entry, you should notice at this
point that the “Group Id”, “Artifact Id”, and “Version” fields at the
top of the dialog are now filled in with the values corresponding to
this artifact and version.

If this is the version that you want, click OK and this artifact will be
added to the dependencies in the POM.

This will now make the Yang models found in that artifact available in
“import” statements in Yang models, not to mention the completion
choices for that “import” statement.

YANG-PUSH

This section describes how to use the YANG-PUSH feature in OpenDaylight
and contains contains configuration, administration, and management
sections for the feature.

Overview

YANG PUBSUB project allows applications to place subscriptions upon
targeted subtrees of YANG datastores residing on remote devices. Changes
in YANG objects within the remote subtree can be pushed to an
OpenDaylight MD-SAL and to the application as specified without a
requiring the controller to make a continuous set of fetch requests.

YANG-PUSH capabilities available

This module contains the base code which embodies the intent of
YANG-PUSH requirements for subscription as defined in
{i2rs-pub-sub-requirements}
[https://datatracker.ietf.org/doc/draft-ietf-i2rs-pub-sub-requirements/].
The mechanism for delivering on these YANG-PUSH requirements over
Netconf transport is defined in {netconf-yang-push} [netconf-yang-push:
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-00].

Note that in the current release, not all capabilities of
draft-ietf-netconf-yang-push are realized. Currently only implemented is
create-subscription RPC support from
ietf-datastore-push@2015-10-15.yang; and this will be for periodic
subscriptions only. There of course is intent to provide much additional
functionality in future OpenDaylight releases.

Future YANG-PUSH capabilities

Over time, the intent is to flesh out more robust capabilities which
will allow OpenDaylight applications to subscribe to YANG-PUSH compliant
devices. Capabilities for future releases will include:

Support for subscription change/delete: modify-subscription rpc
support for all mountpoint devices or particular mountpoint device
delete-subscription rpc support for all mountpoint devices or
particular mountpoint device

Support for static subscriptions: This will enable the receipt of
subscription updates pushed from publishing devices where no signaling
from the controller has been used to establish the subscriptions.

Support for additional transports: NETCONF is not the only transport of
interest to OpenDaylight or the subscribed devices. Over time this code
will support Restconf and HTTP/2 transport requirements defined in
{netconf-restconf-yang-push}
[https://tools.ietf.org/html/draft-voit-netconf-restconf-yang-push-01]

YANG-PUSH Architecture

The code architecture of Yang push consists of two main elements

YANGPUSH Provider YANGPUSH Listener

YANGPUSH Provider receives create-subscription requests from
applications and then establishes/registers the corresponding listener
which will receive information pushed by a publisher. In addition,
YANGPUSH Provider also invokes an augmented OpenDaylight
create-subscription RPC which enables applications to register for
notification as per rfc5277. This augmentation adds periodic time period
(duration) and subscription-id values to the existing RPC parameters.
The Java package supporting this capability is
“org.opendaylight.yangpush.impl”. YangpushDomProvider is the class which
supports this YANGPUSH Provider capability.

The YANGPUSH Listener accepts update notifications from a device after
they have been de-encapsulated from the NETCONF transport. The YANGPUSH
Listener then passes these updates to MD-SAL. This function is
implemented via the YangpushDOMNotificationListener class within the
“org.opendaylight.yangpush.listner” Java package. Applications should
monitor MD-SAL for the availability of newly pushed subscription
updates.

OpenDaylight with Openstack Guide

Overview

OpenStack [https://www.openstack.org/] is a popular open source Infrastructure
as a service project, covering compute, storage and network management.
OpenStack can use OpenDaylight as its network management provider through the
Modular Layer 2 (ML2) north-bound plug-in. OpenDaylight manages the network
flows for the OpenStack compute nodes via the OVSDB south-bound plug-in. This
page describes how to set that up, and how to tell when everything is working.

Installing OpenStack

Installing OpenStack is out of scope for this document, but to get started, it
is useful to have a minimal multi-node OpenStack deployment.

The reference deployment we will use for this document is a 3 node cluster:

	One control node containing all of the management services for OpenStack [https://www.openstack.org/]
(Nova, Neutron, Glance, Swift, Cinder, Keystone)

	Two compute nodes running nova-compute

	Neutron using the OVS back-end and vxlan for tunnels

Once you have installed OpenStack [https://www.openstack.org/], verify that it is working by connecting
to Horizon and performing a few operations. To check the Neutron
configuration, create two instances on a private subnet bridging to your
public network, and verify that you can connect to them, and that they can
see each other.

Installing OpenDaylight

	OpenStack with NetVirt

	OpenStack with GroupBasedPolicy

	Using Groupbasedpolicy’s Neutron VPP Mapper

	OpenStack with Virtual Tenant Network

OpenStack with NetVirt

	OpenStack with NetVirt
	Installing OpenDaylight on an existing OpenStack

	Installing OpenStack and OpenDaylight using DevStack

	Troubleshooting

	Useful Links

OpenStack with NetVirt

Table of Contents

	OpenStack with NetVirt
	Installing OpenDaylight on an existing OpenStack

	Installing OpenStack and OpenDaylight using DevStack

	Troubleshooting

	Useful Links

Prerequisites: OpenDaylight requires Java 1.8.0 and Open vSwitch >= 2.5.0

Installing OpenDaylight on an existing OpenStack

	On the control host, Download the latest OpenDaylight release [https://www.opendaylight.org/software/downloads]

	Uncompress it as root, and start OpenDaylight (you can start OpenDaylight
by running karaf directly, but exiting from the shell will shut it down):

tar xvfz distribution-karaf-0.5.1-Boron-SR1.tar.gz
cd distribution-karaf-0.5.1-Boron-SR1
./bin/start # Start OpenDaylight as a server process

	Connect to the Karaf shell, and install the odl-netvirt-openstack bundle,
dlux and their dependencies:

./bin/client # Connect to OpenDaylight with the client
opendaylight-user@root> feature:install odl-netvirt-openstack odl-dlux-core odl-mdsal-apidocs

	If everything is installed correctly, you should now be able to log in to the dlux interface on
http://CONTROL_HOST:8181/index.html - the default username and password is “admin/admin” (see screenshot below)

[image: ../../../../_images/dlux-login1.png]

Optional - Advanced OpenDaylight Installation - Configurations and Clustering

	ACL Implementation - Security Groups - Stateful:

	Default implementation used is stateful, requiring OVS compiled with conntrack modules.

	This requires using a linux kernel that is >= 4.3

	To check if OVS is running with conntrack support:

root@devstack:~/# lsmod | grep conntrack | grep openvswitch
 nf_conntrack 106496 9 xt_CT,openvswitch,nf_nat,nf_nat_ipv4,xt_conntrack,nf_conntrack_netlink,xt_connmark,nf_conntrack_ipv4,nf_conntrack_ipv6

	If the conntrack modules are not installed for OVS, either recompile/install an OVS version with conntrack support, or alternatively configure OpenDaylight to use a non-stateful implementation.

	OpenvSwitch 2.5 with conntrack support can be acquired from this repository for yum based linux distributions:

yum install -y http://rdoproject.org/repos/openstack-newton/rdo-release-newton.rpm
yum install -y --nogpgcheck openvswitch

	ACL Implementations - Alternative options:

	“learn” - semi-stateful implementation that does not require conntrack support. This is the most complete non-conntrack implementation.

	“stateless” - naive security group implementation for TCP connections only. UDP and ICMP packets are allowed by default.

	“transparent” - no security group support. all traffic is allowed, this is the recommended mode if you don’t need to use security groups at all.

	To configure one of these alternative implementations, the following needs to be done prior to running OpenDaylight:

mkdir -p <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/
export CONFFILE=\`find <ODL_FOLDER> -name "*aclservice*config.xml"\`
cp \CONFFILE <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-config.xml
sed -i s/stateful/<learn/transparent>/ <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-config.xml
cat <ODL_FOLDER>/etc/opendaylight/datastore/initial/config/netvirt-aclservice-config.xml

	Running multiple OpenDaylight controllers in a cluster:

	For redundancy, it is possible to run OpenDaylight in a 3-node cluster.

	More info on Clustering available here [http://docs.opendaylight.org/en/latest/getting-started-guide/common-features/clustering.html].

	To configure OpenDaylight in clustered mode, run <ODL_FOLDER>/bin/configure_cluster.sh on each node prior to running OpenDaylight.
This script is used to configure cluster parameters on this controller. The user should restart controller to apply changes.

Usage: ./configure_cluster.sh <index> <seed_nodes_list>
- index: Integer within 1..N, where N is the number of seed nodes.
- seed_nodes_list: List of seed nodes, separated by comma or space.

	The address at the provided index should belong this controller.
When running this script on multiple seed nodes, keep the seed_node_list same,
and vary the index from 1 through N.

	Optionally, shards can be configured in a more granular way by modifying the file
“custom_shard_configs.txt” in the same folder as this tool.
Please see that file for more details.

Note

OpenDaylight should be restarted after applying any of the above changes via configuration files.

Ensuring OpenStack network state is clean

When using OpenDaylight as the Neutron back-end, OpenDaylight expects to be the only source of
truth for Neutron configurations. Because of this, it is necessary to remove existing OpenStack
configurations to give OpenDaylight a clean slate.

	Delete instances:

nova list
nova delete <instance names>

	Remove links from subnets to routers:

neutron subnet-list
neutron router-list
neutron router-port-list <router name>
neutron router-interface-delete <router name> <subnet ID or name>

	Delete subnets, networks, routers:

neutron subnet-delete <subnet name>
neutron net-list
neutron net-delete <net name>
neutron router-delete <router name>

	Check that all ports have been cleared - at this point, this should be an
empty list:

neutron port-list

Ensure Neutron is stopped

While Neutron is managing the OVS instances on compute and control nodes,
OpenDaylight and Neutron can be in conflict. To prevent issues, we turn off
Neutron server on the network controller, and Neutron’s Open vSwitch agents
on all hosts.

	Turn off neutron-server on control node:

systemctl stop neutron-server
systemctl stop neutron-l3-agent

	On each node in the cluster, shut down and disable Neutron’s agent services to
ensure that they do not restart after a reboot:

systemctl stop neutron-openvswitch-agent
systemctl disable
neutron-openvswitch-agent
systemctl stop neutron-l3-agent
systemctl disable neutron-l3-agent

Configuring Open vSwitch to be managed by OpenDaylight

On each host (both compute and control nodes) we will clear the pre-existing
Open vSwitch config and set OpenDaylight to manage the switch:

	Stop the Open vSwitch service, and clear existing OVSDB (OpenDaylight expects to
manage vSwitches completely):

systemctl stop openvswitch
rm -rf /var/log/openvswitch/*
rm -rf /etc/openvswitch/conf.db
systemctl start openvswitch

	At this stage, your Open vSwitch configuration should be empty:

[root@odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd
 ovs_version: "2.5.1"

	Set OpenDaylight as the manager on all nodes:

ovs-vsctl set-manager tcp:{CONTROL_HOST}:6640

	Set the IP to be used for VXLAN connectivity on all nodes.
This IP must correspond to an actual linux interface on each machine.

sudo ovs-vsctl set Open_vSwitch . other_config:local_ip=<ip>

	You should now see a new section in your Open vSwitch configuration
showing that you are connected to the OpenDaylight server via OVSDB,
and OpenDaylight will automatically create a br-int bridge that is
connected via OpenFlow to the controller:

[root@odl-compute2 ~]# ovs-vsctl show
9f3b38cb-eefc-4bc7-828b-084b1f66fbfd
 Manager "tcp:172.16.21.56:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:172.16.21.56:6633"
 is_connected: true
 fail_mode: secure
 Port br-int
 Interface br-int
 ovs_version: "2.5.1"

 [root@odl-compute2 ~]# ovs-vsctl get Open_vSwitch . other_config
 {local_ip="10.0.42.161"}

	If you do not see the result above (specifically, if you do not see “is_connected: true” in the Manager section or in the Controller section), you may not have a security policies in place to allow Open vSwitch remote administration.

Note

There might be iptables restrictions - if so the relevant ports should be opened (6640, 6653).

If SELinux is running on your linux, set to permissive mode on all nodes and ensure it stays that way after boot.

setenforce 0
sed -i -e 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

	Make sure all nodes, including the control node, are connected to OpenDaylight.

	If you reload DLUX, you should now see that all of your Open vSwitch nodes are now connected to OpenDaylight.

[image: ../../../../_images/dlux-with-switches.png]

	If something has gone wrong, check data/log/karaf.log under
the OpenDaylight distribution directory. If you do not see any interesting
log entries, set logging for netvirt to TRACE level inside Karaf and try again:

log:set TRACE netvirt

Configuring Neutron to use OpenDaylight

Once you have configured the vSwitches to connect to OpenDaylight, you can
now ensure that OpenStack Neutron is using OpenDaylight.

This requires the neutron networking-odl module to be installed.
| pip install networking-odl

First, ensure that port 8080 (which will be used by OpenDaylight to listen
for REST calls) is available. By default, swift-proxy-service listens on the
same port, and you may need to move it (to another port or another host), or
disable that service. It can be moved to a different port (e.g. 8081) by editing
/etc/swift/proxy-server.conf and /etc/cinder/cinder.conf,
modifying iptables appropriately, and restarting swift-proxy-service.
Alternatively, OpenDaylight can be configured to listen on a different port,
by modifying the jetty.port property value in etc/jetty.conf.

<Set name="port">
 <Property name="jetty.port" default="8080" />
</Set>

	Configure Neutron to use OpenDaylight’s ML2 driver:

crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers opendaylight
crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types vxlan

cat <<EOT>> /etc/neutron/plugins/ml2/ml2_conf.ini
[ml2_odl]
url = http://{CONTROL_HOST}:8080/controller/nb/v2/neutron
password = admin
username = admin
EOT

	Configure Neutron to use OpenDaylight’s odl-router service plugin for L3 connectivity:

crudini --set /etc/neutron/plugins/neutron.conf DEFAULT service_plugins odl-router

	Configure Neutron DHCP agent to provide metadata services:

crudini --set /etc/neutron/plugins/dhcp_agent.ini DEFAULT force_metadata True

Note

If the OpenStack version being used is Newton, this workaround should be applied,

configuring the Neutron DHCP agent to use vsctl as the OVSDB interface:

crudini --set /etc/neutron/plugins/dhcp_agent.ini OVS ovsdb_interface vsctl

	Reset Neutron’s database

mysql -e "DROP DATABASE IF EXISTS neutron;"
mysql -e "CREATE DATABASE neutron CHARACTER SET utf8;"
/usr/local/bin/neutron-db-manage --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head

	Restart neutron-server:

systemctl start neutron-server

Verifying it works

	Verify that OpenDaylight’s ML2 interface is working:

curl -u admin:admin http://{CONTROL_HOST}:8080/controller/nb/v2/neutron/networks

{
 "networks" : []
}

If this does not work or gives an error, check Neutron’s log file in /var/log/neutron/server.log.

Error messages here should give some clue as to what the problem is in the connection with OpenDaylight.

	Create a network, subnet, router, connect ports, and start an instance using the Neutron CLI:

neutron router-create router1
neutron net-create private
neutron subnet-create private --name=private_subnet 10.10.5.0/24
neutron router-interface-add router1 private_subnet
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id> test1
nova boot --flavor <flavor> --image <image id> --nic net-id=<network id> test2

At this point, you have confirmed that OpenDaylight is creating network
end-points for instances on your network and managing traffic to them.

VMs can be reached using Horizon console, or alternatively by issuing nova get-vnc-console <vm> novnc

Through the console, connectivity between VMs can be verified.

Adding an external network for floating IP connectivity

	In order to connect to the VM using a floating IP, we need to configure external network connectivity, by creating an external network and subnet. This external network must be linked to a physical port on the machine, which will provide connectivity to an external gateway.

sudo ovs-vsctl set Open_vSwitch . other_config:provider_mappings=physnet1:eth1
neutron net-create public-net -- --router:external --is-default --provider:network_type=flat --provider:physical_network=physnet1
neutron subnet-create --allocation-pool start=10.10.10.2,end=10.10.10.254 --gateway 10.10.10.1 --name public-subnet public-net 10.10.0.0/16 -- --enable_dhcp=False
neutron router-gateway-set router1 public-net

neutron floatingip-create public-net
nova floating-ip-associate test1 <floating_ip>

Installing OpenStack and OpenDaylight using DevStack

The easiest way to load and OpenStack setup using OpenDaylight is by using devstack, which does all the steps mentioned in previous sections.
| git clone https://git.openstack.org/openstack-dev/devstack

	The following lines need to be added to your local.conf:

enable_plugin networking-odl http://git.openstack.org/openstack/networking-odl <branch>
ODL_MODE=allinone
Q_ML2_PLUGIN_MECHANISM_DRIVERS=opendaylight,logger
ODL_GATE_SERVICE_PROVIDER=vpnservice
disable_service q-l3
ML2_L3_PLUGIN=odl-router
ODL_PROVIDER_MAPPINGS={PUBLIC_PHYSICAL_NETWORK}:<external linux interface>

	More details on using devstack can be found in the following links:

	Devstack All-In-One Single Machine Tutorial [http://docs.openstack.org/developer/devstack/guides/single-machine.html]

	Devstack networking-odl README [https://github.com/openstack/networking-odl/blob/master/devstack/README.rst]

Troubleshooting

VM DHCP Issues

	Trigger DHCP requests - access VM console:

	View log: nova console-log <vm>

	Access using VNC console: nova get-vnc-console <vm> novnc

	Trigger DHCP requests:
sudo ifdown eth0 ; sudo ifup eth0

udhcpc (v1.20.1) started
Sending discover...
Sending select for 10.0.123.3...
Lease of 10.0.123.3 obtained, lease time 86400 # This only happens when DHCP is properly obtained.

	Check if the DHCP requests are reaching the qdhcp agent using the following commands on the OpenStack controller:

sudo ip netns
sudo ip netns exec qdhcp-xxxxx ifconfig # xxxx is the neutron network id
sudo ip netns exec qdhcp-xxxxx tcpdump -nei tapxxxxx # xxxxx is the neutron port id

Valid request and response:
15:08:41.684932 fa:16:3e:02:14:bb > ff:ff:ff:ff:ff:ff, ethertype IPv4 (0x0800), length 329: 0.0.0.0.68 > 255.255.255.255.67: BOOTP/DHCP, Request from fa:16:3e:02:14:bb, length 287
15:08:41.685152 fa:16:3e:79:07:98 > fa:16:3e:02:14:bb, ethertype IPv4 (0x0800), length 354: 10.0.123.2.67 > 10.0.123.3.68: BOOTP/DHCP, Reply, length 312

	If the requests aren’t reaching qdhcp:

	Verify VXLAN tunnels exist between compute and control nodes by using ovs-vsctl show

	
Run the following commands to debug the OVS processing of the DHCP request packet:

ovs-ofctl -OOpenFlow13 dump-ports-desc br-int # retrieve VMs ofport and MAC

ovs-appctl ofproto/trace br-int in_port=<ofport>,dl_src=<mac>,dl_dst=ff:ff:ff:ff:ff:ff,udp,ip_src=0.0.0.0,ip_dst=255.255.255.255 | grep "Rule\|action"

root@devstack:~# ovs-appctl ofproto/trace br-int in_port=1,dl_src=fe:16:3e:33:8b:d8,dl_dst=ff:ff:ff:ff:ff:ff,udp,ip_src=0.0.0.0,ip_dst=255.255.255.255 | grep "Rule\|action"
 Rule: table=0 cookie=0x8000000 priority=1,in_port=1
 OpenFlow actions=write_metadata:0x20000000001/0xffffff0000000001,goto_table:17
 Rule: table=17 cookie=0x8000001 priority=5,metadata=0x20000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0xc0000200000222e2/0xfffffffffffffffe,goto_table:19
 Rule: table=19 cookie=0x1080000 priority=0
 OpenFlow actions=resubmit(,17)
 Rule: table=17 cookie=0x8040000 priority=6,metadata=0xc000020000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0xe00002138a000000/0xfffffffffffffffe,goto_table:50
 Rule: table=50 cookie=0x8050000 priority=0
 OpenFlow actions=CONTROLLER:65535,goto_table:51
 Rule: table=51 cookie=0x8030000 priority=0
 OpenFlow actions=goto_table:52
 Rule: table=52 cookie=0x870138a priority=5,metadata=0x138a000001/0xffff000001
 OpenFlow actions=write_actions(group:210003)
 Datapath actions: drop

root@devstack:~# ovs-ofctl -OOpenFlow13 dump-groups br-int | grep 'group_id=210003'
 group_id=210003,type=all

	If the requests are reaching qdhcp, but the response isn’t arriving to the VM:

	Locate the compute the VM is residing on (can use nova show <vm>).

	
If the VM is on the same node as the qdhcp namespace, ofproto/trace can be used to track the packet:

ovs-appctl ofproto/trace br-int in_port=<dhcp_ofport>,dl_src=<dhcp_port_mac>,dl_dst=<vm_port_mac>,udp,ip_src=<dhcp_port_ip>,ip_dst=<vm_port_ip> | grep "Rule\|action"

root@devstack:~# ovs-appctl ofproto/trace br-int in_port=2,dl_src=fa:16:3e:79:07:98,dl_dst=fa:16:3e:02:14:bb,udp,ip_src=10.0.123.2,ip_dst=10.0.123.3 | grep "Rule\|action"
 Rule: table=0 cookie=0x8000000 priority=4,in_port=2
 OpenFlow actions=write_metadata:0x10000000000/0xffffff0000000001,goto_table:17
 Rule: table=17 cookie=0x8000001 priority=5,metadata=0x10000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0x60000100000222e0/0xfffffffffffffffe,goto_table:19
 Rule: table=19 cookie=0x1080000 priority=0
 OpenFlow actions=resubmit(,17)
 Rule: table=17 cookie=0x8040000 priority=6,metadata=0x6000010000000000/0xffffff0000000000
 OpenFlow actions=write_metadata:0x7000011389000000/0xfffffffffffffffe,goto_table:50
 Rule: table=50 cookie=0x8051389 priority=20,metadata=0x11389000000/0xfffffffff000000,dl_src=fa:16:3e:79:07:98
 OpenFlow actions=goto_table:51
 Rule: table=51 cookie=0x8031389 priority=20,metadata=0x1389000000/0xffff000000,dl_dst=fa:16:3e:02:14:bb
 OpenFlow actions=load:0x300->NXM_NX_REG6[],resubmit(,220)
 Rule: table=220 cookie=0x8000007 priority=7,reg6=0x300
 OpenFlow actions=output:3

	If the VM isn’t on the same node as the qdhcp namepsace:

	Check if the packet is arriving via VXLAN by running tcpdump -nei <vxlan_port> port 4789

	If it is arriving via VXLAN, the packet can be tracked on the compute node rules, using ofproto/trace
in a similiar manner to the previous section. Note that packets arriving from a tunnels have a unique
tunnel_id (VNI) that should be used as well in the trace, due to the special processing of packets arriving
from a VXLAN tunnel.

Floating IP Issues

	If you have assigned an external network and associated a floating IP to a VM but there is still no connectivity:

	Verify the external gateway IP is reachable through the provided provider network port.

	Verify OpenDaylight has successfully resolved the MAC address of the external gateway IP.
This can be verified by searching for the line “Installing ext-net group” in the karaf.log.

	Locate the compute the VM is residing on (can use nova show <vm>).

	Run a ping to the VM floating IP.

	If the ping fails, execute a flow dump of br-int, and search for the flows that are relevant to the VM’s floating IP address:
ovs-ofctl -OOpenFlow13 dump-flows br-int | grep "<floating_ip>"

	
Are there packets on the incoming flow (matching dst_ip=<floating_ip>)?

If not this probably means the provider network has not been set up properly, verify provider_mappings configuration and the configured external network physical_network value match. Also verify that the Flat/VLAN network configured is actually reachable via the configured port.

	
Are there packets on the outgoing flow (matching src_ip=<floating_ip>)?

If not, this probably means that OpenDaylight is failing to resolve the MAC of the provided external gateway, required for forwarding packets to the external network.

	
Are there packets being sent on the external network port?

This can be checked using tcpdump <port> or by viewing the appropriate OpenFlow rules. The mapping between the OpenFlow port number and the linux interface can be acquired using ovs-ofctl dump-ports-desc br-int

ovs-ofctl -OOpenFlow13 dump-flows br-int | grep "<floating_ip>"
cookie=0x8000003, duration=436.710s, table=21, n_packets=190, n_bytes=22602, priority=42,ip,metadata=0x222e2/0xfffffffe,nw_dst=10.64.98.17 actions=goto_table:25
cookie=0x8000004, duration=436.739s, table=25, n_packets=190, n_bytes=22602, priority=10,ip,nw_dst=10.64.98.17 actions=set_field:10.0.123.3->ip_dst,write_metadata:0x222e0/0xfffffffe,goto_table:27
cookie=0x8000004, duration=436.730s, table=26, n_packets=120, n_bytes=15960, priority=10,ip,metadata=0x222e0/0xfffffffe,nw_src=10.0.123.3 actions=set_field:10.64.98.17->ip_src,write_metadata:0x222e2/0xfffffffe,goto_table:28
cookie=0x8000004, duration=436.728s, table=28, n_packets=120, n_bytes=15960, priority=10,ip,metadata=0x222e2/0xfffffffe,nw_src=10.64.98.17 actions=set_field:fa:16:3e:ec:a8:84->eth_src,group:200000

Useful Links

	NetVirt Tables Pipeline [https://docs.google.com/presentation/d/15h4ZjPxblI5Pz9VWIYnzfyRcQrXYxA1uUoqJsgA53KM]

	NetVirt Wiki Page [https://wiki.opendaylight.org/view/NetVirt]

	NetVirt Basic Tutorial (OpenDaylight Summit 2016) [https://docs.google.com/presentation/d/1VLzRIOEptSOY1b0w4PezRIQ0gF5vx7GyLKECWXRV5mE]

	NetVirt Advanced Tutorial (OpenDaylight Summit 2016) [https://docs.google.com/presentation/d/13K8Z1kl5XFZrWqBToMwFISSAPOKfzd3m9BtVcb-YAWs]

	Other OpenDaylight Documentation [http://docs.opendaylight.org/]

OpenStack with GroupBasedPolicy

This section is for Application Developers and Network Administrators
who are looking to integrate Group Based Policy with OpenStack.

To enable the GBP Neutron Mapper feature, at the karaf console:

feature:install odl-groupbasedpolicy-neutronmapper

Neutron Mapper has the following dependencies that are automatically loaded:

odl-neutron-service

Neutron Northbound implementing REST API used by OpenStack

odl-groupbasedpolicy-base

Base GBP feature set, such as policy resolution, data model etc.

odl-groupbasedpolicy-ofoverlay

For this release, GBP has one renderer, hence this is loaded by default.

REST calls from OpenStack Neutron are by the Neutron NorthBound project.

GBP provides the implementation of the Neutron V2.0 API [http://developer.openstack.org/api-ref-networking-v2.html].

Features

List of supported Neutron entities:

	Port

	Network
	Standard Internal

	External provider L2/L3 network

	Subnet

	Security-groups

	Routers
	Distributed functionality with local routing per compute

	External gateway access per compute node (dedicated port required)

	Multiple routers per tenant

	FloatingIP NAT

	IPv4/IPv6 support

The mapping of Neutron entities to GBP entities is as follows:

Neutron Port

[image: ../_images/neutronmapper-gbp-mapping-port.png]
Neutron Port

The Neutron port is mapped to an endpoint.

The current implementation supports one IP address per Neutron port.

An endpoint and L3-endpoint belong to multiple EndpointGroups if the Neutron
port is in multiple Neutron Security Groups.

The key for endpoint is L2-bridge-domain obtained as the parent of
L2-flood-domain representing Neutron network. The MAC address is from the
Neutron port.
An L3-endpoint is created based on L3-context (the parent of the
L2-bridge-domain) and IP address of Neutron Port.

Neutron Network

[image: ../_images/neutronmapper-gbp-mapping-network.png]
Neutron Network

A Neutron network has the following characteristics:

	defines a broadcast domain

	defines a L2 transmission domain

	defines a L2 name space.

To represent this, a Neutron Network is mapped to multiple GBP entities.
The first mapping is to an L2 flood-domain to reflect that the Neutron network
is one flooding or broadcast domain.
An L2-bridge-domain is then associated as the parent of L2 flood-domain. This
reflects both the L2 transmission domain as well as the L2 addressing namespace.

The third mapping is to L3-context, which represents the distinct L3 address space.
The L3-context is the parent of L2-bridge-domain.

Neutron Subnet

[image: ../_images/neutronmapper-gbp-mapping-subnet.png]
Neutron Subnet

Neutron subnet is associated with a Neutron network. The Neutron subnet is
mapped to a GBP subnet where the parent of the subnet is L2-flood-domain
representing the Neutron network.

Neutron Security Group

[image: ../_images/neutronmapper-gbp-mapping-securitygroup.png]
Neutron Security Group and Rules

GBP entity representing Neutron security-group is EndpointGroup.

Infrastructure EndpointGroups

Neutron-mapper automatically creates EndpointGroups to manage key infrastructure
items such as:

	DHCP EndpointGroup - contains endpoints representing Neutron DHCP ports

	Router EndpointGroup - contains endpoints representing Neutron router
interfaces

	External EndpointGroup - holds L3-endpoints representing Neutron router
gateway ports, also associated with FloatingIP ports.

Neutron Security Group Rules

This mapping is most complicated among all others because Neutron
security-group-rules are mapped to contracts with clauses,
subjects, rules, action-refs, classifier-refs, etc.
Contracts are used between endpoint groups representing Neutron Security Groups.
For simplification it is important to note that Neutron security-group-rules are
similar to a GBP rule containing:

	classifier with direction

	action of allow.

Neutron Routers

[image: ../_images/neutronmapper-gbp-mapping-router.png]
Neutron Router

Neutron router is represented as a L3-context. This treats a router as a Layer3
namespace, and hence every network attached to it a part
of that Layer3 namespace.

This allows for multiple routers per tenant with complete isolation.

The mapping of the router to an endpoint represents the router’s interface or
gateway port.

The mapping to an EndpointGroup represents the internal infrastructure
EndpointGroups created by the GBP Neutron Mapper

When a Neutron router interface is attached to a network/subnet, that
network/subnet and its associated endpoints or Neutron Ports are seamlessly
added to the namespace.

Neutron FloatingIP

When associated with a Neutron Port, this leverages the GBP OfOverlay
renderer’s NAT capabilities.

A dedicated external interface on each Nova compute host allows for
disitributed external access. Each Nova instance associated with a
FloatingIP address can access the external network directly without having to
route via the Neutron controller, or having to enable any form
of Neutron distributed routing functionality.

Assuming the gateway provisioned in the Neutron Subnet command for the external
network is reachable, the combination of GBP Neutron Mapper and
OfOverlay renderer will automatically ARP for this default gateway, requiring
no user intervention.

Troubleshooting within GBP

Logging level for the mapping functionality can be set for package
org.opendaylight.groupbasedpolicy.neutron.mapper. An example of enabling TRACE
logging level on karaf console:

log:set TRACE org.opendaylight.groupbasedpolicy.neutron.mapper

Neutron mapping example

As an example for mapping can be used creation of Neutron network, subnet and
port. When a Neutron network is created 3 GBP entities are created:
l2-flood-domain, l2-bridge-domain, l3-context.

[image: ../_images/neutronmapper-gbp-mapping-network-example.png]
Neutron network mapping

After an subnet is created in the network mapping looks like this.

[image: ../_images/neutronmapper-gbp-mapping-subnet-example.png]
Neutron subnet mapping

If an Neutron port is created in the subnet an endpoint and l3-endpoint are
created. The endpoint has key composed from l2-bridge-domain and MAC address
from Neutron port. A key of l3-endpoint is compesed from l3-context and IP
address. The network containment of endpoint and l3-endpoint points to the
subnet.

[image: ../_images/neutronmapper-gbp-mapping-port-example.png]
Neutron port mapping

Configuring GBP Neutron

No intervention passed initial OpenStack setup is required by the user.

More information about configuration can be found in our DevStack demo
environment on the GBP wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

Administering or Managing GBP Neutron

For consistencies sake, all provisioning should be performed via the Neutron API. (CLI or Horizon).

The mapped policies can be augmented via the GBP UX,UX, to:

	Enable Service Function Chaining

	Add endpoints from outside of Neutron i.e. VMs/containers not provisioned in OpenStack

	Augment policies/contracts derived from Security Group Rules

	Overlay additional contracts or groupings

Tutorials

A DevStack demo environment can be found on the
GBP wiki [https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)].

Using Groupbasedpolicy’s Neutron VPP Mapper

Overview

Neutron VPP Mapper implements features for support policy-based routing for OpenStack Neutron interface involving VPP devices.
It allows using of policy-based schemes defined in GBP controller in a network consisting of OpenStack-provided nodes routed by a VPP node.

Architecture

Neutron VPP Mapper listens to Neutron data store change events, as well as being able to access directly the store.
If the data changed match certain criteria (see Processing Neutron Configuration),
Neutron VPP Mapper converts Neutron data specifically required to render a VPP node configuration with a given End Point,
e.g., the virtual host interface name assigned to a vhostuser socket.
Then the mapped data is stored in the VPP info data store.

Administering Neutron VPP Mapper

To use the Neutron VPP Mapper in Karaf, at least the following Karaf features must be installed:

	odl-groupbasedpolicy-neutron-vpp-mapper

	odl-vbd-ui

Initial pre-requisites

A topology should exist in config datastore, it is necessary to define a node with a particular node-id.
Later, node-id will be used as a physical location reference in VPP renderer’s bridge domain:

GET http://localhost:8181/restconf/config/network-topology:network-topology/

{
 "network-topology":{
 "topology":[
 {
 "topology-id":"datacentre",
 "node":[
 {
 "node-id":"dut2",
 "vlan-tunnel:super-interface":"GigabitEthernet0/9/0",
 "termination-point":[
 {
 "tp-id":"GigabitEthernet0/9/0",
 "neutron-provider-topology:physical-interface":{
 "interface-name":"GigabitEthernet0/9/0"
 }
 }
]
 }
]
 }
]
 }
}

Processing Neutron Configuration

NeutronListener listens to the changes in Neutron datatree in config datastore. It filters the changes, processing only network and port entities.

For a network entity it is checked that it has physical-network parameter set (i.e., it is backed-up by a physical network),
and that network-type is vlan-network or "flat", and if this check has passed, a related bridge domain is created
in VPP Renderer config datastore
(http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config), referenced to network by vlan field.

In case of "vlan-network", the vlan field contains the same value as neutron-provider-ext:segmentation-id of network created by Neutron.

In case of "flat", the VLAN specific parameters are not filled out.

Note

In case of VXLAN network (i.e. network-type is "vxlan-network"), no information is actually written
into VPP Renderer datastore, as VXLAN is used for tenant-network (so no packets are going outside). Instead, VPP Renderer looks up GBP flood domains corresponding to existing VPP bridge domains trying to establish a VXLAN tunnel between them.

For a port entity it is checked that vif-type contains "vhostuser" substring, and that device-owner contains a specific substring, namely "compute", "router" or "dhcp".

In case of "compute" substring, a vhost-user is written to VPP Renderer config datastore.

In case of "dhcp" or "router", a tap is written to VPP Renderer config datastore.

Input/output examples

OpenStack is creating network, and these data are being put into the data store:

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/networks

{
 "networks": {
 "network": [
 {
 "uuid": "43282482-a677-4102-87d6-90708f30a115",
 "tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
 "neutron-provider-ext:segmentation-id": "2016",
 "neutron-provider-ext:network-type": "neutron-networks:network-type-vlan",
 "neutron-provider-ext:physical-network": "datacentre",
 "neutron-L3-ext:external": true,
 "name": "drexternal",
 "shared": false,
 "admin-state-up": true,
 "status": "ACTIVE"
 }
]
 }
}

Checking bridge domain in VPP Renderer config data store.
Note that physical-location-ref is referring to "dut2", paired by neutron-provider-ext:physical-network -> topology-id:

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
 "config": {
 "bridge-domain": [
 {
 "id": "43282482-a677-4102-87d6-90708f30a115",
 "type": "vpp-renderer:vlan-network",
 "description": "drexternal",
 "vlan": 2016,
 "physical-location-ref": [
 {
 "node-id": "dut2",
 "interface": [
 "GigabitEthernet0/9/0"
]
 }
]
 }
]
 }
}

Port (compute):

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/ports

{
 "ports": {
 "port": [
 {
 "uuid": "3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
 "device-id": "dhcp58155ae3-f2e7-51ca-9978-71c513ab02ee-a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-binding:vif-details": [
 {
 "details-key": "somekey"
 }
],
 "neutron-binding:host-id": "devstack-control",
 "neutron-binding:vif-type": "vhostuser",
 "neutron-binding:vnic-type": "normal",
 "mac-address": "fa:16:3e:4a:9f:c0",
 "name": "",
 "network-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-portsecurity:port-security-enabled": false,
 "device-owner": "network:compute",
 "fixed-ips": [
 {
 "subnet-id": "0a5834ed-ed31-4425-832d-e273cac26325",
 "ip-address": "10.1.1.3"
 }
],
 "admin-state-up": true
 }
]
 }
}

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
 "config": {
 "vpp-endpoint": [
 {
 "context-type": "l2-l3-forwarding:l2-bridge-domain",
 "context-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "address-type": "l2-l3-forwarding:mac-address-type",
 "address": "fa:16:3e:4a:9f:c0",
 "vpp-node-path": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='topology-netconf']/network-topology:node[network-topology:node-id='devstack-control']",
 "vpp-interface-name": "neutron_port_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "socket": "/tmp/socket_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "description": "neutron port"
 }
]
 }
}

Port (dhcp):

PUT http://{{controller}}:{{port}}/restconf/config/neutron:neutron/ports

{
 "ports": {
 "port": [
 {
 "uuid": "3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "tenant-id": "94836b88-0e56-4150-aaa7-60f1c2b67faa",
 "device-id": "dhcp58155ae3-f2e7-51ca-9978-71c513ab02ee-a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-binding:vif-details": [
 {
 "details-key": "somekey"
 }
],
 "neutron-binding:host-id": "devstack-control",
 "neutron-binding:vif-type": "vhostuser",
 "neutron-binding:vnic-type": "normal",
 "mac-address": "fa:16:3e:4a:9f:c0",
 "name": "",
 "network-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "neutron-portsecurity:port-security-enabled": false,
 "device-owner": "network:dhcp",
 "fixed-ips": [
 {
 "subnet-id": "0a5834ed-ed31-4425-832d-e273cac26325",
 "ip-address": "10.1.1.3"
 }
],
 "admin-state-up": true
 }
]
 }
}

GET http://{{controller}}:{{port}}/restconf/config/vpp-renderer:config

{
 "config": {
 "vpp-endpoint": [
 {
 "context-type": "l2-l3-forwarding:l2-bridge-domain",
 "context-id": "a91437c0-8492-47e2-b9d0-25c44aef6cda",
 "address-type": "l2-l3-forwarding:mac-address-type",
 "address": "fa:16:3e:4a:9f:c0",
 "vpp-node-path": "/network-topology:network-topology/network-topology:topology[network-topology:topology-id='topology-netconf']/network-topology:node[network-topology:node-id='devstack-control']",
 "vpp-interface-name": "neutron_port_3d5dff96-25f5-4d4b-aa11-dc03f7f8d8e0",
 "physical-address": "fa:16:3e:4a:9f:c0",
 "name": "tap3d5dff96-25",
 "description": "neutron port"
 }
]
 }
}

OpenStack with Virtual Tenant Network

This section describes using OpenDaylight with the VTN manager feature providing
network service for OpenStack. VTN manager utilizes the OVSDB southbound service
and Neutron for this implementation. The below diagram depicts the communication
of OpenDaylight and two virtual networks connected by an OpenFlow switch using
this implementation.

[image: ../_images/OpenStackDeveloperGuide.png]
OpenStack Architecture

Configure OpenStack to work with OpenDaylight(VTN Feature) using PackStack

Prerequisites to install OpenStack using PackStack

	Fresh CentOS 7.1 minimal install

	Use the below commands to disable and remove Network Manager in CentOS 7.1,

systemctl stop NetworkManager
systemctl disable NetworkManager

	To make SELINUX as permissive, please open the file “/etc/sysconfig/selinux” and change it as “SELINUX=permissive”.

	After making selinux as permissive, please restart the CentOS 7.1 machine.

Steps to install OpenStack PackStack in CentOS 7.1

	To install OpenStack juno, use the following command,

yum update -y
yum -y install https://repos.fedorapeople.org/repos/openstack/openstack-juno/rdo-release-juno-1.noarch.rpm

	To install the packstack installer, please use the below command,

yum -y install openstack-packstack

	To create all-in-one setup, please use the below command,

packstack --allinone --provision-demo=n --provision-all-in-one-ovs-bridge=n

	This will end up with Horizon started successfully message.

Steps to install and deploy OpenDaylight in CentOS 7.1

	Download the latest Boron distribution code in the below link,

wget https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integration/distribution-karaf/0.5.0-Boron/distribution-karaf-0.5.0-Boron.zip

	Unzip the Boron distribution code by using the below command,

unzip distribution-karaf-0.5.0-Boron.zip

	Please do the below steps in the OpenDaylight to change jetty port,
	Change the jetty port from 8080 to something else as swift proxy of
OpenStack is using it.

	Open the file “etc/jetty.xml” and change the jetty port from 8080 to 8910
(we have used 8910 as jetty port you can use any other number).

	Start VTN Manager and install odl-vtn-manager-neutron in it.

	Ensure all the required ports(6633/6653,6640 and 8910) are in the listen
mode by using the command “netstat -tunpl” in OpenDaylight.

Steps to reconfigure OpenStack in CentOS 7.1

	Steps to stop Open vSwitch Agent and clean up ovs

sudo systemctl stop neutron-openvswitch-agent
sudo systemctl disable neutron-openvswitch-agent
sudo systemctl stop openvswitch
sudo rm -rf /var/log/openvswitch/*
sudo rm -rf /etc/openvswitch/conf.db
sudo systemctl start openvswitch
sudo ovs-vsctl show

	Stop Neutron Server

systemctl stop neutron-server

	Verify that OpenDaylight’s ML2 interface is working:

curl -v admin:admin http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron/networks

{
 "networks" : []
}

If this does not work or gives an error, check Neutron’s log file in
/var/log/neutron/server.log. Error messages here should give
some clue as to what the problem is in the connection with OpenDaylight

	Configure Neutron to use OpenDaylight’s ML2 driver:

sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 mechanism_drivers opendaylight
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 tenant_network_types local
sudo crudini --set /etc/neutron/plugins/ml2/ml2_conf.ini ml2 type_drivers local
sudo crudini --set /etc/neutron/dhcp_agent.ini DEFAULT ovs_use_veth True

cat <<EOT | sudo tee -a /etc/neutron/plugins/ml2/ml2_conf.ini > /dev/null
 [ml2_odl]
 password = admin
 username = admin
 url = http://{CONTROL_HOST}:{PORT}/controller/nb/v2/neutron
 EOT

	Reset Neutron’s ML2 database

sudo mysql -e "drop database if exists neutron_ml2;"
sudo mysql -e "create database neutron_ml2 character set utf8;"
sudo mysql -e "grant all on neutron_ml2.* to 'neutron'@'%';"
sudo neutron-db-manage --config-file /usr/share/neutron/neutron-dist.conf --config-file /etc/neutron/neutron.conf --config-file /etc/neutron/plugin.ini upgrade head

	Start Neutron Server

sudo systemctl start neutron-server

	Restart the Neutron DHCP service

system restart neutron-dhcp-agent.service

	At this stage, your Open vSwitch configuration should be empty:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f
 ovs_version: "2.3.1"

	Set OpenDaylight as the manager on all nodes

ovs-vsctl set-manager tcp:127.0.0.1:6640

	You should now see a section in your Open vSwitch configuration
showing that you are connected to the OpenDaylight server, and OpenDaylight
will automatically create a br-int bridge:

[root@dneary-odl-compute2 ~]# ovs-vsctl show
686989e8-7113-4991-a066-1431e7277e1f
 Manager "tcp:127.0.0.1:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "ens33"
 Interface "ens33"
 ovs_version: "2.3.1"

	Add the default flow to OVS to forward packets to controller when there is a table-miss,

ovs-ofctl --protocols=OpenFlow13 add-flow br-int priority=0,actions=output:CONTROLLER

	Please see the VTN OpenStack PackStack support guide [https://wiki.opendaylight.org/view/Release/Lithium/VTN/User_Guide/Openstack_Packstack_Support]
on the wiki to create VM’s from OpenStack Horizon GUI.

Implementation details

VTN Manager

Install odl-vtn-manager-neutron feature which provides the integration with
Neutron interface.

feature:install odl-vtn-manager-neutron

It subscribes to the events from Open vSwitch and also implements the Neutron
requests received by OpenDaylight.

Functional Behavior

StartUp

	The ML2 implementation for OpenDaylight will ensure that when Open vSwitch is
started, the ODL_IP_ADDRESS configured will be set as manager.

	When OpenDaylight receives the update of the Open vSwitch on port 6640
(manager port), VTN Manager handles the event and adds a bridge with required
port mappings to the Open vSwitch at the OpenStack node.

	When Neutron starts up, a new network create is POSTed to OpenDaylight, for
which VTN Manager creates a Virtual Tenant Network.

	Network and Sub-Network Create: Whenever a new sub network is created, VTN
Manager will handle the same and create a vbridge under the VTN.

	VM Creation in OpenStack: The interface mentioned as integration bridge in
the configuration file will be added with more interfaces on creation of a
new VM in OpenStack and the network is provisioned for it by the VTN Neutron
feature. The addition of a new port is captured by the VTN Manager and it
creates a vbridge interface with port mapping for the particular port. When
the VM starts to communicate with other VMs, the VTN Manger will install flows
in the Open vSwitch and other OpenFlow switches to facilitate communication
between them.

Note

To use this feature, VTN feature should be installed

Reference

https://wiki.opendaylight.org/images/5/5c/Integration_of_vtn_and_ovsdb_for_helium.pdf

Developer Guide

Overview

	Getting started with Git and Gerrit

	Pulling and Pushing the Code from the CLI

	Developing Apps on the OpenDaylight controller

Project-specific Developer Guides

	ALTO Developer Guide

	Atrium Developer Guide

	BGP Developer Guide

	BGP Monitoring Protocol Developer Guide

	CAPWAP Developer Guide

	Cardinal: OpenDaylight Monitoring as a Service

	Controller

	DIDM Developer Guide

	Distribution Version reporting

	DLUX

	Fabric As A Service

	Infrautils

	IoTDM Developer Guide

	L2Switch Developer Guide

	LACP Developer Guide

	LISP Flow Mapping User Guide

	NATApp Developer Guide

	NEtwork MOdeling (NEMO)

	NETCONF Developer Guide

	Network Intent Composition (NIC) Developer Guide

	NetIDE Developer Guide

	NetVirt Developer Guide

	Neutron Service Developer Guide

	Neutron Northbound

	NeXt Developer Guide

	ODL Parent Developer Guide

	OCP Plugin Developer Guide

	ODL-SDNi Developer Guide

	OF-CONFIG Developer Guide

	OpenFlow Protocol Library Developer Guide

	OpenFlow Plugin Project Developer Guide

	OpFlex agent-ovs Developer Guide

	OpFlex genie Developer Guide

	OpFlex libopflex Developer Guide

	OVSDB Developer Guide

	PCEP Developer Guide

	PacketCable Developer Guide

	Service Function Chaining

	SNBI Developer Guide

	SNMP4SDN Developer Guide

	SXP Developer Guide

	Topology Processing Framework Developer Guide

	TTP Model Developer Guide

	TTP CLI Tools Developer Guide

	User Network Interface Manager Plug-in (Unimgr) Developer Guide

	Unified Secure Channel

	Usecplugin-AAA Developer Guide

	Usecplugin-OpenFlow Developer Guide

	Virtual Tenant Network (VTN)

	YANG Tools Developer Guide

	YANG-PUSH Developer Guide

Getting started with Git and Gerrit

Overview of Git and Gerrit

Git is an opensource distributed version control system (dvcs) written
in the C language and originally developed by Linus Torvalds and others
to manage the Linux kernel. In Git, there is no central copy of the
repository. After you have cloned the repository, you have a functioning
copy of the source code with all the branches and tagged releases, in
your local repository.

Gerrit is an opensource web-based collaborative code review tool that
integrates with Git. It was developed at Google by Shawn Pearce. Gerrit
provides a framework for reviewing code commits before they are accepted
into the code base. Changes can be uploaded to Gerrit by any user.
However, the changes are not made a part of the project until a code
review is completed. Gerrit is also a good collaboration tool for
storing the conversations that occur around the code commits.

The OpenDaylight source code is hosted in a repository in Git.
Developers must use Gerrit to commit code to the OpenDaylight
repository.

Note

For more information on Git, see http://git-scm.com/. For more
information on Gerrit, see https://code.google.com/p/gerrit/.

Setting up a Gerrit account

	Using a Google Chrome or Mozilla Firefox browser, go to
https://git.opendaylight.org/gerrit

The main page shows existing Gerrit requests. These are patches that
have been pushed to the repository and not yet verified, reviewed, and
merged.

Note

If you already have an OpenDaylight account, you can click Sign
In in the top right corner of the page and follow the instructions
to enter the OpenDaylight page.

[image: Signing in to OpenDaylight account]
Signing in to OpenDaylight account

	If you do not have an existing OpenDaylight account, click Account
signup/management on the top bar of the main Gerrit page.

The WS02 Identity Server page is displayed.

[image: Gerrit Account signup/management link]
Gerrit Account signup/management link

	In the WS02 Identity Server page, click Sign-up in the left
pane.

There is also an option to authenticate your sign in with OpenID. This
option is not described in this document.

[image: Sign-up link for Gerrit account]
Sign-up link for Gerrit account

	Click on the Sign-up with User Name/Password image on the right
pane to continue to the actual sign-up page.

[image: Sign-up with User Name/Password Image]
Sign-up with User Name/Password Image

	Fill out the details in the account creation form and then click
Submit.

[image: Filling out the details]
Filling out the details

You now have an OpenDaylight account that can be used with Gerrit to
pull the OpenDaylight code.

Generating SSH keys for your system

You must have SSH keys for your system to register with your Gerrit
account. The method for generating SSH keys is different for different
types of operating systems.

The key you register with Gerrit must be identical to the one you will
use later to pull or edit the code. For example, if you have a
development VM which has a different UID login and keygen than that of
your laptop, the SSH key you generate for the VM is different from the
laptop. If you register the SSH key generated on your VM with Gerrit and
do not reuse it on your laptop when using Git on the laptop, the pull
fails.

Note

For more information on SSH keys for Ubuntu, see
https://help.ubuntu.com/community/SSH/OpenSSH/Keys. For generating
SSH keys for Windows, see
https://help.github.com/articles/generating-ssh-keys.

For a system running Ubuntu operating system, follow the steps below:

	Run the following command:

mkdir ~/.ssh
chmod 700 ~/.ssh
ssh-keygen -t rsa

	You are prompted for a location to save the keys, and a passphrase
for the keys.

This passphrase protects your private key while it is stored on the hard
drive. You must use the passphrase to use the keys every time you need
to login to a key-based system:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/b/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/b/.ssh/id_rsa.
Your public key has been saved in /home/b/.ssh/id_rsa.pub.

Your public key is now available as .ssh/id_rsa.pub in your home
folder.

Registering your SSH key with Gerrit

	Using a Google Chrome or Mozilla Firefox browser, go to
https://git.opendaylight.org/gerrit.

	Click Sign In to access the OpenDaylight repository.

[image: Signin in to OpenDaylight repository]
Signin in to OpenDaylight repository

	Click your name in the top right corner of the window and then click
Settings.

The Settings page is displayed.

[image: Settings page for your Gerrit account]
Settings page for your Gerrit account

	Click SSH Public Keys under Settings.

	Click Add Key.

	In the Add SSH Public Key text box, paste the contents of your
id_rsa.pub file and then click Add.

[image: Adding your SSH key]
Adding your SSH key

To verify your SSH key is working correctly, try using an SSH client to
connect to Gerrit’s SSHD port:

$ ssh -p 29418 <sshusername>@git.opendaylight.org
Enter passphrase for key '/home/cisco/.ssh/id_rsa':
**** Welcome to Gerrit Code Review ****
Hi <user>, you have successfully connected over SSH.
Unfortunately, interactive shells are disabled.
To clone a hosted Git repository, use: git clone ssh://<user>@git.opendaylight.org:29418/REPOSITORY_NAME.git
Connection to git.opendaylight.org closed.

You can now proceed to either Pulling, Hacking, and Pushing the Code
from the CLI or Pulling, Hacking, and Pushing the Code from Eclipse
depending on your implementation.

Pulling and Pushing the Code from the CLI

OpenDayligh is a collection of projects, each with their own code
repository. This section provides a general guide for to pulling,
hacking, and pushing the code for each project. For project specific
detail, refer to the project’s section in this guide.

Code reviews are enabled through Gerrit. For setting up Gerrit see the
section on Getting started with Git and Gerrit.

Note

You will need to perform the Gerrit Setup before you can access git
via ssh as described below.

Pulling code via Git CLI

Pull the code by cloning the project’s repository.

git clone ssh://<username>@git.opendaylight.org:29418/<project_repo_name>.git

where <username> is your OpenDaylight username, and
<project_repo_name> is the name of the repository for project you are
trying to pull. Here is the current list of project repository names:

aaa, affinity, bgpcep, controller, defense4all, dlux, docs,
groupbasedpolicy, integration, l2switch, lispflowmapping, odlparent,
opendove, openflowjava, openflowplugin, opflex, ovsdb, packetcable,
reservation, sdninterfaceapp, sfc, snbi, snmp4sdn, toolkit, ttp, vtn,
yangtools.

For an anonymous git clone, you can use:

git clone https://git.opendaylight.org/gerrit/p/<project_repo_name>.git

Setting up Gerrit Change-id Commit Message Hook

	This command inserts a unique Change-Id tag in the footer of a commit
message. This step is optional but highly recommended for tracking
changes.

cd <project_repo_name>
scp -p -P 29418 <username>@git.opendaylight.org:hooks/commit-msg .git/hooks/
chmod 755 .git/hooks/commit-msg

	Install and setup Git-review. Git-review is a great tool to simplify
the hassle of using several git commands to submit a patch for
review. Refer to How to install and push codes with
git-review [http://www.mediawiki.org/wiki/Gerrit/git-review#Installation%7Chere]
for instructions. After initializing git-review, both commit-msg hook
and a remote repo named gerrit will be created and a patch can be
submitted to Gerrit with a single “git review” command.

	Now you can start making your code changes.

Building the code

While you are in the <project_repo_name> directory, run

mvn clean install

To run without unitests you can skip building those tests running the
following:

mvn clean install -DskipTests
/* instead of "mvn clean install" */

Runing OpenDaylight from local build

Change to the karaf distribution sub-directory, and run

./target/assembly/bin/karaf

At this point the OpenDaylight controller is running. You can now open a
web browser and point your browser at http://localhost:8080/

[image: OpenDaylight Main Page]
OpenDaylight Main Page

Commit the code using Git CLI

Note

To be accepted, all code mustcome with a developer certificate of
origin [http://elinux.org/Developer_Certificate_Of_Origin] as
expressed by having a Signed-off-by. This means that you are
asserting that you have made the change and you understand that the
work was done as part of an open-source license.

Developer's Certificate of Origin 1.1

 By making a contribution to this project, I certify that:

 (a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

 (b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

 (c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

 (d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Mechanically you do it this way:

git commit --signoff

You will be prompted for a commit message. If you are fixing a buzilla
bug you can add the associated bug number to your commit message and it
will get linked from Gerrit:

For Example:.

Fix for bug 2.

Signed-off-by: Ed Warnicke <eaw@cisco.com>
Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch develop
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: README
#

Pulling the Code changes via Git CLI

Pull the latest changes from the remote repository

git remote update
git rebase origin/<project_main_branch_name>

where <project_main_branch_name> is the the branch you want to commit
to. For most projects this is master branch. For some projects such as
lispflowmapping, a different branch name (develop in the case of
lispflowmapping) should be used.

Pushing the Code via Git CLI

Use git review to push your changes back to the remote repository using:

git review

You can set a topic for your patch by:

git review -t <topic>

You will get a message pointing you to your gerrit request like:

==========================
remote: Resolving deltas: 100% (2/2) +
remote: Processing changes: new: 1, refs: 1, done +
remote: +
remote: New Changes: +
remote: http://git.opendaylight.org/gerrit/64 +
remote: +
==========================

The Jenkins Controller User will verify your code and post the result on
the your gerrit request.

Viewing your Changes in Gerrit

Follow the link you got above to see your commit in Gerrit:

[image: Gerritt Code Review Sample]
Gerritt Code Review Sample

Note that the Jenkins Controller User has verified your code and at the
bottom is a link to the Jenkins build.

Once your code has been reviewed and submitted by a committer it will be
merged into the authoritative repo, which would look like this:

[image: Gerritt Code Merge Sample]
Gerritt Code Merge Sample

Troubleshooting

	What to do if your Firewall blocks port 29418

There have been reports that many corporate firewalls block port 29418.
If that’s the case, please follow the Setting up HTTP in
Gerrit [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit]
instructions and use git URL:

git clone https://<your_username>@git.opendaylight.org/gerrit/p/<project_repo_name>.git

You will be prompted for the password you generated in Setting up HTTP
in
Gerrit [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Setting_up_HTTP_in_Gerrit].

All other instructions on this page remain unchanged.

To download pre-built images with ODP bootstraps see the following
Github project:

Pre-Built OpenDaylight VM
Images [https://github.com/nerdalert/OpenDaylight-Lab]

Developing Apps on the OpenDaylight controller

This section provides information that is required to develop apps on
the OpenDaylight controller.

You can either develop apps within the controller using the model-driven
SAL (MD-SAL) archetype or develop external apps and use the RESTCONF to
communicate with the controller.

Overview

This section enables you to get started with app development within the
OpenDaylight controller. In this example, you perform the following
steps to develop an app.

	Create a local repository for the code using a simple build process.

	Start the OpenDaylight controller.

	Test a simple remote procedure call (RPC) which you have created
based on the principle of hello world.

Pre requisites

This example requires the following.

	A development environment with following set up and working correctly
from the shell:

	Maven 3.1.1 or later

	Java 7- or Java 8-compliant JDK

	An appropriate Maven settings.xml file. A simple way to get the
default OpenDaylight settings.xml file is:

cp -n ~/.m2/settings.xml{,.orig} ; \wget -q -O - https://raw.githubusercontent.com/opendaylight/odlparent/stable/boron/settings.xml > ~/.m2/settings.xml

Note

If you are using Linux or Mac OS X as your development OS, your
local repository is ~/.m2/repository. For other platforms the local
repository location will vary.

Building an example module

To develop an app perform the following steps.

	Create an Example project using Maven and an archetype called the
opendaylight-startup-archetype. If you are downloading this project
for the first time, then it will take sometime to pull all the code
from the remote repository.

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -DarchetypeArtifactId=opendaylight-startup-archetype \
-DarchetypeRepository=https://nexus.opendaylight.org/content/repositories/public/ \
-DarchetypeCatalog=https://nexus.opendaylight.org/content/repositories/public/archetype-catalog.xml

	Update the properties values as follows. Ensure that the groupid and
the artifactid is lower case.

Define value for property 'groupId': : org.opendaylight.example
Define value for property 'artifactId': : example
Define value for property 'version': 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package': org.opendaylight.example: :
Define value for property 'classPrefix': ${artifactId.substring(0,1).toUpperCase()}${artifactId.substring(1)}
Define value for property 'copyright': : Copyright (c) 2015 Yoyodyne, Inc.

	Accept the default value of classPrefix that is,
(${artifactId.substring(0,1).toUpperCase()}${artifactId.substring(1)}).
The classPrefix creates a Java Class Prefix by capitalizing the first
character of the artifactId.

Note

In this scenario, the classPrefix used is “Example”. Create a
top-level directory for the archetype.

${artifactId}/
example/
cd example/
api/
artifacts/
features/
impl/
karaf/
pom.xml

	Build the example project.

Note

Depending on your development machine’s specification this might
take a little while. Ensure that you are in the project’s root
directory, example/, and then issue the build command, shown
below.

mvn clean install

	Start the example project for the first time.

cd karaf/target/assembly/bin
ls
./karaf

	Wait for the karaf cli that appears as follows. Wait for OpenDaylight
to fully load all the components. This can take a minute or two after
the prompt appears. Check the CPU on your dev machine, specifically
the Java process to see when it calms down.

opendaylight-user@root>

	Verify if the “example” module is built and search for the log entry
which includes the entry ExampleProvider Session Initiated.

log:display | grep Example

	Shutdown the OpenDaylight through the console by using the following
command.

shutdown -f

Defining a Simple Hello World RPC

	
Run the maven archetype opendaylight-startup-archetype, and
create the hello project.

mvn archetype:generate -DarchetypeGroupId=org.opendaylight.controller -DarchetypeArtifactId=opendaylight-startup-archetype \
-DarchetypeRepository=http://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/ \
-DarchetypeCatalog=http://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/archetype-catalog.xml

	Update the Properties values as follows.

Define value for property 'groupId': : org.opendaylight.hello
Define value for property 'artifactId': : hello
Define value for property 'version': 1.0-SNAPSHOT: : 1.0.0-SNAPSHOT
Define value for property 'package': org.opendaylight.hello: :
Define value for property 'classPrefix': ${artifactId.substring(0,1).toUpperCase()}${artifactId.substring(1)}
Define value for property 'copyright': : Copyright(c) Yoyodyne, Inc.

	View the hello project.

cd hello/
ls -1
api
artifacts
features
impl
karaf
pom.xml

	Build hello project by using the following command.

mvn clean install

	Verify that the project is functioning by executing karaf.

cd karaf/target/assembly/bin
./karaf

	
The karaf cli appears as follows.

NOTE: Remember to wait for OpenDaylight to load completely. Verify
that the Java process CPU has stabilized.+

opendaylight-user@root>

	Verify that the hello module is loaded by checking the log.

log:display | grep Hello

	Shutdown karaf.

shutdown -f

	Return to the top of the directory structure:

cd ../../../../

	View the entry point to understand where the log line came from. The
entry point is in the impl project:

impl/src/main/java/org/opendaylight/hello/impl/HelloProvider.java

	Add any new things that you are doing in your implementation by
using the HelloProvider.onSessionInitiate method. Its analogous to
an Activator.

@Override
 public void onSessionInitiated(ProviderContext session) {
 LOG.info("HelloProvider Session Initiated");
 }

Add a simple HelloWorld RPC API

	Navigate to the file.

Edit
api/src/main/yang/hello.yang

	Edit this file as follows. In the following example, we are adding
the code in a YANG module to define the hello-world RPC:

	Return to the hello/api directory and build your API as follows.

cd ../../../
mvn clean install

Implement the HelloWorld RPC API

	Define the HelloService, which is invoked through the hello-world
API.

cd ../impl/src/main/java/org/opendaylight/hello/impl/

	Create a new file called HelloWorldImpl.java and add in the code
below.

package org.opendaylight.hello.impl;
import java.util.concurrent.Future;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloService;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloWorldInput;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloWorldOutput;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloWorldOutputBuilder;
import org.opendaylight.yangtools.yang.common.RpcResult;
import org.opendaylight.yangtools.yang.common.RpcResultBuilder;
public class HelloWorldImpl implements HelloService {
 @Override
 public Future<RpcResult<HelloWorldOutput>> helloWorld(HelloWorldInput input) {
 HelloWorldOutputBuilder helloBuilder = new HelloWorldOutputBuilder();
 helloBuilder.setGreating("Hello " + input.getName());
 return RpcResultBuilder.success(helloBuilder.build()).buildFuture();
 }
}

	The HelloProvider.java file is in the current directory. Register the
RPC that you created in the hello.yang file in the
HelloProvider.java file. You can either edit the HelloProvider.java
to match what is below or you can simple replace it with the code
below.

/*
 * Copyright(c) Yoyodyne, Inc. and others. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v1.0 which accompanies this distribution,
 * and is available at http://www.eclipse.org/legal/epl-v10.html
 */
package org.opendaylight.hello.impl;

import org.opendaylight.controller.sal.binding.api.BindingAwareBroker.ProviderContext;
import org.opendaylight.controller.sal.binding.api.BindingAwareBroker.RpcRegistration;
import org.opendaylight.controller.sal.binding.api.BindingAwareProvider;
import org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.hello.rev150105.HelloService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class HelloProvider implements BindingAwareProvider, AutoCloseable {
 private static final Logger LOG = LoggerFactory.getLogger(HelloProvider.class);
 private RpcRegistration<HelloService> helloService;
 @Override
 public void onSessionInitiated(ProviderContext session) {
 LOG.info("HelloProvider Session Initiated");
 helloService = session.addRpcImplementation(HelloService.class, new HelloWorldImpl());
 }
 @Override
 public void close() throws Exception {
 LOG.info("HelloProvider Closed");
 if (helloService != null) {
 helloService.close();
 }
 }
}

	Optionally, you can also build the Java classes which will register
the new RPC. This is useful to test the edits you have made to
HelloProvider.java and HelloWorldImpl.java.

cd ../../../../../../../
mvn clean install

	Return to the top level directory

cd ../

	Build the entire hello again, which will pickup the changes you
have made and build them into your project:

mvn clean install

Execute the hello project for the first time

	Run karaf

cd ../karaf/target/assembly/bin
./karaf

	Wait for the project to load completely. Then view the log to see the
loaded Hello Module:

log:display | grep Hello

Test the hello-world RPC via REST

There are a lot of ways to test your RPC. Following are some examples.

	Using the API Explorer through HTTP

	Using a browser REST client

Using the API Explorer through HTTP

	
Navigate to apidoc
UI [http://localhost:8181/apidoc/explorer/index.html] with your
web browser.

NOTE: In the URL mentioned above, Change localhost to the IP/Host
name to reflect your development machine’s network address.

	Select

hello(2015-01-05)

	Select

POST /operations/hello:hello-world

	Provide the required value.

{"hello:input": { "name":"Your Name"}}

	Click the button.

	Enter the username and password, by default the credentials are
admin/admin.

	In the response body you should see.

{
 "output": {
 "greating": "Hello Your Name"
 }
}

Using a browser REST client

For example, use the following information in the Firefox plugin
RESTClient
[https://github.com/chao/RESTClient}

POST: http://192.168.1.43:8181/restconf/operations/hello:hello-world

Header:

application/json

Body:

{"input": {
 "name": "Andrew"
 }
}

Troubleshooting

If you get a response code 501 while attempting to POST
/operations/hello:hello-world, check the file: HelloProvider.java and
make sure the helloService member is being set. By not invoking
“session.addRpcImplementation()” the REST API will be unable to map
/operations/hello:hello-world url to HelloWorldImpl.

ALTO Developer Guide

Overview

The topics of this guide are:

	How to add alto projects as dependencies;

	How to put/fetch data from ALTO;

	Basic API and DataType;

	How to use customized service implementations.

Adding ALTO Projects as Dependencies

Most ALTO packages can be added as dependencies in Maven projects by
putting the following code in the pom.xml file.

<dependency>
 <groupId>org.opendaylight.alto</groupId>
 <artifactId>${THE_NAME_OF_THE_PACKAGE_YOU_NEED}</artifactId>
 <version>${ALTO_VERSION}</version>
</dependency>

The current stable version for ALTO is 0.3.0-Boron.

Putting/Fetching data from ALTO

Using RESTful API

There are two kinds of RESTful APIs for ALTO: the one provided by
alto-northbound which follows the formats defined in RFC
7285 [https://tools.ietf.org/html/rfc7285], and the one provided by
RESTCONF whose format is defined by the YANG model proposed in this
draft [https://tools.ietf.org/html/draft-shi-alto-yang-model-03].

One way to get the URLs for the resources from alto-northbound is to
visit the IRD service first where there is a uri field for every
entry. However, the IRD service is not yet implemented so currently the
developers have to construct the URLs themselves. The base URL is
/alto and below is a list of the specific paths defined in
alto-core/standard-northbound-route using Jersey @Path
annotation:

	/ird/{rid}: the path to access IRD services;

	/networkmap/{rid}[/{tag}]: the path to access Network Map and
Filtered Network Map services;

	/costmap/{rid}[/{tag}[/{mode}/{metric}]]: the path to access
Cost Map and Filtered Cost Map services;

	/endpointprop: the path to access Endpoint Property services;

	/endpointcost: the path to access Endpoint Cost services.

Note

The segments in brackets are optional.

If you want to fetch the data using RESTCONF, it is highly recommended
to take a look at the apidoc page
(http://{controller_ip}:8181/apidoc/explorer/index.html)
after installing the odl-alto-release feature in karaf.

It is also worth pointing out that alto-northbound only supports
GET and POST operations so it is impossible to manipulate the
data through its RESTful APIs. To modify the data, use PUT and
DELETE methods with RESTCONF.

Note

The current implementation uses the configuration data store and
that enables the developers to modify the data directly through
RESTCONF. In the future this approach might be disabled in the core
packages of ALTO but may still be available as an extension.

Using MD-SAL

You can also fetch data from the datastore directly.

First you must get the access to the datastore by registering your
module with a data broker.

Then an InstanceIdentifier must be created. Here is an example of
how to build an InstanceIdentifier for a network map:

import org.opendaylight...alto...Resources;
import org.opendaylight...alto...resources.NetworkMaps;
import org.opendaylight...alto...resources.network.maps.NetworkMap;
import org.opendaylight...alto...resources.network.maps.NetworkMapKey;
...
protected
InstanceIdentifier<NetworkMap> getNetworkMapIID(String resource_id) {
 ResourceId rid = ResourceId.getDefaultInstance(resource_id);
 NetworkMapKey key = new NetworkMapKey(rid);
 InstanceIdentifier<NetworkMap> iid = null;
 iid = InstanceIdentifier.builder(Resources.class)
 .child(NetworkMaps.class)
 .child(NetworkMap.class, key)
 .build();
 return iid;
}
...

With the InstanceIdentifier you can use ReadOnlyTransaction,
WriteTransaction and ReadWriteTransaction to manipulate the data
accordingly. The simple-impl package, which provides some of the
AD-SAL APIs mentioned above, is using this method to get data from the
datastore and then convert them into RFC7285-compatible objects.

Basic API and DataType

	alto-basic-types: Defines basic types of ALTO protocol.

	alto-service-model-api: Includes the YANG models for the five basic
ALTO services defined in RFC
7285 [https://tools.ietf.org/html/rfc7285].

	alto-resourcepool: Manages the meta data of each ALTO service,
including capabilities and versions.

	alto-northbound: Provides the root of RFC7285-compatible services at
http://localhost:8080/alto.

	alto-northbound-route: Provides the root of the network map resources
at http://localhost:8080/alto/networkmap/.

How to customize service

Define new service API

Add a new module in alto-core/standard-service-models. For example,
we named our service model module as model-example.

Implement service RPC

Add a new module in alto-basic to implement a service RPC in
alto-core.

Currently alto-core/standard-service-models/model-base has defined a
template of the service RPC. You can define your own RPC using
augment in YANG. Here is an example in alto-simpleird.

Register northbound route

If necessary, you can add a northbound route module in
alto-core/standard-northbound-routes.

Atrium Developer Guide

Overview

Project Atrium is an open source SDN distribution - a vertically
integrated set of open source components which together form a complete
SDN stack. It’s goals are threefold:

	Close the large integration-gap of the elements that are needed to
build an SDN stack - while there are multiple choices at each layer,
there are missing pieces with poor or no integration.

	Overcome a massive gap in interoperability - This exists both at the
switch level, where existing products from different vendors have
limited compatibility, making it difficult to connect an arbitrary
switch and controller and at an API level, where its difficult to
write a portable application across multiple controller platforms.

	Work closely with network operators on deployable use-cases, so that
they could download near production quality code from one location,
and get started with functioning software defined networks on real
hardware.

Architecture

The key components of Atrium BGP Peering Router Application are as
follows:

	Data Plane Switch - Data plane switch is the entity that uses flow
table entries installed by BGP Routing Application through SDN
controller. In the simplest form data plane switch with the installed
flows act like a BGP Router.

	OpenDaylight Controller - OpenDaylight SDN controller has many
utility applications or plugins which are leveraged by the BGP Router
application to manage the control plane information.

	BGP Routing Application - An application running within the
OpenDaylight runtime environment to handle I-BGP updates.

	DIDM - DIDM manages the drivers specific
to each data plane switch connected to the controller. The drivers
are created primarily to hide the underlying complexity of the
devices and to expose a uniform API to applications.

	Flow Objectives API - The driver implementation provides a pipeline
abstraction and exposes Flow Objectives API. This means applications
need to be aware of only the Flow Objectives API without worrying
about the Table IDs or the pipelines.

	Control Plane Switch - This component is primarily used to connect
the OpenDaylight SDN controller with the Quagga Soft-Router and
establish a path for forwarding E-BGP packets to and from Quagga.

	Quagga soft router - An open source routing software that handles
E-BGP updates.

Key APIs and Interfaces

BGP Routing Configuration

The BGP Routing Configuration maintains information about its BGP
Speakers & BGP Peers.

	Configuration data about BGP speakers can be accessed from the below
URL:

GET http://<controller_ip>:8181/restconf/config/bgpconfig:bgpSpeakers/

	Configuration data about BGP peers can be accessed from the below
URL:

GET http://<controller_ip>:8181/restconf/config/bgpconfig:bgpPeers/

Host Service

Host Service API contains the host specific details that can be used
during address resolution

	Host specific data can be accessed by using the below REST request:

GET http://<controller_ip>:8181/restconf/config/hostservice-api:addresses/

BGP Routing Information Base

The BGP RIB module stores all the route information that it has learnt
from its peers.

	Routing Information Base entries can be accessed from the URL below:

GET http://<controller_ip>:8181/restconf/operational/bgp-rib:bgp-rib/

Forwarding Information Base

The Forwarding Information Base is used to keep track of active FIB
entries.

	FIB entries can be accessed from the URL below:

GET http://<controller_ip>:8181/restconf/config/routingservice-api:fibEntries/

BGP Developer Guide

Overview

This section provides an overview of the odl-bgpcep-bgp-all Karaf
feature. This feature will install everything needed for BGP (Border
Gateway Protocol) from establishing the connection, storing the data in
RIBs (Route Information Base) and displaying data in network-topology
overview.

BGP Architecture

Each feature represents a module in the BGPCEP codebase. The following
diagram illustrates how the features are related.

[image: BGP Dependency Tree]
BGP Dependency Tree

Key APIs and Interfaces

BGP concepts

This module contains the base BGP concepts contained in RFC
4271 [http://tools.ietf.org/html/rfc4271], RFC
4760 [http://tools.ietf.org/html/rfc4760], RFC
4456 [http://tools.ietf.org/html/rfc4456], RFC
1997 [http://tools.ietf.org/html/rfc1997] and RFC
4360 [http://tools.ietf.org/html/rfc4360].

All the concepts are described in one yang model:
bgp-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/concepts/src/main/yang/bgp-types.yang;hb=refs/heads/stable/boron].

Outside generated classes, there is just one class
NextHopUtil [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/concepts/src/main/java/org/opendaylight/bgp/concepts/NextHopUtil.java;hb=refs/heads/stable/boron]
that contains methods for serializing and parsing NextHop.

BGP parser

Base BGP parser includes messages and attributes from RFC
4271 [http://tools.ietf.org/html/rfc4271], RFC
4760 [http://tools.ietf.org/html/rfc4760], RFC
1997 [http://tools.ietf.org/html/rfc1997] and RFC
4360 [http://tools.ietf.org/html/rfc4360].

API module defines BGP messages in YANG.

IMPL module contains actual parsers and serializers for BGP messages
and
Activator [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/parser-impl/src/main/java/org/opendaylight/protocol/bgp/parser/impl/BGPActivator.java;hb=refs/heads/stable/boron]
class

SPI module contains helper classes needed for registering parsers into
activators

Registration

All parsers and serializers need to be registered into the Extension
provider. This Extension provider is configured in initial
configuration of the parser-spi module (31-bgp.xml).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">prefix:bgp-extensions-impl</type>
 <name>global-bgp-extensions</name>
 <extension>
 <type xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">bgpspi:extension</type>
 <name>base-bgp-parser</name>
 </extension>
 <extension>
 <type xmlns:bgpspi="urn:opendaylight:params:xml:ns:yang:controller:bgp:parser:spi">bgpspi:extension</type>
 <name>bgp-linkstate</name>
 </extension>
</module>

	base-bgp-parser - will register parsers and serializers implemented
in the bgp-parser-impl module

	bgp-linkstate - will register parsers and serializers implemented
in the bgp-linkstate module

The bgp-linkstate module is a good example of a BGP parser extension.

The configuration of bgp-parser-spi specifies one implementation of
Extension provider that will take care of registering mentioned parser
extensions:
SimpleBGPExtensionProviderContext [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/parser-spi/src/main/java/org/opendaylight/protocol/bgp/parser/spi/pojo/SimpleBGPExtensionProviderContext.java;hb=refs/heads/stable/boron].
All registries are implemented in package
bgp-parser-spi [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=bgp/parser-spi/src/main/java/org/opendaylight/protocol/bgp/parser/spi;hb=refs/heads/stable/boron].

Serializing

The serializing of BGP elements is mostly done in the same way as in
PCEP, the only exception is the
serialization of path attributes, which is described here. Path
attributes are different from any other BGP element, as path attributes
don’t implement one common interface, but this interface contains
getters for individual path attributes (this structure is because update
message can contain exactly one instance of each path attribute). This
means, that a given PathAttributes object, you can only get to the
specific type of the path attribute through checking its presence.
Therefore method serialize() in AttributeRegistry, won’t look up the
registered class, instead it will go through the registrations and offer
this object to the each registered parser. This way the object will be
passed also to serializers unknown to module bgp-parser, for example to
LinkstateAttributeParser. RFC 4271 recommends ordering path attributes,
hence the serializers are ordered in a list as they are registered in
the Activator. In other words, this is the only case, where
registration ordering matters.

[image: PathAttributesSerialization]
PathAttributesSerialization

serialize() method in each Path Attribute parser contains check for
presence of its attribute in the PathAttributes object, which simply
returns, if the attribute is not there:

if (pathAttributes.getAtomicAggregate() == null) {
 return;
}
//continue with serialization of Atomic Aggregate

BGP RIB

The BGP RIB module can be divided into two parts:

	BGP listener and speaker session handling

	RIB handling.

Session handling

31-bgp.xml defines only bgp-dispatcher and the parser it should be
using (global-bgp-extensions).

<module>
 <type>prefix:bgp-dispatcher-impl</type>
 <name>global-bgp-dispatcher</name>
 <bgp-extensions>
 <type>bgpspi:extensions</type>
 <name>global-bgp-extensions</name>
 </bgp-extensions>
 <boss-group>
 <type>netty:netty-threadgroup</type>
 <name>global-boss-group</name>
 </boss-group>
 <worker-group>
 <type>netty:netty-threadgroup</type>
 <name>global-worker-group</name>
 </worker-group>
</module>

For user configuration of BGP, check User Guide.

Synchronization

Synchronization is a phase, where upon connection, a BGP speaker sends
all available data about topology to its new client. After the whole
topology has been advertised, the synchronization is over. For the
listener, the synchronization is over when the RIB receives End-of-RIB
(EOR) messages. There is a special EOR message for each AFI (Address
Family Identifier).

	IPv4 EOR is an empty Update message.

	Ipv6 EOR is an Update message with empty MP_UNREACH attribute where
AFI and SAFI (Subsequent Address Family Identifier) are set to Ipv6.
OpenDaylight also supports EOR for IPv4 in this format.

	Linkstate EOR is an Update message with empty MP_UNREACH attribute
where AFI and SAFI are set to Linkstate.

For BGP connections, where both peers support graceful restart, the EORs
are sent by the BGP speaker and are redirected to RIB, where the
specific AFI/SAFI table is set to true. Without graceful restart, the
messages are generated by OpenDaylight itself and sent after second
keepalive for each AFI/SAFI. This is done in
BGPSynchronization [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/BGPSynchronization.java;hb=refs/heads/stable/boron].

Peers

BGPPeer [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/BGPPeer.java;hb=refs/heads/stable/boron]
has various meanings. If you configure BGP listener, BGPPeer
represents the BGP listener itself. If you are configuring BGP speaker,
you need to provide a list of peers, that are allowed to connect to this
speaker. Unknown peer represents, in this case, a peer that is allowed
to be refused. BGPPeer represents in this case peer, that is supposed
to connect to your speaker. BGPPeer is stored in
BGPPeerRegistry [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/StrictBGPPeerRegistry.java;hb=refs/heads/stable/boron].
This registry controls the number of sessions. Our strict implementation
limits sessions to one per peer.

ApplicationPeer [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/ApplicationPeer.java;hb=refs/heads/stable/boron]
is a special case of peer, that has it’s own RIB. This RIB is populated
from RESTCONF. The RIB is synchronized with default BGP RIB. Incoming
routes to the default RIB are treated in the same way as they were from
a BGP peer (speaker or listener) in the network.

RIB handling

RIB (Route Information Base) is defined as a concept in RFC
4271 [http://tools.ietf.org/html/rfc4271#section-3.2]. RFC does not
define how it should be implemented. In our implementation, the routes
are stored in the MD-SAL datastore. There are four supported routes -
Ipv4Routes, Ipv6Routes, LinkstateRoutes and FlowspecRoutes.

Each route type needs to provide a
RIBSupport.java [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-spi/src/main/java/org/opendaylight/protocol/bgp/rib/spi/RIBSupport.java;hb=refs/heads/stable/boron]
implementation. RIBSupport tells RIB how to parse binding-aware data
(BGP Update message) to binding-independent (datastore format).

Following picture describes the data flow from BGP message that is sent
to BGPPeer to datastore and various types of RIB.

[image: RIB]
RIB

AdjRibInWriter [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/AdjRibInWriter.java;hb=refs/heads/stable/boron]
- represents the first step in putting data to datastore. This writer is
notified whenever a peer receives an Update message. The message is
transformed into binding-independent format and pushed into datastore to
adj-rib-in. This RIB is associated with a peer.

EffectiveRibInWriter [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/EffectiveRibInWriter.java;hb=refs/heads/stable/boron]
- this writer is notified whenever adj-rib-in is updated. It applies
all configured import policies to the routes and stores them in
effective-rib-in. This RIB is also associated with a peer.

LocRibWriter [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/LocRibWriter.java;hb=refs/heads/stable/boron]
- this writer is notified whenever any effective-rib-in is updated
(in any peer). Performs best path selection filtering and stores the
routes in loc-rib. It also determines which routes need to be
advertised and fills in adj-rib-out that is per peer as well.

AdjRibOutListener [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/rib-impl/src/main/java/org/opendaylight/protocol/bgp/rib/impl/AdjRibOutListener.java;h=a14fd54a29ea613b381a36248f67491d968963b8;hb=refs/heads/stable/boron]
- listens for changes in adj-rib-out, transforms the routes into
BGPUpdate messages and sends them to its associated peer.

BGP inet

This module contains only one YANG model
bgp-inet.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/inet/src/main/yang/bgp-inet.yang;hb=refs/heads/stable/boron]
that summarizes the ipv4 and ipv6 extensions to RIB routes and BGP
messages.

BGP flowspec

BGP flowspec is a module that implements RFC
5575 [http://tools.ietf.org/html/rfc5575] for IPv4 AFI and
draft-ietf-idr-flow-spec-v6-06 [https://tools.ietf.org/html/draft-ietf-idr-flow-spec-v6-06]
for IPv6 AFI. The RFC defines an extension to BGP in form of a new
subsequent address family, NLRI and extended communities. All of those
are defined in the
bgp-flowspec.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/flowspec/src/main/yang/bgp-flowspec.yang;hb=refs/heads/stable/boron]
model. In addition to generated sources, the module contains parsers for
newly defined elements and RIBSupport for flowspec-routes. The route key
of flowspec routes is a string representing human-readable flowspec
request.

BGP linkstate

BGP linkstate is a module that implements
draft-ietf-idr-ls-distribution [http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04]
version 04. The draft defines an extension to BGP in form of a new
address family, subsequent address family, NLRI and path attribute. All
of those are defined in the
bgp-linkstate.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/yang/bgp-linkstate.yang;hb=refs/heads/stable/boron]
model. In addition to generated sources, the module contains
LinkstateAttributeParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/java/org/opendaylight/protocol/bgp/linkstate/attribute/LinkstateAttributeParser.java;hb=refs/heads/stable/boron],
LinkstateNlriParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=bgp/linkstate/src/main/java/org/opendaylight/protocol/bgp/linkstate/nlri/LinkstateNlriParser.java;hb=refs/heads/stable/boron],
activators for both, parser and RIB, and RIBSupport handler for
linkstate address family. As each route needs a key, in case of
linkstate, the route key is defined as a binary string, containing all
the NLRI serialized to byte format. The BGP linkstate extension also
supports distribution of MPLS TE state as defined in
draft-ietf-idr-te-lsp-distribution-03 [https://tools.ietf.org/html/draft-ietf-idr-te-lsp-distribution-03],
extension for Segment Routing
draft-gredler-idr-bgp-ls-segment-routing-ext-00 [https://tools.ietf.org/html/draft-gredler-idr-bgp-ls-segment-routing-ext-00]
and Segment Routing Egress Peer Engineering
draft-ietf-idr-bgpls-segment-routing-epe-02 [https://tools.ietf.org/html/draft-ietf-idr-bgpls-segment-routing-epe-02].

BGP labeled-unicast

BGP labeled unicast is a module that implements RFC
3107 [https://tools.ietf.org/html/rfc3107]. The RFC defines an
extension to the BGP MP to carry Label Mapping Information as a part of
the NLRI. The AFI indicates, as usual, the address family of the
associated route. The fact that the NLRI contains a label is indicated
by using SAFI value 4. All of those are defined in
bgp-labeled-unicast.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob_plain;f=bgp/labeled-unicast/src/main/yang/bgp-labeled-unicast.yang;hb=refs/heads/stable/boron]
model. In addition to the generated sources, the module contains new
NLRI codec and RIBSupport. The route key is defined as a binary, where
whole NLRI information is encoded.

BGP topology provider

BGP data besides RIB, is stored in network-topology view. The format of
how the data is displayed there conforms to
draft-clemm-netmod-yang-network-topo [https://tools.ietf.org/html/draft-clemm-netmod-yang-network-topo-01].

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

BGP Monitoring Protocol Developer Guide

Overview

This section provides an overview of feature odl-bgpcep-bmp. This
feature will install everything needed for BMP (BGP Monitoring Protocol)
including establishing the connection, processing messages, storing
information about monitored routers, peers and their Adj-RIB-In
(unprocessed routing information) and Post-Policy Adj-RIB-In and
displaying data in BGP RIBs overview. The OpenDaylight BMP plugin plays
the role of a monitoring station.

Key APIs and Interfaces

Session handling

32-bmp.xml defines only bmp-dispatcher the parser should be using
(global-bmp-extensions).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bmp:impl">prefix:bmp-dispatcher-impl</type>
 <name>global-bmp-dispatcher</name>
 <bmp-extensions>
 <type xmlns:bmp-spi="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">bmp-spi:extensions</type>
 <name>global-bmp-extensions</name>
 </bmp-extensions>
 <boss-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-boss-group</name>
 </boss-group>
 <worker-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-worker-group</name>
 </worker-group>
</module>

For user configuration of BMP, check User Guide.

Parser

The base BMP parser includes messages and attributes from
https://tools.ietf.org/html/draft-ietf-grow-bmp-15

Registration

All parsers and serializers need to be registered into Extension
provider. This Extension provider is configured in initial
configuration of the parser (32-bmp.xml).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">prefix:bmp-extensions-impl</type>
 <name>global-bmp-extensions</name>
 <extension>
 <type xmlns:bmp-spi="urn:opendaylight:params:xml:ns:yang:controller:bmp:spi">bmp-spi:extension</type>
 <name>bmp-parser-base</name>
 </extension>
</module>

	bmp-parser-base - will register parsers and serializers implemented
in bmp-impl module

Parsing

Parsing of BMP elements is mostly done equally to BGP. Some of the BMP
messages includes wrapped BGP messages.

BMP Monitoring Station

The BMP application (Monitoring Station) serves as message processor
incoming from monitored routers. The processed message is transformed
and relevant information is stored. Route information is stored in a BGP
RIB data structure.

BMP data is displayed only through one URL that is accessible from the
base BMP URL:

`http://<controllerIP>:8181/restconf/operational/bmp-monitor:bmp-monitor <http://<controllerIP>:8181/restconf/operational/bmp-monitor:bmp-monitor>`__

Each Monitor station will be displayed and it may contains multiple
monitored routers and peers within:

<bmp-monitor xmlns="urn:opendaylight:params:xml:ns:yang:bmp-monitor">
 <monitor>
 <monitor-id>example-bmp-monitor</monitor-id>
 <router>
 <router-id>127.0.0.11</router-id>
 <status>up</status>
 <peer>
 <peer-id>20.20.20.20</peer-id>
 <as>72</as>
 <type>global</type>
 <peer-session>
 <remote-port>5000</remote-port>
 <timestamp-sec>5</timestamp-sec>
 <status>up</status>
 <local-address>10.10.10.10</local-address>
 <local-port>220</local-port>
 </peer-session>
 <pre-policy-rib>
 <tables>
 <afi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:ipv4-address-family</afi>
 <safi xmlns:x="urn:opendaylight:params:xml:ns:yang:bgp-types">x:unicast-subsequent-address-family</safi>
 <ipv4-routes xmlns="urn:opendaylight:params:xml:ns:yang:bgp-inet">
 <ipv4-route>
 <prefix>10.10.10.0/24</prefix>
 <attributes>
 ...
 </attributes>
 </ipv4-route>
 </ipv4-routes>
 <attributes>
 <uptodate>true</uptodate>
 </attributes>
 </tables>
 </pre-policy-rib>
 <address>10.10.10.10</address>
 <post-policy-rib>
 ...
 </post-policy-rib>
 <bgp-id>20.20.20.20</bgp-id>
 <stats>
 <timestamp-sec>5</timestamp-sec>
 <invalidated-cluster-list-loop>53</invalidated-cluster-list-loop>
 <duplicate-prefix-advertisements>16</duplicate-prefix-advertisements>
 <loc-rib-routes>100</loc-rib-routes>
 <duplicate-withdraws>11</duplicate-withdraws>
 <invalidated-as-confed-loop>55</invalidated-as-confed-loop>
 <adj-ribs-in-routes>10</adj-ribs-in-routes>
 <invalidated-as-path-loop>66</invalidated-as-path-loop>
 <invalidated-originator-id>70</invalidated-originator-id>
 <rejected-prefixes>8</rejected-prefixes>
 </stats>
 </peer>
 <name>name</name>
 <description>description</description>
 <info>some info;</info>
 </router>
 </monitor>
</bmp-monitor>
</source>

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

CAPWAP Developer Guide

Overview

The Control And Provisioning of Wireless Access Points (CAPWAP) plugin
project aims to provide new southbound interface for controller to be
able to monitor and manage CAPWAP compliant wireless termination point
(WTP) network devices. The CAPWAP feature will provide REST based
northbound APIs.

CAPWAP Architecture

The CAPWAP feature is implemented as an MD-SAL based provider module,
which helps discover WTP devices and update their states in the MD-SAL
operational datastore.

CAPWAP APIs and Interfaces

This section describes the APIs for interacting with the CAPWAP plugin.

Discovered WTPs

The CAPWAP project maintains list of discovered CAPWAP WTPs that is
YANG-based in MD-SAL. These models are available via RESTCONF.

	Name: Discovered-WTPs

	URL:
http://${ipaddress}:8181/restconf/operational/capwap-impl:capwap-ac-root/

	Description: Displays list of discovered WTPs and their basic
attributes

API Reference Documentation

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the capwap-impl panel. From there, users can execute
various API calls to test their CAPWAP deployment.

Cardinal: OpenDaylight Monitoring as a Service

Overview

Cardinal (OpenDaylight Monitoring as a Service) enables OpenDaylight and
the underlying software defined network to be remotely monitored by
deployed Network Management Systems (NMS) or Analytics suite. In the
Boron release, Cardinal adds:

	OpenDaylight MIB.

	Enable ODL diagnostics/monitoring to be exposed across SNMP (v2c, v3)
and REST north-bound.

	Extend ODL System health, Karaf parameter and feature info, ODL
plugin scalability and network parameters.

	Support autonomous notifications (SNMP Traps).

Cardinal Architecture

The Cardinal architecture can be found at the below link:

https://wiki.opendaylight.org/images/8/89/Cardinal-ODL_Monitoring_as_a_Service_V2.pdf

Key APIs and Interfaces

There are 2 main APIs for requesting snmpget request of the Karaf info
and System info. To expose these APIs, it assumes that you already have
the odl-cardinal and odl-restconf features installed. You can do
that by entering the following at the Karaf console:

feature:install odl-cardinal
feature:install odl-restconf-all

System Info APIs

Open the REST interface and using the basic authentication, execute REST
APIs for system info as:

http://localhost:8181/restconf/operational/cardinal:CardinalSystemInfo/

You should get the response code of the same as 200 OK with the
following output as:

{
 "CardinalSystemInfo": {
 "odlSystemMemUsage": " 9",
 "odlSystemSysInfo": " OpenDaylight Node Information",
 "odlSystemOdlUptime": " 00:29",
 "odlSystemCpuUsage": " 271",
 "odlSystemHostAddress": " Address of the Host should come up"
 }
}

Karaf Info APIs

Open the REST interface and using the basic authentication, execute REST
APIs for system info as:

http://localhost:8181/restconf/operational/cardinal-karaf:CardinalKarafInfo/

You should get the response code of the same as 200 OK with the
following output as:

 {
 "CardinalKarafInfo": {
 "odlKarafBundleListActive1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
 "odlKarafBundleListActive2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
 "odlKarafBundleListActive3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
 "odlKarafBundleListActive4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]",
 "odlKarafBundleListActive5": " org.apache.karaf.service.guard_3.0.6 [5]",
 "odlKarafBundleListActive6": " org.apache.felix.configadmin_1.8.4 [6]",
 "odlKarafBundleListActive7": " org.apache.felix.fileinstall_3.5.2 [7]",
 "odlKarafBundleListActive8": " org.objectweb.asm.all_5.0.3 [8]",
 "odlKarafBundleListActive9": " org.apache.aries.util_1.1.1 [9]",
 "odlKarafBundleListActive10": " org.apache.aries.proxy.api_1.0.1 [10]",
 "odlKarafBundleListInstalled1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
 "odlKarafBundleListInstalled2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
 "odlKarafBundleListInstalled3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
 "odlKarafBundleListInstalled4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]",
 "odlKarafBundleListInstalled5": " org.apache.karaf.service.guard_3.0.6 [5]",
 "odlKarafFeatureListInstalled1": " config",
 "odlKarafFeatureListInstalled2": " region",
 "odlKarafFeatureListInstalled3": " package",
 "odlKarafFeatureListInstalled4": " http",
 "odlKarafFeatureListInstalled5": " war",
 "odlKarafFeatureListInstalled6": " kar",
 "odlKarafFeatureListInstalled7": " ssh",
 "odlKarafFeatureListInstalled8": " management",
 "odlKarafFeatureListInstalled9": " odl-netty",
 "odlKarafFeatureListInstalled10": " odl-lmax",
 "odlKarafBundleListResolved1": " org.ops4j.pax.url.mvn_2.4.5 [1]",
 "odlKarafBundleListResolved2": " org.ops4j.pax.url.wrap_2.4.5 [2]",
 "odlKarafBundleListResolved3": " org.ops4j.pax.logging.pax-logging-api_1.8.4 [3]",
 "odlKarafBundleListResolved4": " org.ops4j.pax.logging.pax-logging-service_1.8.4 [4]",
 "odlKarafBundleListResolved5": " org.apache.karaf.service.guard_3.0.6 [5]",
 "odlKarafFeatureListUnInstalled1": " aries-annotation",
 "odlKarafFeatureListUnInstalled2": " wrapper",
 "odlKarafFeatureListUnInstalled3": " service-wrapper",
 "odlKarafFeatureListUnInstalled4": " obr",
 "odlKarafFeatureListUnInstalled5": " http-whiteboard",
 "odlKarafFeatureListUnInstalled6": " jetty",
 "odlKarafFeatureListUnInstalled7": " webconsole",
 "odlKarafFeatureListUnInstalled8": " scheduler",
 "odlKarafFeatureListUnInstalled9": " eventadmin",
 "odlKarafFeatureListUnInstalled10": " jasypt-encryption"
 }
}

Controller

Overview

OpenDaylight Controller is Java-based, model-driven controller using
YANG as its modeling language for various aspects of the system and
applications and with its components serves as a base platform for other
OpenDaylight applications.

The OpenDaylight Controller relies on the following technologies:

	OSGI - This framework is the back-end of OpenDaylight as it
allows dynamically loading of bundles and packages JAR files, and
binding bundles together for exchanging information.

	Karaf - Application container built on top of OSGI, which
simplifies operational aspects of packaging and installing
applications.

	YANG - a data modeling language used to model configuration and
state data manipulated by the applications, remote procedure calls,
and notifications.

The OpenDaylight Controller provides following model-driven subsystems
as a foundation for Java applications:

	Config Subsystem - an activation,
dependency-injection and configuration framework, which allows
two-phase commits of configuration and dependency-injection, and
allows for run-time rewiring.

	MD-SAL - messaging and data storage
functionality for data, notifications and RPCs modeled by application
developers. MD-SAL uses YANG as the modeling for both interface and
data definitions, and provides a messaging and data-centric runtime
for such services based on YANG modeling.

	MD-SAL Clustering - enables cluster support for core MD-SAL
functionality and provides location-transparent accesss to
YANG-modeled data.

The OpenDaylight Controller supports external access to applications and
data using following model-driven protocols:

	NETCONF - XML-based RPC protocol, which provides abilities for
client to invoke YANG-modeled RPCs, receive notifications and to
read, modify and manipulate YANG modeled data.

	RESTCONF - HTTP-based protocol, which provides REST-like APIs to
manipulate YANG modeled data and invoke YANG modeled RPCs, using XML
or JSON as payload format.

MD-SAL Overview

The Model-Driven Service Adaptation Layer (MD-SAL) is message-bus
inspired extensible middleware component that provides messaging and
data storage functionality based on data and interface models defined by
application developers (i.e. user-defined models).

The MD-SAL:

	Defines a common-layer, concepts, data model building blocks and
messaging patterns and provides infrastructure / framework for
applications and inter-application communication.

	Provide common support for user-defined transport and payload
formats, including payload serialization and adaptation (e.g. binary,
XML or JSON).

The MD-SAL uses YANG as the modeling language for both interface and
data definitions, and provides a messaging and data-centric runtime for
such services based on YANG modeling.

The MD-SAL provides two different API types (flavours):

	MD-SAL Binding: MD-SAL APIs which extensively uses APIs and
classes generated from YANG models, which provides compile-time
safety.

	MD-SAL DOM: (Document Object Model) APIs which uses DOM-like
representation of data, which makes them more powerful, but provides
less compile-time safety.

Note

Model-driven nature of the MD-SAL and DOM-based APIs allows for
behind-the-scene API and payload type mediation and transformation
to facilitate seamless communication between applications - this
enables for other components and applications to provide connectors
/ expose different set of APIs and derive most of its functionality
purely from models, which all existing code can benefit from without
modification. For example RESTCONF Connector is an application
built on top of MD-SAL and exposes YANG-modeled application APIs
transparently via HTTP and adds support for XML and JSON payload
type.

Basic concepts

Basic concepts are building blocks which are used by applications, and
from which MD-SAL uses to define messaging patterns and to provide
services and behavior based on developer-supplied YANG models.

	Data Tree

	All state-related data are modeled and represented as data tree,
with possibility to address any element / subtree

	Operational Data Tree - Reported state of the system,
published by the providers using MD-SAL. Represents a feedback
loop for applications to observe state of the network / system.

	Configuration Data Tree - Intended state of the system or
network, populated by consumers, which expresses their intention.

	Instance Identifier

	Unique identifier of node / subtree in data tree, which provides
unambiguous information, how to reference and retrieve node /
subtree from conceptual data trees.

	Notification

	Asynchronous transient event which may be consumed by subscribers
and they may act upon it

	RPC

	asynchronous request-reply message pair, when request is triggered
by consumer, send to the provider, which in future replies with
reply message.

Note

In MD-SAL terminology, the term RPC is used to define the
input and output for a procedure (function) that is to be
provided by a provider, and mediated by the MD-SAL, that means
it may not result in remote call.

Messaging Patterns

MD-SAL provides several messaging patterns using broker derived from
basic concepts, which are intended to transfer YANG modeled data between
applications to provide data-centric integration between applications
instead of API-centric integration.

	Unicast communication
	Remote Procedure Calls - unicast between consumer and
provider, where consumer sends request message to provider,
which asynchronously responds with reply message

	Publish / Subscribe
	Notifications - multicast transient message which is published
by provider and is delivered to subscribers

	Data Change Events - multicast asynchronous event, which is
sent by data broker if there is change in conceptual data tree,
and is delivered to subscribers

	Transactional access to Data Tree
	Transactional reads from conceptual data tree - read-only
transactions with isolation from other running transactions.

	Transactional modification to conceptual data tree - write
transactions with isolation from other running transactions.

	Transaction chaining

MD-SAL Data Transactions

MD-SAL Data Broker provides transactional access to conceptual
data trees representing configuration and operational state.

Note

Data tree usually represents state of the modeled data, usually
this is state of controller, applications and also external systems
(network devices).

Transactions provide stable and isolated
view from other currently running
transactions. The state of running transaction and underlying data tree
is not affected by other concurrently running transactions.

	Write-Only

	Transaction provides only modification capabilities, but does not
provide read capabilities. Write-only transaction is allocated using
newWriteOnlyTransaction().

Note

This allows less state tracking for write-only transactions and
allows MD-SAL Clustering to optimize internal representation of
transaction in cluster.

	Read-Write

	Transaction provides both read and write capabilities. It is
allocated using newReadWriteTransaction().

	Read-Only

	Transaction provides stable read-only view based on current data
tree. Read-only view is not affected by any subsequent write
transactions. Read-only transaction is allocated using
newReadOnlyTransaction().

Note

If an application needs to observe changes itself in data tree,
it should use data tree listeners instead of read-only
transactions and polling data tree.

Transactions may be allocated using the data broker itself or using
transaction chain. In the case of transaction chain, the new
allocated transaction is not based on current state of data tree, but
rather on state introduced by previous transaction from the same chain,
even if the commit for previous transaction has not yet occurred (but
transaction was submitted).

Write-Only & Read-Write Transaction

Write-Only and Read-Write transactions provide modification capabilities
for the conceptual data trees.

	application allocates new transactions using
newWriteOnlyTransaction() or newReadWriteTransaction().

	application modifies data tree
using put, merge and/or delete.

	application finishes transaction using
submit(), which seals transaction
and submits it to be processed.

	application observes the result of the transaction commit using
either blocking or asynchronous calls.

The initial state of the write transaction is a stable snapshot
of the current data tree state captured when transaction was created and
it’s state and underlying data tree are not affected by other
concurrently running transactions.

Write transactions are isolated from other concurrent write
transactions. All writes are local
to the transaction and represents only a proposal of state change
for data tree and are not visible to any other concurrently running
transactions (including read-only transactions).

The transaction commit may fail due
to failing verification of data or concurrent transaction modifying and
affected data in an incompatible way.

Modification of Data Tree

Write-only and read-write transaction provides following methods to
modify data tree:

	put

	<T> void put(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Stores a piece of data at a specified path. This acts as an add /
replace operation, which is to say that whole subtree will be
replaced by the specified data.

	merge

	<T> void merge(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Merges a piece of data with the existing data at a specified path.
Any pre-existing data which are not explicitly overwritten
will be preserved. This means that if you store a container, its
child subtrees will be merged.

	delete

	void delete(LogicalDatastoreType store, InstanceIdentifier<?> path);

Removes a whole subtree from a specified path.

Submitting transaction

Transaction is submitted to be processed and committed using following
method:

CheckedFuture<Void,TransactionCommitFailedException> submit();

Applications publish the changes proposed in the transaction by calling
submit() on the transaction. This seals the transaction
(preventing any further writes using this transaction) and submits it to
be processed and applied to global conceptual data tree. The
submit() method does not block, but rather returns
ListenableFuture, which will complete successfully once processing
of transaction is finished and changes are applied to data tree. If
commit of data failed, the future will fail with
TransactionFailedException.

Application may listen on commit state asynchronously using
ListenableFuture.

Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
 public void onSuccess(Void result) {
 LOG.debug("Transaction committed successfully.");
 }

 public void onFailure(Throwable t) {
 LOG.error("Commit failed.",e);
 }
 });

	Submits writeTx and registers application provided
FutureCallback on returned future.

	Invoked when future completed successfully - transaction writeTx
was successfully committed to data tree.

	Invoked when future failed - commit of transaction writeTx
failed. Supplied exception provides additional details and cause of
failure.

If application need to block till commit is finished it may use
checkedGet() to wait till commit is finished.

try {
 writeTx.submit().checkedGet();
} catch (TransactionCommitFailedException e) {
 LOG.error("Commit failed.",e);
}

	Submits writeTx and blocks till commit of writeTx is
finished. If commit fails TransactionCommitFailedException will
be thrown.

	Catches TransactionCommitFailedException and logs it.

Transaction local state

Read-Write transactions maintain transaction-local state, which renders
all modifications as if they happened, but this is only local to
transaction.

Reads from the transaction returns data as if the previous modifications
in transaction already happened.

Let assume initial state of data tree for PATH is A.

ReadWriteTransaction rwTx = broker.newReadWriteTransaction();

rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,B);
rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,C);
rwRx.read(OPERATIONAL,PATH).get();

	Allocates new ReadWriteTransaction.

	Read from rwTx will return value A for PATH.

	Writes value B to PATH using rwTx.

	Read will return value B for PATH, since previous write
occurred in same transaction.

	Writes value C to PATH using rwTx.

	Read will return value C for PATH, since previous write
occurred in same transaction.

Transaction isolation

Running (not submitted) transactions are isolated from each other and
changes done in one transaction are not observable in other currently
running transaction.

Lets assume initial state of data tree for PATH is A.

ReadOnlyTransaction txRead = broker.newReadOnlyTransaction();
ReadWriteTransaction txWrite = broker.newReadWriteTransaction();

txRead.read(OPERATIONAL,PATH).get();
txWrite.put(OPERATIONAL,PATH,B);
txWrite.read(OPERATIONAL,PATH).get();
txWrite.submit().get();
txRead.read(OPERATIONAL,PATH).get();
txAfterCommit = broker.newReadOnlyTransaction();
txAfterCommit.read(OPERATIONAL,PATH).get();

	Allocates read only transaction, which is based on data tree which
contains value A for PATH.

	Allocates read write transaction, which is based on data tree which
contains value A for PATH.

	Read from read-only transaction returns value A for PATH.

	Data tree is updated using read-write transaction, PATH contains
B. Change is not public and only local to transaction.

	Read from read-write transaction returns value B for PATH.

	Submits changes in read-write transaction to be committed to data
tree. Once commit will finish, changes will be published and PATH
will be updated for value B. Previously allocated transactions
are not affected by this change.

	Read from previously allocated read-only transaction still returns
value A for PATH, since it provides stable and isolated view.

	Allocates new read-only transaction, which is based on data tree,
which contains value B for PATH.

	Read from new read-only transaction return value B for PATH
since read-write transaction was committed.

Note

Examples contain blocking calls on future only to illustrate that
action happened after other asynchronous action. The use of the
blocking call ListenableFuture#get() is discouraged for most
use-cases and you should use
Futures#addCallback(ListenableFuture, FutureCallback) to listen
asynchronously for result.

Commit failure scenarios

A transaction commit may fail because of following reasons:

	Optimistic Lock Failure

	Another transaction finished earlier and modified the same node in
a non-compatible way. The commit (and the returned future) will
fail with an OptimisticLockFailedException.

It is the responsibility of the caller to create a new transaction
and submit the same modification again in order to update data tree.

Warning

OptimisticLockFailedException usually exposes multiple
writers to the same data subtree, which may conflict on same
resources.

In most cases, retrying may result in a probability of success.

There are scenarios, albeit unusual, where any number of retries
will not succeed. Therefore it is strongly recommended to limit
the number of retries (2 or 3) to avoid an endless loop.

	Data Validation

	The data change introduced by this transaction did not pass
validation by commit handlers or data was incorrectly structured.
The returned future will fail with a
DataValidationFailedException. User should not retry to
create new transaction with same data, since it probably will fail
again.

Example conflict of two transactions

This example illustrates two concurrent transactions, which derived from
same initial state of data tree and proposes conflicting modifications.

WriteTransaction txA = broker.newWriteTransaction();
WriteTransaction txB = broker.newWriteTransaction();

txA.put(CONFIGURATION, PATH, A);
txB.put(CONFIGURATION, PATH, B);

CheckedFuture<?,?> futureA = txA.submit();
CheckedFuture<?,?> futureB = txB.submit();

	Updates PATH to value A using txA

	Updates PATH to value B using txB

	Seals & submits txA. The commit will be processed asynchronously
and data tree will be updated to contain value A for PATH.
The returned ‘ListenableFuture’ will complete successfully once state
is applied to data tree.

	Seals & submits txB. Commit of txB will fail, because
previous transaction also modified path in a concurrent way. The
state introduced by txB will not be applied. The returned
ListenableFuture will fail with OptimisticLockFailedException
exception, which indicates that concurrent transaction prevented the
submitted transaction from being applied.

Example asynchronous retry-loop

private void doWrite(final int tries) {
 WriteTransaction writeTx = dataBroker.newWriteOnlyTransaction();

 MyDataObject data = ...;
 InstanceIdentifier<MyDataObject> path = ...;
 writeTx.put(LogicalDatastoreType.OPERATIONAL, path, data);

 Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
 public void onSuccess(Void result) {
 // succeeded
 }

 public void onFailure(Throwable t) {
 if(t instanceof OptimisticLockFailedException && ((tries - 1) > 0)) {
 doWrite(tries - 1);
 }
 }
 });
}
...
doWrite(2);

Concurrent change compatibility

There are several sets of changes which could be considered incompatible
between two transactions which are derived from same initial state.
Rules for conflict detection applies recursively for each subtree level.

Following table shows state changes and failures between two concurrent
transactions, which are based on same initial state, tx1 is
submitted before tx2.

INFO: Following tables stores numeric values and shows data using
toString() to simplify examples.

	Initial state
	tx1
	tx2
	Observable Result

	Empty
	put(A,1)
	put(A,2)
	tx2 will fail,
value of A is
1

	Empty
	put(A,1)
	merge(A,2)
	value of A is
2

	Empty
	merge(A,1)
	put(A,2)
	tx2 will fail,
value of A is
1

	Empty
	merge(A,1)
	merge(A,2)
	A is 2

	A=0
	put(A,1)
	put(A,2)
	tx2 will fail,
A is 1

	A=0
	put(A,1)
	merge(A,2)
	A is 2

	A=0
	merge(A,1)
	put(A,2)
	tx2 will fail,
value of A is
1

	A=0
	merge(A,1)
	merge(A,2)
	A is 2

	A=0
	delete(A)
	put(A,2)
	tx2 will fail,
A does not
exists

	A=0
	delete(A)
	merge(A,2)
	A is 2

Table: Concurrent change resolution for leaves and leaf-list items

	Initial state
	tx1
	tx2
	Result

	Empty
	put(TOP,[])
	put(TOP,[])
	tx2 will fail,
state is TOP=[]

	Empty
	put(TOP,[])
	merge(TOP,[])
	TOP=[]

	Empty
	put(TOP,[FOO=1])
	put(TOP,[BAR=1])
	tx2 will fail,
state is
TOP=[FOO=1]

	Empty
	put(TOP,[FOO=1])
	merge(TOP,[BAR=1])
	TOP=[FOO=1,BAR=1]

	Empty
	merge(TOP,[FOO=1])
	put(TOP,[BAR=1])
	tx2 will fail,
state is
TOP=[FOO=1]

	Empty
	merge(TOP,[FOO=1])
	merge(TOP,[BAR=1])
	TOP=[FOO=1,BAR=1]

	TOP=[]
	put(TOP,[FOO=1])
	put(TOP,[BAR=1])
	tx2 will fail,
state is
TOP=[FOO=1]

	TOP=[]
	put(TOP,[FOO=1])
	merge(TOP,[BAR=1])
	state is
TOP=[FOO=1,BAR=1]

	TOP=[]
	merge(TOP,[FOO=1])
	put(TOP,[BAR=1])
	tx2 will fail,
state is
TOP=[FOO=1]

	TOP=[]
	merge(TOP,[FOO=1])
	merge(TOP,[BAR=1])
	state is
TOP=[FOO=1,BAR=1]

	TOP=[]
	delete(TOP)
	put(TOP,[BAR=1])
	tx2 will fail,
state is empty
store

	TOP=[]
	delete(TOP)
	merge(TOP,[BAR=1])
	state is
TOP=[BAR=1]

	TOP=[]
	put(TOP/FOO,1)
	put(TOP/BAR,1])
	state is
TOP=[FOO=1,BAR=1]

	TOP=[]
	put(TOP/FOO,1)
	merge(TOP/BAR,1)
	state is
TOP=[FOO=1,BAR=1]

	TOP=[]
	merge(TOP/FOO,1)
	put(TOP/BAR,1)
	state is
TOP=[FOO=1,BAR=1]

	TOP=[]
	merge(TOP/FOO,1)
	merge(TOP/BAR,1)
	state is
TOP=[FOO=1,BAR=1]

	TOP=[]
	delete(TOP)
	put(TOP/BAR,1)
	tx2 will fail,
state is empty
store

	TOP=[]
	delete(TOP)
	merge(TOP/BAR,1]
	tx2 will fail,
state is empty
store

	TOP=[FOO=1]
	put(TOP/FOO,2)
	put(TOP/BAR,1)
	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]
	put(TOP/FOO,2)
	merge(TOP/BAR,1)
	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]
	merge(TOP/FOO,2)
	put(TOP/BAR,1)
	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]
	merge(TOP/FOO,2)
	merge(TOP/BAR,1)
	state is
TOP=[FOO=2,BAR=1]

	TOP=[FOO=1]
	delete(TOP/FOO)
	put(TOP/BAR,1)
	state is
TOP=[BAR=1]

	TOP=[FOO=1]
	delete(TOP/FOO)
	merge(TOP/BAR,1]
	state is
TOP=[BAR=1]

Table: Concurrent change resolution for containers, lists, list items

MD-SAL RPC routing

The MD-SAL provides a way to deliver Remote Procedure Calls (RPCs) to a
particular implementation based on content in the input as it is modeled
in YANG. This part of the the RPC input is referred to as a context
reference.

The MD-SAL does not dictate the name of the leaf which is used for this
RPC routing, but provides necessary functionality for YANG model author
to define their context reference in their model of RPCs.

MD-SAL routing behavior is modeled using following terminology and its
application to YANG models:

	Context Type

	Logical type of RPC routing. Context type is modeled as YANG
identity and is referenced in model to provide scoping
information.

	Context Instance

	Conceptual location in data tree, which represents context in which
RPC could be executed. Context instance usually represent logical
point to which RPC execution is attached.

	Context Reference

	Field of RPC input payload which contains Instance Identifier
referencing context instance in which the RPC should be
executed.

Modeling a routed RPC

In order to define routed RPCs, the YANG model author needs to declare
(or reuse) a context type, set of possible context instances and
finally RPCs which will contain context reference on which they will
be routed.

Declaring a routing context type

This declares an identity named node-context, which is used as
marker for node-based routing and is used in other places to reference
that routing type.

Declaring possible context instances

In order to define possible values of context instances for routed
RPCs, we need to model that set accordingly using context-instance
extension from the yang-ext model.

The statement ext:context-instance "node-context"; marks any element
of the list node as a possible valid context instance in
node-context based routing.

Note

The existence of a context instance node in operational or
config data tree is not strongly tied to existence of RPC
implementation.

For most routed RPC models, there is relationship between the data
present in operational data tree and RPC implementation
availability, but this is not enforced by MD-SAL. This provides some
flexibility for YANG model writers to better specify their routing
model and requirements for implementations. Details when RPC
implementations are available should be documented in YANG model.

If user invokes RPC with a context instance that has no
registered implementation, the RPC invocation will fail with the
exception DOMRpcImplementationNotAvailableException.

Declaring a routed RPC

To declare RPC to be routed based on node-context we need to add
leaf of instance-identifier type (or type derived from
instance-identifier) to the RPC and mark it as context
reference.

This is achieved using YANG extension context-reference from
yang-ext model on leaf, which will be used for RPC routing.

The statement ext:context-reference "node-context" marks
leaf node as context reference of type node-context. The
value of this leaf, will be used by the MD-SAL to select the particular
RPC implementation that registered itself as the implementation of the
RPC for particular context instance.

Using routed RPCs

From a user perspective (e.g. invoking RPCs) there is no difference
between routed and non-routed RPCs. Routing information is just an
additional leaf in RPC which must be populated.

Implementing a routed RPC

Implementation

Registering implementations

Implementations of a routed RPC (e.g., southbound plugins) will specify
an instance-identifier for the context reference (in this case a
node) for which they want to provide an implementation during
registration. Consumers, e.g., those calling the RPC are required to
specify that instance-identifier (in this case the identifier of a node)
when invoking RPC.

Simple code which showcases that for add-flow via Binding-Aware APIs
(RoutedServiceTest.java [https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-binding-it/src/test/java/org/opendaylight/controller/test/sal/binding/it/RoutedServiceTest.java;h=d49d6f0e25e271e43c8550feb5eef63d96301184;hb=HEAD]
):

61 @Override
62 public void onSessionInitiated(ProviderContext session) {
63 assertNotNull(session);
64 firstReg = session.addRoutedRpcImplementation(SalFlowService.class, salFlowService1);
65 }

Line 64: We are registering salFlowService1 as implementation of
SalFlowService RPC

107 NodeRef nodeOne = createNodeRef("foo:node:1");
109 /**
110 * Provider 1 registers path of node 1
111 */
112 firstReg.registerPath(NodeContext.class, nodeOne);

Line 107: We are creating NodeRef (encapsulation of InstanceIdentifier)
for “foo:node:1”.

Line 112: We register salFlowService1 as implementation for nodeOne.

The salFlowService1 will be executed only for RPCs which contains
Instance Identifier for foo:node:1.

OpenDaylight Controller MD-SAL: RESTCONF

RESTCONF operations overview

RESTCONF allows access to datastores in the controller.

There are two datastores:

	Config: Contains data inserted via controller

	Operational: Contains other data

Note

Each request must start with the URI /restconf.

RESTCONF listens on port 8080 for HTTP requests.

RESTCONF supports OPTIONS, GET, PUT, POST, and
DELETE operations. Request and response data can either be in the
XML or JSON format. XML structures according to yang are defined at:
XML-YANG [http://tools.ietf.org/html/rfc6020]. JSON structures are
defined at:
JSON-YANG [http://tools.ietf.org/html/draft-lhotka-netmod-yang-json-02].
Data in the request must have a correctly set Content-Type field in
the http header with the allowed value of the media type. The media type
of the requested data has to be set in the Accept field. Get the
media types for each resource by calling the OPTIONS operation. Most of
the paths of the pathsRestconf endpoints use Instance
Identifier [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Concepts#Instance_Identifier].
<identifier> is used in the explanation of the operations.

<identifier>

	It must start with <moduleName>:<nodeName> where <moduleName> is a
name of the module and <nodeName> is the name of a node in the
module. It is sufficient to just use <nodeName> after
<moduleName>:<nodeName>. Each <nodeName> has to be separated by /.

	<nodeName> can represent a data node which is a list or container
yang built-in type. If the data node is a list, there must be defined
keys of the list behind the data node name for example,
<nodeName>/<valueOfKey1>/<valueOfKey2>.

	
The format <moduleName>:<nodeName> has to be used in this case as
well:

Module A has node A1. Module B augments node A1 by adding node X.
Module C augments node A1 by adding node X. For clarity, it has to
be known which node is X (for example: C:X). For more details about
encoding, see: RESTCONF 02 - Encoding YANG Instance Identifiers in
the Request
URI. [http://tools.ietf.org/html/draft-bierman-netconf-restconf-02#section-5.3.1]

Mount point

A Node can be behind a mount point. In this case, the URI has to be in
format <identifier>/yang-ext:mount/<identifier>. The first
<identifier> is the path to a mount point and the second <identifier>
is the path to a node behind the mount point. A URI can end in a mount
point itself by using <identifier>/yang-ext:mount.

More information on how to actually use mountpoints is available at:
OpenDaylight
Controller:Config:Examples:Netconf [https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf].

HTTP methods

OPTIONS /restconf

	Returns the XML description of the resources with the required
request and response media types in Web Application Description
Language (WADL)

GET /restconf/config/<identifier>

	Returns a data node from the Config datastore.

	<identifier> points to a data node which must be retrieved.

GET /restconf/operational/<identifier>

	Returns the value of the data node from the Operational datastore.

	<identifier> points to a data node which must be retrieved.

PUT /restconf/config/<identifier>

	Updates or creates data in the Config datastore and returns the state
about success.

	<identifier> points to a data node which must be stored.

Example:

PUT http://<controllerIP>:8080/restconf/config/module1:foo/bar
Content-Type: applicaton/xml
<bar>
 …
</bar>

Example with mount point:

PUT http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/module2:foo/bar
Content-Type: applicaton/xml
<bar>
 …
</bar>

POST /restconf/config

	Creates the data if it does not exist

For example:

POST URL: http://localhost:8080/restconf/config/
content-type: application/yang.data+json
JSON payload:

 {
 "toaster:toaster" :
 {
 "toaster:toasterManufacturer" : "General Electric",
 "toaster:toasterModelNumber" : "123",
 "toaster:toasterStatus" : "up"
 }
 }

POST /restconf/config/<identifier>

	Creates the data if it does not exist in the Config datastore, and
returns the state about success.

	<identifier> points to a data node where data must be stored.

	The root element of data must have the namespace (data are in XML) or
module name (data are in JSON.)

Example:

POST http://<controllerIP>:8080/restconf/config/module1:foo
Content-Type: applicaton/xml/
<bar xmlns=“module1namespace”>
 …
</bar>

Example with mount point:

http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/module2:foo
Content-Type: applicaton/xml
<bar xmlns=“module2namespace”>
 …
</bar>

POST /restconf/operations/<moduleName>:<rpcName>

	Invokes RPC.

	<moduleName>:<rpcName> - <moduleName> is the name of the module and
<rpcName> is the name of the RPC in this module.

	The Root element of the data sent to RPC must have the name “input”.

	The result can be the status code or the retrieved data having the
root element “output”.

Example:

POST http://<controllerIP>:8080/restconf/operations/module1:fooRpc
Content-Type: applicaton/xml
Accept: applicaton/xml
<input>
 …
</input>

The answer from the server could be:
<output>
 …
</output>

An example using a JSON payload:

POST http://localhost:8080/restconf/operations/toaster:make-toast
Content-Type: application/yang.data+json
{
 "input" :
 {
 "toaster:toasterDoneness" : "10",
 "toaster:toasterToastType":"wheat-bread"
 }
}

Note

Even though this is a default for the toasterToastType value in the
yang, you still need to define it.

DELETE /restconf/config/<identifier>

	Removes the data node in the Config datastore and returns the state
about success.

	<identifier> points to a data node which must be removed.

More information is available in the RESTCONF
RFC [http://tools.ietf.org/html/draft-bierman-netconf-restconf-02].

How RESTCONF works

RESTCONF uses these base classes:

	InstanceIdentifier

	Represents the path in the data tree

	ConsumerSession

	Used for invoking RPCs

	DataBrokerService

	Offers manipulation with transactions and reading data from the
datastores

	SchemaContext

	Holds information about yang modules

	MountService

	Returns MountInstance based on the InstanceIdentifier pointing to a
mount point

	MountInstace

	Contains the SchemaContext behind the mount point

	DataSchemaNode

	Provides information about the schema node

	SimpleNode

	Possesses the same name as the schema node, and contains the value
representing the data node value

	CompositeNode

	Can contain CompositeNode-s and SimpleNode-s

GET in action

Figure 1 shows the GET operation with URI restconf/config/M:N where M is
the module name, and N is the node name.

[image: Get]
Get

	The requested URI is translated into the InstanceIdentifier which
points to the data node. During this translation, the DataSchemaNode
that conforms to the data node is obtained. If the data node is
behind the mount point, the MountInstance is obtained as well.

	RESTCONF asks for the value of the data node from DataBrokerService
based on InstanceIdentifier.

	DataBrokerService returns CompositeNode as data.

	StructuredDataToXmlProvider or StructuredDataToJsonProvider is called
based on the Accept field from the http request. These two
providers can transform CompositeNode regarding DataSchemaNode to an
XML or JSON document.

	XML or JSON is returned as the answer on the request from the client.

PUT in action

Figure 2 shows the PUT operation with the URI restconf/config/M:N where
M is the module name, and N is the node name. Data is sent in the
request either in the XML or JSON format.

[image: Put]
Put

	Input data is sent to JsonToCompositeNodeProvider or
XmlToCompositeNodeProvider. The correct provider is selected based on
the Content-Type field from the http request. These two providers can
transform input data to CompositeNode. However, this CompositeNode
does not contain enough information for transactions.

	The requested URI is translated into InstanceIdentifier which points
to the data node. DataSchemaNode conforming to the data node is
obtained during this translation. If the data node is behind the
mount point, the MountInstance is obtained as well.

	CompositeNode can be normalized by adding additional information from
DataSchemaNode.

	RESTCONF begins the transaction, and puts CompositeNode with
InstanceIdentifier into it. The response on the request from the
client is the status code which depends on the result from the
transaction.

Something practical

	Create a new flow on the switch openflow:1 in table 2.

HTTP request

Operation: POST
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

HTTP response

Status: 204 No Content

	Change strict to true in the previous flow.

HTTP request

Operation: PUT
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/111
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>true</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

HTTP response

Status: 200 OK

	Show flow: check that strict is true.

HTTP request

Operation: GET
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/111
Accept: application/xml

HTTP response

Status: 200 OK

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow
 xmlns="urn:opendaylight:flow:inventory">
 <strict>true</strict>
 <instructions>
 <instruction>
 <order>1</order>
 <apply-actions>
 <action>
 <order>1</order>
 <flood-all-action/>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>2</table_id>
 <id>111</id>
 <cookie_mask>10</cookie_mask>
 <out_port>10</out_port>
 <installHw>false</installHw>
 <out_group>2</out_group>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2048</type>
 </ethernet-type>
 </ethernet-match>
 <ipv4-destination>10.0.0.1/24</ipv4-destination>
 </match>
 <hard-timeout>0</hard-timeout>
 <cookie>10</cookie>
 <idle-timeout>0</idle-timeout>
 <flow-name>FooXf22</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

	Delete the flow created.

HTTP request

Operation: DELETE
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/openflow:1/table/2/flow/111

HTTP response

Status: 200 OK

Websocket change event notification subscription tutorial

Subscribing to data change notifications makes it possible to obtain
notifications about data manipulation (insert, change, delete) which are
done on any specified path of any specified datastore with
specific scope. In following examples {odlAddress} is address of
server where ODL is running and {odlPort} is port on which
OpenDaylight is running.

Websocket notifications subscription process

In this section we will learn what steps need to be taken in order to
successfully subscribe to data change event notifications.

Create stream

In order to use event notifications you first need to call RPC that
creates notification stream that you can later listen to. You need to
provide three parameters to this RPC:

	path: data store path that you plan to listen to. You can
register listener on containers, lists and leaves.

	datastore: data store type. OPERATIONAL or CONFIGURATION.

	scope: Represents scope of data change. Possible options are:
	BASE: only changes directly to the data tree node specified in the
path will be reported

	ONE: changes to the node and to direct child nodes will be
reported

	SUBTREE: changes anywhere in the subtree starting at the node will
be reported

The RPC to create the stream can be invoked via RESTCONF like this:

	URI:
http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-data-change-event-subscription

	HEADER: Content-Type=application/json

	OPERATION: POST

	DATA:

{
 "input": {
 "path": "/toaster:toaster/toaster:toasterStatus",
 "sal-remote-augment:datastore": "OPERATIONAL",
 "sal-remote-augment:scope": "ONE"
 }
}

The response should look something like this:

{
 "output": {
 "stream-name": "toaster:toaster/toaster:toasterStatus/datastore=CONFIGURATION/scope=SUBTREE"
 }
}

stream-name is important because you will need to use it when you
subscribe to the stream in the next step.

Note

Internally, this will create a new listener for stream-name if it
did not already exist.

Subscribe to stream

In order to subscribe to stream and obtain WebSocket location you need
to call GET on your stream path. The URI should generally be
http://{odlAddress}:{odlPort}/restconf/streams/stream/{streamName},
where {streamName} is the stream-name parameter contained in
response from create-data-change-event-subscription RPC from the
previous step.

	URI:
http://{odlAddress}:{odlPort}/restconf/streams/stream/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

	OPERATION: GET

The expected response status is 200 OK and response body should be
empty. You will get your WebSocket location from Location header of
response. For example in our particular toaster example location header
would have this value:
ws://{odlAddress}:8185/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

Note

During this phase there is an internal check for to see if a
listener for the stream-name from the URI exists. If not, new a
new listener is registered with the DOM data broker.

Receive notifications

You should now have a data change notification stream created and have
location of a WebSocket. You can use this WebSocket to listen to data
change notifications. To listen to notifications you can use a
JavaScript client or if you are using chrome browser you can use the
Simple WebSocket
Client [https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo].

Also, for testing purposes, there is simple Java application named
WebSocketClient. The application is placed in the
-sal-rest-connector-classes.class project. It accepts a WebSocket URI
as and input parameter. After starting the utility (WebSocketClient
class directly in Eclipse/InteliJ Idea) received notifications should be
displayed in console.

Notifications are always in XML format and look like this:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2014-09-11T09:58:23+02:00</eventTime>
 <data-changed-notification xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:remote">
 <data-change-event>
 <path xmlns:meae="http://netconfcentral.org/ns/toaster">/meae:toaster</path>
 <operation>updated</operation>
 <data>
 <!-- updated data -->
 </data>
 </data-change-event>
 </data-changed-notification>
</notification>

Example use case

The typical use case is listening to data change events to update web
page data in real-time. In this tutorial we will be using toaster as the
base.

When you call make-toast RPC, it sets toasterStatus to “down” to
reflect that the toaster is busy making toast. When it finishes,
toasterStatus is set to “up” again. We will listen to this toaster
status changes in data store and will reflect it on our web page in
real-time thanks to WebSocket data change notification.

Simple javascript client implementation

We will create simple JavaScript web application that will listen
updates on toasterStatus leaf and update some element of our web page
according to new toaster status state.

Create stream

First you need to create stream that you are planing to subscribe to.
This can be achieved by invoking “create-data-change-event-subscription”
RPC on RESTCONF via AJAX request. You need to provide data store
path that you plan to listen on, data store type and scope.
If the request is successful you can extract the stream-name from
the response and use that to subscribe to the newly created stream. The
{username} and {password} fields represent your credentials that you
use to connect to OpenDaylight via RESTCONF:

Note

The default user name and password are “admin”.

function createStream() {
 $.ajax(
 {
 url: 'http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-data-change-event-subscription',
 type: 'POST',
 headers: {
 'Authorization': 'Basic ' + btoa('{username}:{password}'),
 'Content-Type': 'application/json'
 },
 data: JSON.stringify(
 {
 'input': {
 'path': '/toaster:toaster/toaster:toasterStatus',
 'sal-remote-augment:datastore': 'OPERATIONAL',
 'sal-remote-augment:scope': 'ONE'
 }
 }
)
 }).done(function (data) {
 // this function will be called when ajax call is executed successfully
 subscribeToStream(data.output['stream-name']);
 }).fail(function (data) {
 // this function will be called when ajax call fails
 console.log("Create stream call unsuccessful");
 })
}

Subscribe to stream

The Next step is to subscribe to the stream. To subscribe to the stream
you need to call GET on
http://{odlAddress}:{odlPort}/restconf/streams/stream/{stream-name}.
If the call is successful, you get WebSocket address for this stream in
Location parameter inside response header. You can get response
header by calling getResponseHeader(*Location)* on HttpRequest
object inside done() function call:

function subscribeToStream(streamName) {
 $.ajax(
 {
 url: 'http://{odlAddress}:{odlPort}/restconf/streams/stream/' + streamName;
 type: 'GET',
 headers: {
 'Authorization': 'Basic ' + btoa('{username}:{password}'),
 }
 }
).done(function (data, textStatus, httpReq) {
 // we need function that has http request object parameter in order to access response headers.
 listenToNotifications(httpReq.getResponseHeader('Location'));
 }).fail(function (data) {
 console.log("Subscribe to stream call unsuccessful");
 });
}

Receive notifications

Once you got WebSocket server location you can now connect to it and
start receiving data change events. You need to define functions that
will handle events on WebSocket. In order to process incoming events
from OpenDaylight you need to provide a function that will handle
onmessage events. The function must have one parameter that represents
the received event object. The event data will be stored in
event.data. The data will be in an XML format that you can then easily
parse using jQuery.

function listenToNotifications(socketLocation) {
 try {
 var notificatinSocket = new WebSocket(socketLocation);

 notificatinSocket.onmessage = function (event) {
 // we process our received event here
 console.log('Received toaster data change event.');
 $($.parseXML(event.data)).find('data-change-event').each(
 function (index) {
 var operation = $(this).find('operation').text();
 if (operation == 'updated') {
 // toaster status was updated so we call function that gets the value of toasterStatus leaf
 updateToasterStatus();
 return false;
 }
 }
);
 }
 notificatinSocket.onerror = function (error) {
 console.log("Socket error: " + error);
 }
 notificatinSocket.onopen = function (event) {
 console.log("Socket connection opened.");
 }
 notificatinSocket.onclose = function (event) {
 console.log("Socket connection closed.");
 }
 // if there is a problem on socket creation we get exception (i.e. when socket address is incorrect)
 } catch(e) {
 alert("Error when creating WebSocket" + e);
 }
}

The updateToasterStatus() function represents function that calls
GET on the path that was modified and sets toaster status in some web
page element according to received data. After the WebSocket connection
has been established you can test events by calling make-toast RPC via
RESTCONF.

Note

for more information about WebSockets in JavaScript visit Writing
WebSocket client
applications [https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications]

Config Subsystem

Overview

The Controller configuration operation has three stages:

	First, a Proposed configuration is created. Its target is to replace
the old configuration.

	Second, the Proposed configuration is validated, and then committed.
If it passes validation successfully, the Proposed configuration
state will be changed to Validated.

	Finally, a Validated configuration can be Committed, and the affected
modules can be reconfigured.

In fact, each configuration operation is wrapped in a transaction. Once
a transaction is created, it can be configured, that is to say, a user
can abort the transaction during this stage. After the transaction
configuration is done, it is committed to the validation stage. In this
stage, the validation procedures are invoked. If one or more validations
fail, the transaction can be reconfigured. Upon success, the second
phase commit is invoked. If this commit is successful, the transaction
enters the last stage, committed. After that, the desired modules are
reconfigured. If the second phase commit fails, it means that the
transaction is unhealthy - basically, a new configuration instance
creation failed, and the application can be in an inconsistent state.

[image: Configuration states]
Configuration states

[image: Transaction states]
Transaction states

Validation

To secure the consistency and safety of the new configuration and to
avoid conflicts, the configuration validation process is necessary.
Usually, validation checks the input parameters of a new configuration,
and mostly verifies module-specific relationships. The validation
procedure results in a decision on whether the proposed configuration is
healthy.

Dependency resolver

Since there can be dependencies between modules, a change in a module
configuration can affect the state of other modules. Therefore, we need
to verify whether dependencies on other modules can be resolved. The
Dependency Resolver acts in a manner similar to dependency injectors.
Basically, a dependency tree is built.

APIs and SPIs

This section describes configuration system APIs and SPIs.

SPIs

Module org.opendaylight.controller.config.spi. Module is the common
interface for all modules: every module must implement it. The module is
designated to hold configuration attributes, validate them, and create
instances of service based on the attributes. This instance must
implement the AutoCloseable interface, owing to resources clean up. If
the module was created from an already running instance, it contains an
old instance of the module. A module can implement multiple services. If
the module depends on other modules, setters need to be annotated with
@RequireInterface.

Module creation

	The module needs to be configured, set with all required attributes.

	The module is then moved to the commit stage for validation. If the
validation fails, the module attributes can be reconfigured.
Otherwise, a new instance is either created, or an old instance is
reconfigured. A module instance is identified by ModuleIdentifier,
consisting of the factory name and instance name.

ModuleFactory org.opendaylight.controller.config.spi. The
ModuleFactory interface must be implemented by each module factory.

A module factory can create a new module instance in two ways:

	From an existing module instance

	
An entirely new instance

ModuleFactory can also return default modules, useful for
populating registry with already existing configurations. A module
factory implementation must have a globally unique name.

APIs

	ConfigRegistry
	Represents functionality provided by
a configuration transaction (create,
destroy module, validate, or abort
transaction).

	ConfigTransactionController
	Represents functionality for
manipulating with configuration
transactions (begin, commit config).

	RuntimeBeanRegistratorAwareConfiBean
	The module implementing this
interface will receive
RuntimeBeanRegistrator before
getInstance is invoked.

Runtime APIs

	RuntimeBean
	Common interface for all runtime
beans

	RootRuntimeBeanRegistrator
	Represents functionality for root
runtime bean registration, which
subsequently allows hierarchical
registrations

	HierarchicalRuntimeBeanRegistration
	Represents functionality for runtime
bean registration and
unreregistration from hierarchy

JMX APIs

JMX API is purposed as a transition between the Client API and the JMX
platform.

	ConfigTransactionControllerMXBean
	Extends ConfigTransactionController,
executed by Jolokia clients on
configuration transaction.

	ConfigRegistryMXBean
	Represents entry point of
configuration management for
MXBeans.

	Object names
	Object Name is the pattern used in
JMX to locate JMX beans. It consists
of domain and key properties (at
least one key-value pair). Domain is
defined as
“org.opendaylight.controller”. The
only mandatory property is “type”.

Use case scenarios

A few samples of successful and unsuccessful transaction scenarios
follow:

Successful commit scenario

	The user creates a transaction calling creteTransaction() method on
ConfigRegistry.

	ConfigRegisty creates a transaction controller, and registers the
transaction as a new bean.

	Runtime configurations are copied to the transaction. The user can
create modules and set their attributes.

	The configuration transaction is to be committed.

	The validation process is performed.

	After successful validation, the second phase commit begins.

	Modules proposed to be destroyed are destroyed, and their service
instances are closed.

	Runtime beans are set to registrator.

	The transaction controller invokes the method getInstance on each
module.

	The transaction is committed, and resources are either closed or
released.

Validation failure scenario

The transaction is the same as the previous case until the validation
process.

	If validation fails, (that is to day, illegal input attributes values
or dependency resolver failure), the validationException is thrown
and exposed to the user.

	The user can decide to reconfigure the transaction and commit again,
or abort the current transaction.

	On aborted transactions, TransactionController and JMXRegistrator are
properly closed.

	Unregistration event is sent to ConfigRegistry.

Default module instances

The configuration subsystem provides a way for modules to create default
instances. A default instance is an instance of a module, that is
created at the module bundle start-up (module becomes visible for
configuration subsystem, for example, its bundle is activated in the
OSGi environment). By default, no default instances are produced.

The default instance does not differ from instances created later in the
module life-cycle. The only difference is that the configuration for the
default instance cannot be provided by the configuration subsystem. The
module has to acquire the configuration for these instances on its own.
It can be acquired from, for example, environment variables. After the
creation of a default instance, it acts as a regular instance and fully
participates in the configuration subsystem (It can be reconfigured or
deleted in following transactions.).

DIDM Developer Guide

Overview

The Device Identification and Driver Management (DIDM) project addresses
the need to provide device-specific functionality. Device-specific
functionality is code that performs a feature, and the code is
knowledgeable of the capability and limitations of the device. For
example, configuring VLANs and adjusting FlowMods are features, and
there may be different implementations for different device types.
Device-specific functionality is implemented as Device Drivers. Device
Drivers need to be associated with the devices they can be used with. To
determine this association requires the ability to identify the device
type.

DIDM Architecture

The DIDM project creates the infrastructure to support the following
functions:

	Discovery - Determination that a device exists in the controller
management domain and connectivity to the device can be established.
For devices that support the OpenFlow protocol, the existing
discovery mechanism in OpenDaylight suffices. Devices that do not
support OpenFlow will be discovered through manual means such as the
operator entering device information via GUI or REST API.

	Identification – Determination of the device type.

	Driver Registration – Registration of Device Drivers as routed
RPCs.

	Synchronization – Collection of device information, device
configuration, and link (connection) information.

	Data Models for Common Features – Data models will be defined to
perform common features such as VLAN configuration. For example,
applications can configure a VLAN by writing the VLAN data to the
data store as specified by the common data model.

	RPCs for Common Features – Configuring VLANs and adjusting
FlowMods are example of features. RPCs will be defined that specify
the APIs for these features. Drivers implement features for specific
devices and support the APIs defined by the RPCs. There may be
different Driver implementations for different device types.

Key APIs and Interfaces

FlowObjective API

Following are the list of the APIs to create the flow objectives to
install the flow rule in OpenFlow switch in pipeline agnostic way.
Currently these APIs are getting consumed by Atrium project.

Install the Forwarding Objective:

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:forward

Install the Filter Objective

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:filter

Install the Next Objective:

http://<CONTROLLER-IP>:8181/restconf/operations/atrium-flow-objective:next

Flow mod driver API

This release includes a flow mod driver for the HP 3800. This
driver adjusts the flows and push the same to the device. This API takes
the flow to be adjusted as input and displays the adjusted flow as
output in the REST output container. Here is the REST API to adjust and
push flows to HP 3800 device:

http://<CONTROLLER-IP:8181>/restconf/operations/openflow-feature:adjust-flow

Here is an example of an ARP flow and how it gets adjusted and pushed to
device HP3800:

adjust-flow input.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<input xmlns="urn:opendaylight:params:xml:ns:yang:didm:drivers:openflow" xmlns:opendaylight-inventory="urn:opendaylight:inventory">
 <node>/opendaylight-inventory:nodes/opendaylight-inventory:node[opendaylight-inventory:id='openflow:673249119553088']</node>
 <flow>
 <match>
 <ethernet-match>
 <ethernet-type>
 <type>2054</type>
 </ethernet-type>
 </ethernet-match>
 </match>
 <flags>SEND_FLOW_REM</flags>
 <priority>0</priority>
 <flow-name>ARP_FLOW</flow-name>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>CONTROLLER</output-node-connector>
 <max-length>65535</max-length>
 </output-action>
 </action>
 <action>
 <order>1</order>
 <output-action>
 <output-node-connector>NORMAL</output-node-connector>
 <max-length>65535</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <idle-timeout>180</idle-timeout>
 <hard-timeout>1800</hard-timeout>
 <cookie>10</cookie>
 </flow>
</input>

In the output, you can see that the table ID has been identified for the
given flow and two flow mods are created as a result of adjustment. The
first one is to catch ARP packets in Hardware table 100 with an action
to goto table 200. The second flow mod is in table 200 with actions:
output normal and output controller.

adjust-flow output.

{
 "output": {
 "flow": [
 {
 "idle-timeout": 180,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "apply-actions": {
 "action": [
 {
 "order": 1,
 "output-action": {
 "output-node-connector": "NORMAL",
 "max-length": 65535
 }
 },
 {
 "order": 0,
 "output-action": {
 "output-node-connector": "CONTROLLER",
 "max-length": 65535
 }
 }
]
 }
 }
]
 },
 "strict": false,
 "table_id": 200,
 "flags": "SEND_FLOW_REM",
 "cookie": 10,
 "hard-timeout": 1800,
 "match": {
 "ethernet-match": {
 "ethernet-type": {
 "type": 2054
 }
 }
 },
 "flow-name": "ARP_FLOW",
 "priority": 0
 },
 {
 "idle-timeout": 180,
 "instructions": {
 "instruction": [
 {
 "order": 0,
 "go-to-table": {
 "table_id": 200
 }
 }
]
 },
 "strict": false,
 "table_id": 100,
 "flags": "SEND_FLOW_REM",
 "cookie": 10,
 "hard-timeout": 1800,
 "match": {},
 "flow-name": "ARP_FLOW",
 "priority": 0
 }
]
 }
}

API Reference Documentation

Go to
http://${controller-ip}:8181/apidoc/explorer/index.html,
and look under DIDM section to see all the available REST calls and
tables

Distribution Version reporting

Overview

This section provides an overview of odl-distribution-version feature.

A remote user of OpenDaylight usually has access to RESTCONF and NETCONF
northbound interfaces, but does not have access to the system
OpenDaylight is running on. OpenDaylight has released multiple versions
including Service Releases, and there are incompatible changes between them.
In order to know which YANG modules to use, which bugs to expect
and which workarounds to apply, such user would need to know the exact version
of at least one OpenDaylight component.

There are indirect ways to deduce such version, but the direct way is enabled
by odl-distribution-version feature. Administrator can specify version strings,
which would be available to users via NETCONF, or via RESTCONF
if OpenDaylight is configured to initiate NETCONF connection
to its config subsystem northbound interface.

By default, users have write access to config subsystem,
so they can add, modify or delete any version strings present there.
Admins can only influence whether the feature is installed, and initial values.

Config subsystem is local only, not cluster aware,
so each member reports versions independently. This is suitable for heterogeneous clusters.
On homogeneous clusters, make sure you set and check every member.

Key APIs and Interfaces

Current implementation relies heavily on config-parent parent POM file from Controller project.

YANG model for config subsystem

Throughout this chapter, model denotes YANG module, and module denotes item
in config subsystem module list.

Version functionality relies on config subsystem and its config YANG model.
The YANG model odl-distribution-version adds an identity odl-version
and augments /config:modules/module/configuration adding new case for odl-version type.
This case contains single leaf version, which would hold the version string.

Config subsystem can hold multiple modules, the version string should contain
version of OpenDaylight component corresponding to the module name.
As this is pure metadata with no consequence on OpenDaylight behavior,
there is no prescribed scheme for chosing config module names.
But see the default configuration file for examples.

Java API

Each config module needs to come with java classes which override customValidation()
and createInstance(). Version related modules have no impact on OpenDaylight internal behavior,
so the methods return void and dummy closeable respectively, without any side effect.

Default config file

Initial version values are set via config file odl-version.xml which is created in
$KARAF_HOME/etc/opendaylight/karaf/ upon installation of odl-distribution-version feature.
If admin wants to use different content, the file with desired content has to be created
there before feature installation happens.

By default, the config file defines two config modules, named odl-distribution-version
and odl-odlparent-version.

Currently the default version values are set to Maven property strings
(as opposed to valid values), as the needed new functionality did not make it
into Controller project in Boron. See Bug number 6003.

Karaf Feature

The odl-distribution-version feature is currently the only feature defined
in feature repository of artifactId features-distribution,
which is available (transitively) in OpenDaylight Karaf distribution.

RESTCONF usage

Opendaylight config subsystem NETCONF northbound is not made available just by installing
odl-distribution-version, but most other feature installations would enable it.
RESTCONF interfaces are enabled by installing odl-restconf feature,
but that do not allow access to config subsystem by itself.

On single node deployments, installation of odl-netconf-connector-ssh is recommended,
which would configure controller-config device and its MD-SAL mount point.
See documentation for clustering on how to create similar devices for member modes,
as controller-config name is not unique in that context.

Assuming single node deployment and user located on the same system,
here is an example curl command accessing odl-odlparent-version config module:

curl 127.0.0.1:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules/module/odl-distribution-version:odl-version/odl-odlparent-version

DLUX

Setup and Run

Required Technology Stack

	AngularJS (JavaScript client-side framework, http://www.angularjs.org
)

Run DLUX

To turn on the DLUX UI, install DLUX core feature via running following
command on the Karaf console -

feature:install odl-dlux-core

The above command will install odl-restconf and DLUX topology
application internally, along with core DLUX components. Once this
feature is successfully installed, access the UI at
http://localhost:8181/index.html. The default credentials for login are
admin/admin.

All the applications in DLUX are Karaf features. A user can install
other dlux applications such as node and yang-ui from Karaf console
using commands such as -

$ feature:install odl-dlux-node

$ feature:install odl-dlux-yangui

DLUX Modules

DLUX modules are the individual features such as nodes and topology.
Each module has a defined structure and you can find all existing
modules at
https://github.com/opendaylight/dlux/tree/stable/boron/modules.

Module Structure

	module_folder
	<module_name>.module.js

	<module_name>.controller.js

	<module_name>.services.js

	<module_name>.directives.js

	<module_name>.filter.js

	index.tpl.html

	<a_stylesheet>.css

Create New Module

Define the module

	Create an empty maven project and create your module folder under
src/main/resources.

	Create an empty file with pattern <module_name>.module.js.

	Next, you need to surround the angular module with a define function.
This allows RequireJs to see our module.js files. The first argument
is an array which contains all the module’s dependencies. The second
argument is a callback function, whose body contain the AngularJS
code base. The function parameters correspond with the order of
dependencies. Each dependency is injected into a parameter, if it is
provided.

	Finally, you will return the angular module to be able to inject it
as a parameter in others modules.

For each new module, you must have at least these two dependencies :

	angularAMD : It’s a wrapper around AngularJS to provide an AMD
(Asynchronous Module Definition) support, which is used by RequireJs.
For more information see the AMD
documentation [https://github.com/amdjs/amdjs-api/blob/master/AMD.md].

	app/core/core.services : This one is mandatory, if you want to add
content in the navigation menu, the left bar or the top bar.

The following are not mandatory, but very often used.

	angular-ui-router : A library to provide URL routing.

	routingConfig : To set the level access to a page.

Your module.js file might look like this:

define(['angularAMD','app/routingConfig', 'angular-ui-router','app/core/core.services'], function(ng) {
 var module = angular.module('app.a_module', ['ui.router.state', 'app.core']);
 // module configuration
 module.config(function() {
 [...]
 });
 return module;
});

Set the register function

AngularJS allows lazy registration of a module’s components such as
controller, factory etc. Once you will install your application, DLUX
will load your module javascript, but not your angular component during
bootstrap phase. You have to register your angular components to make
sure they are available at the runtime.

Here is how to register your module’s component for lazy initialization
-

module.config(function($compileProvider, $controllerProvider, $provide) {
 module.register = {
 controller : $controllerProvider.register,
 directive : $compileProvider.directive,
 factory : $provide.factory,
 service : $provide.service
 };
});

Set the route

The next step is to set up the route for your module. This part is also
done in the configuration method of the module. We have to add
$stateProvider as a parameter.

module.config(function($stateProvider) {
 var access = routingConfig.accessLevels;
 $stateProvider.state('main.module', {
 url: 'module',
 views : {
 'content' : {
 templateUrl: 'src/app/module/module.tpl.html',
 controller: 'ModuleCtrl'
 }
 }
 });
});

Adding element to the navigation menu

To be able to add item to the navigation menu, the module requires the
NavHelperProvider parameter in the configuration method.
addToMenu method in NavMenuHelper helper allows an item addition
to the menu.

var module = angular.module('app.a_module', ['app.core']);
module.config(function(NavMenuHelper) {
 NavMenuHelper.addToMenu('myFirstModule', {
 "link" : "#/module/index",
 "active" : "module",
 "title" : "My First Module",
 "icon" : "icon-sitemap",
 "page" : {
 "title" : "My First Module",
 "description" : "My first module"
 }
 });
});

The first parameter is an ID that refers to the level of your menu and
the second is a object. For now, The ID parameter supports two levels of
depth. If your ID looks like rootNode.childNode, the helper will look
for a node named rootNode and it will append the childNode to it. If
the root node doesn’t exist, it will create it.

Link the AngularJS module’s controller file

To include the module’s controller file, you can use the
NavHelperProvider. It contains a method that will load the given file.

[...]
 NavHelperProvider.addControllerUrl('<path_to_module_folder>/<module_name>.controller');

This completes your module.js file.

Create the controller, factory, directive, etc

Creating the controller and other components is similar to the module.

	First, add the define method.

	Second, add the relative path to the module definition.

	Last, create your methods as you usually do it with AngularJS.

For example -

define(['<relative_path_to_module>/<module_name>.module'], function(module) {
 module.register.controller('ModuleCtrl', function($rootScope, $scope) {
 });
});

Add new application using DLUX modularity

DLUX works as a Karaf based UI platform, where you can create a new
Karaf feature of your UI component and install that UI applications in
DLUX using blueprint. This page will help you to create and load a new
application for DLUX. You don’t have to add new module in DLUX
repository.

Add a new OSGi blueprint bundle

The OSGi Blueprint Container specification allows us to use dependency
injection in our OSGi environment. Each DLUX application module
registers itself via blueprint configuration. Each application will have
its own blueprint.xml to place its configuration.

	Create a maven project to place blueprint configuration. For
reference, take a look at topology bundle, present at
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology.
All the existing DLUX modules’ configurations are available under
bundles directory of DLUX code.

	In pom.xml, you have to add a maven plugin to unpack your module code
under generated-resources of this project. For reference, you can
check pom.xml of dlux/bundles/topology at
https://github.com/opendaylight/dlux/tree/stable/boron/bundles/topology.
Your bundle will eventually get deployed in Karaf as feature, so your
bundle should contain all your module code. If you want to combine
module and bundle project, that should not be an issue either.

	Create a blueprint.xml configuration file under
src/main/resources/OSGI-INF/blueprint. Below is the content of the
blueprint.xml taken from topology bundles’s blueprint.xml. Any new
application should create a blueprint.xml in following format -

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <reference id="httpService" availability="mandatory" activation="eager" interface="org.osgi.service.http.HttpService"/>
 <reference id="loader" availability="mandatory" activation="eager" interface="org.opendaylight.dlux.loader.DluxModuleLoader"/>

 <bean id="bundle" init-method="initialize" destroy-method="clean" class="org.opendaylight.dlux.loader.DluxModule">
 <property name="httpService" ref="httpService"/>
 <property name="loader" ref="loader"/>
 <property name="moduleName" value="topology "/>
 <property name="url" value="/src/app/topology"/>
 <property name="directory" value="/topology"/>
 <property name="requireJs" value="app/topology/topology.module"/>
 <property name="angularJs" value="app.topology"/>
 <property name="cssDependencies">
 <list>
 <value>http://yui.yahooapis.com/3.18.1/build/cssreset/cssreset-min.css</value>
 <value>src/app/topology/topology-custom.css</value>
 </list>
 </property>
 </bean>
</blueprint>

In above configuration, there are two references with id httpService and
loader. These two beans will already be initialized by dlux-core, so any
new application can use them. Without these two bean references, a new
application will not be able to register.

Next is the initialization of your application bean, which will be an
instance of class org.opendaylight.dlux.loader.DluxModule. There are 5
properties that you should provide in this bean besides the references
of httpService and loader. Lets talk about those bean properties in
little more detail.

moduleName : Name of your module. This name should be unique in
DLUX.

url: This is the url via which RequireJS in DLUX will try to load
your module JS/HTML files. Also, this is the url that browser will use
to load the static HTML, JS or CSS files. RequireJS in DLUX has a base
path of src, so all the url should start with /src so RequireJS and
the browser can correctly find the files.

directory: In your bundle’s pom.xml, you unpack your module code.
This is the directory where your actual static files will reside. The
above mentioned url is registered with httpService, so when browser
makes a call to that url, it will be redirected to the directory
mentioned here. In the above example, all the topology files are present
under /topology directory and the browser/RequireJS can access those
files with uri /src/app/topology.

requireJS: This is the path to your RequireJS module. If you notice
closely, you will see the initial path of RequireJS app/topology in the
above example matches with the last part of url. This path will be be
used by RequireJS. As mentioned above, we have kept src as base path
in RequireJS, that is the exact reason that url start with /src.

angularJS: name of your AngularJS module.

cssDependencies: If the application has any external/internal css
dependencies, then those can be added here. If you create your own css
files, just point to those css files here. Use the url path that you
mentioned above, so the browser can find your css file.

OSGi understands blueprint.xml, once you will deploy your bundle in
karaf (or you can create a new feature for your application), karaf will
read your blueprint.xml and it will try to register your application
with dlux. Once successful, if you refresh your dlux UI, you will see
your application in left hand navigation bar of dlux.

Yang Utils

Yang Utils are used by UI to perform all CRUD operations. All of these
utilities are present in yangutils.services.js file. It has following
AngularJS factories -

	arrayUtils – defines functions for working with arrays.

	pathUtils – defines functions for working with xpath (paths to
APIs and subAPIs). It divides xpath string to array of elements, so
this array can be later used for search functions.

	syncFact – provides synchronization between requests to and from
OpenDaylight when it’s needed.

	custFunct – it is linked with
apiConnector.createCustomFunctionalityApis in yangui controller in
yangui.controller.js. That function makes it possible to create some
custom function called by the click on button in index.tpl.html. All
custom functions are stored in array and linked to specific subAPI.
When particular subAPI is expanded and clicked, its inputs (linked
root node with its child nodes) are displayed in the bottom part of
the page and its buttons with custom functionality are displayed
also.

	reqBuilder – Builds object in JSON format from input fields of
the UI page. Show Preview button on Yang UI use this builder.
This request is sent to OpenDaylight when button PUT or POST is
clicked.

	yinParser – factory for reading .xml files of yang models and
creating object hierarchy. Every statement from yang is represented
by a node.

	nodeWrapper – adds functions to objects in tree hierarchy created
with yinParser. These functions provide functionality for every type
of node.

	apiConnector – the main functionality is filling the main
structures and linking them. Structure of APIs and subAPIs which is
two level array - first level is filled by main APIs, second level is
filled by others sub APIs. Second main structure is array of root
nodes, which are objects including root node and its children nodes.
Linking these two structures is creating links between every subAPI
(second level of APIs array) and its root node, which must be
displayed like inputs when subAPI is expanded.

	yangUtils – some top level functions which are used by yangui
controller for creating the main structures.

Fabric As A Service

FaaS (Fabric As A service) has two layers of APIs. We describe the top
level API in the user guide. This document focuses on the Fabric level
API and describes each API’s semantics and example implementation. The
second layer defines an abstraction layer called ‘’Fabric‘’ API. The
idea is to abstract network into a topology formed by a collections of
fabric objects other than varies of physical devices.Each Fabric object
provides a collection of unified services.The top level API enables
application developers or users to write applications to map high level
model such as GBP, Intent etc… into a logical network model, while the
lower level gives the application more control to individual fabric
object level. More importantly the Fabric API is more like SP (Service
Provider API) a fabric provider or vendor can implement the SPI based on
its own Fabric technique such as TRILL, SPB etc …

For how to use first level API operation, please refer to user guide for
more details.

FaaS Architecture

FaaS Architecture is an 3 layered architecture, on the top is the FaaS
Application layer, in the middle is the Fabric manager and at the bottom
are different types of fabric objects. From bottom up, it is

	Fabric and its controller (Fabric Controller)

	The Fabric object provides an abstraction of a homogeneous network
or portion of the network and also has a built in Fabric controller
which provides management plane and control plane for the fabric.
The fabric controller implements the services required in Fabric
Service and monitor and control the fabric operation.

	Fabric Manager

	Fabric Manager manages all the fabric objects. also Fabric manager
acts as a Unified Fabric Controller which provides inter-connect
fabric control and configuration Also Fabric Manager is FaaS API
service via Which FaaS user level logical network API (the top level
API as mentioned previously) exposed and implemented.

	FaaS renderer for GBP (Group Based Policy)

	FaaS renderer for GBP is an application of FaaS and provides the
rendering service between GBP model and logical network model
provided by Fabric Manager.

Fabric APIs and Interfaces

FaaS APIs have 4 groups as defined below

	Fabric Provisioning API

	This set of APIs is used to create and remove Fabric Abstractions,
in other words, those APIs is to provision the underlay networks and
prepare to create overlay network(the logical network) on top of it.

	Fabric Service API

	This set of APIs is used to create logical network over the Fabrics.

	EndPoint API

	EndPoint API is used to bind a physical port which is the location
of the attachment of an EndPoint happens or will happen.

	OAM API

	Those APIs are for Operations, Administration and Maintenance
purpose and In current release, OAM API is not implemented yet.

Fabric Provisioning API

	http://${ipaddress}:8181/restconf/operations/fabric:compose-fabric

	http://${ipaddress}:8181/restconf/operations/fabric:decompose-fabric

	http://${ipaddress}:8181/restconf/operations/fabric:get-all-fabrics

Fabric Service API

	RESTCONF for creating Logical port, switch, router, routing entries
and link. Among them, both switches and routers have ports. links
connect ports.these 5 logical elements are basic building blocks of a
logical network.
	http://${ipaddress}:8181/restconf/operations/fabric-service:create-logical-switch

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-logical-switch

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-logical-router

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-logical-router

	http://${ipaddress}:8181/restconf/operations/fabric-service:add-static-route

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-logic-port

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-logic-port

	http://${ipaddress}:8181/restconf/operations/fabric-service:create-gateway

	http://${ipaddress}:8181/restconf/operations/fabric-service:rm-gateway

	http://${ipaddress}:8181/restconf/operations/fabric-service:port-binding-logical-to-fabric

	http://${ipaddress}:8181/restconf/operations/fabric-service:port-binding-logical-to-device

	http://${ipaddress}:8181/restconf/operations/fabric-service:add-port-function

	http://${ipaddress}:8181/restconf/operations/fabric-service:add-acl

	http://${ipaddress}:8181/restconf/operations/fabric-service:del-acl

EndPoint API

The following APIs is to bind the physical ports to the logical ports on
the logical switches:

	http://${ipaddress}:8181/restconf/operations/fabric-endpoint:register-endpoint

	http://${ipaddress}:8181/restconf/operations/fabric-endpoint:unregister-endpoint

	http://${ipaddress}:8181/restconf/operations/fabric-endpoint:locate-endpoint

Others API

	http://${ipaddress}:8181/restconf/operations/fabric-resource:create-fabric-port

API Reference Documentation

Go to
http://${ipaddress}:8181/restconf/apidoc/index.html
and expand on ‘’FaaS‘’ related panel for more APIs.

Infrautils

Overview

Infrautils offer various utilities and infrastructures for other projects to use:

Counters Infrastructure

Create, update and output counters is a basic tool for debugging and generating statistics in any system.
We have developed a counter infrastructure integrated into ODL which has already been successfully used with
multiple products, and more recently in debugging and fixing the OpenFlow plugin/Java and LACP modules.
Getting started with Counters [https://wiki.opendaylight.org/view/Getting_started_with_Counters]

Async Infrastructure

The decision to split a service into one or more threads with asynchronous interactions between them is
frequently dependent on constraints learned late in the development and even the deployment cycle.
In order to allow flexibility in making these decisions we have developed an infrastructure which is
configuration driven allowing agnostic code to be written under generic constrains which can then later
be customized according to the required constraints.
Getting started with Async [https://git.opendaylight.org/gerrit/gitweb?p=infrautils.git;a=tree;f=samples/sample-async;h=dedd664da4a1bcfbe62261df73d19044d334f0b9;hb=refs/heads/stable/boron]

IoTDM Developer Guide

Overview

The Internet of Things Data Management (IoTDM) on OpenDaylight project
is about developing a data-centric middleware that will act as a oneM2M
compliant IoT Data Broker and enable authorized applications to retrieve
IoT data uploaded by any device. The OpenDaylight platform is used to
implement the oneM2M data store which models a hierarchical containment
tree, where each node in the tree represents an oneM2M resource.
Typically, IoT devices and applications interact with the resource tree
over standard protocols such as CoAP, MQTT, and HTTP. Initially, the
oneM2M resource tree is used by applications to retrieve data. Possible
applications are inventory or device management systems or big data
analytic systems designed to make sense of the collected data. But, at
some point, applications will need to configure the devices. Features
and tools will have to be provided to enable configuration of the
devices based on applications responding to user input, network
conditions, or some set of programmable rules or policies possibly
triggered by the receipt of data collected from the devices. The
OpenDaylight platform, with its rich unique cross-section of SDN
capabilities, NFV, and now IoT device and application management, can be
bundled with a targeted set of features and deployed anywhere in the
network to give the network service provider ultimate control. Depending
on the use case, the OpenDaylight IoT platform can be configured with
only IoT data collection capabilities where it is deployed near the IoT
devices and its footprint needs to be small, or it can be configured to
run as a highly scaled up and out distributed cluster with IoT, SDN and
NFV functions enabled and deployed in a high traffic data center.

oneM2M Architecture

The architecture provides a framework that enables the support of the
oneM2M resource containment tree. The onem2m-core implements the MDSAL
RPCs defined in the onem2m-api YANG files. These RPCs enable oneM2M
resources to be created, read, updated, and deleted (CRUD), and also
enables the management of subscriptions. When resources are CRUDed, the
onem2m-notifier issues oneM2M notification events to interested
subscribers. TS0001: oneM2M Functional Architecture and TS0004: oneM2M
Service Layer Protocol are great reference documents to learn details of
oneM2M resource types, message flow, formats, and CRUD/N semantics. Both
of these specifications can be found at
http://onem2m.org/technical/published-documents

The oneM2M resource tree is modeled in YANG and essentially is a
meta-model for the tree. The oneM2M wire protocols allow the resource
tree to be constructed via HTTP or CoAP messages that populate nodes in
the tree with resource specific attributes. Each oneM2M resource type
has semantic behaviour associated with it. For example: a container
resource has attributes which control quotas on how many and how big the
collection of data or content instance objects that can exist below it
in the tree. Depending on the resource type, the oneM2M core software
implements and enforces the resource type specific rules to ensure a
well-behaved resource tree.

The resource tree can be simultaneously accessed by many concurrent
applications wishing to manage or access the tree, and also many devices
can be reporting in new data or sensor readings into their appropriate
place in the tree.

Key APIs and Interfaces

The API’s to access the oneM2M datastore are well documented in TS0004
(referred above) found on onem2m.org

RESTCONF is available too but generally HTTP and CoAP are used to access
the oneM2M data tree.

L2Switch Developer Guide

Overview

The L2Switch project provides Layer2 switch functionality.

L2Switch Architecture

	Packet Handler
	Decodes the packets coming to the controller and dispatches them
appropriately

	Loop Remover
	Removes loops in the network

	Arp Handler
	Handles the decoded ARP packets

	Address Tracker
	Learns the Addresses (MAC and IP) of entities in the network

	Host Tracker
	Tracks the locations of hosts in the network

	L2Switch Main
	Installs flows on each switch based on network traffic

Key APIs and Interfaces

	Packet Handler

	Loop Remover

	Arp Handler

	Address Tracker

	Host Tracker

	L2Switch Main

Packet Dispatcher

Classes

	AbstractPacketDecoder
	Defines the methods that all decoders must implement

	EthernetDecoder
	The base decoder which decodes the packet into an Ethernet packet

	ArpDecoder, Ipv4Decoder, Ipv6Decoder
	Decodes Ethernet packets into the either an ARP or IPv4 or IPv6
packet

Further development

There is a need for more decoders. A developer can write

	A decoder for another EtherType, i.e. LLDP.

	A higher layer decoder for the body of the IPv4 packet or IPv6
packet, i.e. TCP and UDP.

How to write a new decoder

	extends AbstractDecoder<A, B>
	A refers to the notification that the new decoder consumes

	B refers to the notification that the new decoder produces

	implements xPacketListener
	The new decoder must specify which notification it is listening to

	canDecode method
	This method should examine the consumed notification to see
whether the new decoder can decode the contents of the packet

	decode method
	This method does the actual decoding of the packet

Loop Remover

Classes

	LoopRemoverModule
	Reads config subsystem value for is-install-lldp-flow
	If is-install-lldp-flow is true, then an
InitialFlowWriter is created

	Creates and initializes the other LoopRemover classes

	InitialFlowWriter
	Only created when is-install-lldp-flow is true

	Installs a flow, which forwards all LLDP packets to the
controller, on each switch

	TopologyLinkDataChangeHandler
	Listens to data change events on the Topology tree

	When these changes occur, it waits graph-refresh-delay seconds
and then tells NetworkGraphImpl to update

	Writes an STP (Spanning Tree Protocol) status of “forwarding” or
“discarding” to each link in the Topology data tree
	Forwarding links can forward packets.

	Discarding links cannot forward packets.

	NetworkGraphImpl
	Creates a loop-free graph of the network

Configuration

	graph-refresh-delay
	Used in TopologyLinkDataChangeHandler

	A higher value has the advantage of doing less graph updates, at
the potential cost of losing some packets because the graph didn’t
update immediately.

	A lower value has the advantage of handling network topology
changes quicker, at the cost of doing more computation.

	is-install-lldp-flow
	Used in LoopRemoverModule

	“true” means a flow that sends all LLDP packets to the controller
will be installed on each switch

	“false” means this flow will not be installed

	lldp-flow-table-id
	The LLDP flow will be installed on the specified flow table of
each switch

	lldp-flow-priority
	The LLDP flow will be installed with the specified priority

	lldp-flow-idle-timeout
	The LLDP flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	lldp-flow-hard-timeout
	The LLDP flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

Further development

No suggestions at the moment.

Validating changes to Loop Remover

STP Status information is added to the Inventory data tree.

	A status of “forwarding” means the link is active and packets are
flowing on it.

	A status of “discarding” means the link is inactive and packets are
not sent over it.

The STP status of a link can be checked through a browser or a REST
Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:2

The STP status should still be there after changes are made.

Arp Handler

Classes

	ArpHandlerModule
	Reads config subsystem value for is-proactive-flood-mode
	If is-proactive-flood-mode is true, then a
ProactiveFloodFlowWriter is created

	If is-proactive-flood-mode is false, then an
InitialFlowWriter is created

	ProactiveFloodFlowWriter
	Only created when is-proactive-flood-mode is true

	Installs a flood flow on each switch. With this flood flow, a
packet that doesn’t match any other flows will be
flooded/broadcast from that switch.

	InitialFlowWriter
	Only created when is-proactive-flood-mode is false

	Installs a flow, which sends all ARP packets to the controller, on
each switch

	ArpPacketHandler
	Only created when is-proactive-flood-mode is false

	Handles and processes the controller’s incoming ARP packets

	Uses PacketDispatcher to send the ARP packet back into the
network

	PacketDispatcher
	Only created when is-proactive-flood-mode is false

	Sends packets out to the network

	Uses InventoryReader to determine which node-connector to a
send a packet on

	InventoryReader
	Only created when is-proactive-flood-mode is false

	Maintains a list of each switch’s node-connectors

Configuration

	is-proactive-flood-mode
	“true” means that flood flows will be installed on each switch.
With this flood flow, each switch will flood a packet that doesn’t
match any other flows.
	Advantage: Fewer packets are sent to the controller because
those packets are flooded to the network.

	Disadvantage: A lot of network traffic is generated.

	“false” means the previously mentioned flood flows will not be
installed. Instead an ARP flow will be installed on each switch
that sends all ARP packets to the controller.
	Advantage: Less network traffic is generated.

	Disadvantage: The controller handles more packets (ARP requests
& replies) and the ARP process takes longer than if there were
flood flows.

	flood-flow-table-id
	The flood flow will be installed on the specified flow table of
each switch

	flood-flow-priority
	The flood flow will be installed with the specified priority

	flood-flow-idle-timeout
	The flood flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	flood-flow-hard-timeout
	The flood flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	arp-flow-table-id
	The ARP flow will be installed on the specified flow table of each
switch

	arp-flow-priority
	The ARP flow will be installed with the specified priority

	arp-flow-idle-timeout
	The ARP flow will timeout (removed from the switch) if the flow
doesn’t forward a packet for x seconds

	arp-flow-hard-timeout
	The ARP flow will timeout (removed from the switch) after
arp-flow-hard-timeout seconds, regardless of how many packets it
is forwarding

Further development

The ProactiveFloodFlowWriter needs to be improved. It does have the
advantage of having less traffic come to the controller; however, it
generates too much network traffic.

Address Tracker

Classes

	AddressTrackerModule
	Reads config subsystem value for observe-addresses-from

	If observe-addresses-from contains “arp”, then an
AddressObserverUsingArp is created

	If observe-addresses-from contains “ipv4”, then an
AddressObserverUsingIpv4 is created

	If observe-addresses-from contains “ipv6”, then an
AddressObserverUsingIpv6 is created

	AddressObserverUsingArp
	Registers for ARP packet notifications

	Uses AddressObservationWriter to write address observations
from ARP packets

	AddressObserverUsingIpv4
	Registers for IPv4 packet notifications

	Uses AddressObservationWriter to write address observations
from IPv4 packets

	AddressObserverUsingIpv6
	Registers for IPv6 packet notifications

	Uses AddressObservationWriter to write address observations
from IPv6 packets

	AddressObservationWriter
	Writes new Address Observations to the Inventory data tree

	Updates existing Address Observations with updated “last seen”
timestamps
	Uses the timestamp-update-intervval configuration variable to
determine whether or not to update

Configuration

	timestamp-update-interval
	A last-seen timestamp is associated with each address. This
last-seen timestamp will only be updated after
timestamp-update-interval milliseconds.

	A higher value has the advantage of performing less writes to the
database.

	A lower value has the advantage of knowing how fresh an address
is.

	observe-addresses-from
	IP and MAC addresses can be observed/learned from ARP, IPv4, and
IPv6 packets. Set which packets to make these observations from.

Further development

Further improvements can be made to the AddressObservationWriter so
that it (1) doesn’t make any unnecessary writes to the DB and (2) is
optimized for multi-threaded environments.

Validating changes to Address Tracker

Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a
browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/node/openflow:1/node-connector/openflow:1:1

The Address Observations should still be there after changes.

Developer’s Guide for Host Tracker

Validationg changes to Host Tracker

Host information is added to the Topology data tree.

	Host address

	Attachment point (link) to a node/switch

This host information and attachment point information can be checked
through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/network-topology:network-topology/topology/flow:1/

Host information should still be there after changes.

L2Switch Main

Classes

	L2SwitchMainModule
	Reads config subsystem value for is-install-dropall-flow
	If is-install-dropall-flow is true, then an
InitialFlowWriter is created

	Reads config subsystem value for is-learning-only-mode
	If is-learning-only-mode is false, then a
ReactiveFlowWriter is created

	InitialFlowWriter
	Only created when is-install-dropall-flow is true

	Installs a flow, which drops all packets, on each switch. This
flow has low priority and means that packets that don’t match any
higher-priority flows will simply be dropped.

	ReactiveFlowWriter
	Reacts to network traffic and installs MAC-to-MAC flows on
switches. These flows have matches based on MAC source and MAC
destination.

	Uses FlowWriterServiceImpl to write these flows to the
switches

	FlowWriterService / FlowWriterServiceImpl
	Writes flows to switches

Configuration

	is-install-dropall-flow
	“true” means a drop-all flow will be installed on each switch, so
the default action will be to drop a packet instead of sending it
to the controller

	“false” means this flow will not be installed

	dropall-flow-table-id
	The dropall flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	dropall-flow-priority
	The dropall flow will be installed with the specified priority

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	dropall-flow-idle-timeout
	The dropall flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	dropall-flow-hard-timeout
	The dropall flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-install-dropall-flow” is set
to “true”

	is-learning-only-mode
	“true” means that the L2Switch will only be learning addresses. No
additional flows to optimize network traffic will be installed.

	“false” means that the L2Switch will react to network traffic and
install flows on the switches to optimize traffic. Currently,
MAC-to-MAC flows are installed.

	reactive-flow-table-id
	The reactive flow will be installed on the specified flow table of
each switch

	This field is only relevant when “is-learning-only-mode” is set to
“false”

	reactive-flow-priority
	The reactive flow will be installed with the specified priority

	This field is only relevant when “is-learning-only-mode” is set to
“false”

	reactive-flow-idle-timeout
	The reactive flow will timeout (removed from the switch) if the
flow doesn’t forward a packet for x seconds

	This field is only relevant when “is-learning-only-mode” is set to
“false”

	reactive-flow-hard-timeout
	The reactive flow will timeout (removed from the switch) after x
seconds, regardless of how many packets it is forwarding

	This field is only relevant when “is-learning-only-mode” is set to
“false”

Further development

The ReactiveFlowWriter needs to be improved to install the
MAC-to-MAC flows faster. For the first ping, the ARP request and reply
are successful. However, then the ping packets are sent out. The first
ping packet is dropped sometimes because the MAC-to-MAC flow isn’t
installed quickly enough. The second, third, and following ping packets
are successful though.

API Reference Documentation

Further documentation can be found by checking out the L2Switch project.

Checking out the L2Switch project

git clone https://git.opendaylight.org/gerrit/p/l2switch.git

The above command will create a directory called “l2switch” with the
project.

Testing your changes to the L2Switch project

Running the L2Switch project

To run the base distribution, you can use the following command

./distribution/base/target/distributions-l2switch-base-0.1.0-SNAPSHOT-osgipackage/opendaylight/run.sh

If you need additional resources, you can use these command line
arguments:

-Xms1024m -Xmx2048m -XX:PermSize=512m -XX:MaxPermSize=1024m'

To run the karaf distribution, you can use the following command:

./distribution/karaf/target/assembly/bin/karaf

Create a network using mininet

sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch ovsk,protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of 3
switches. Each switch will connect to the controller located at the
specified IP, i.e. 127.0.0.1

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch ovsk,protocols=OpenFlow13

The above command has the “mac” option, which makes it easier to
distinguish between Host MAC addresses and Switch MAC addresses.

Generating network traffic using mininet

h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Miscellaneous mininet commands

link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

LACP Developer Guide

LACP Overview

The OpenDaylight LACP (Link Aggregation Control Protocol) project can be
used to aggregate multiple links between OpenDaylight controlled network
switches and LACP enabled legacy switches or hosts operating in active
LACP mode.

OpenDaylight LACP passively negotiates automatic bundling of multiple
links to form a single LAG (Link Aggregation Group). LAGs are realised
in the OpenDaylight controlled switches using OpenFlow 1.3+ group table
functionality.

LACP Architecture

	inventory
	Maintains list of OpenDaylight controlled switches and port
information

	List of LAGs created and physical ports that are part of the LAG

	Interacts with MD-SAL to update LACP related information

	inventorylistener
	This module interacts with MD-SAL for receiving
node/node-connector notifications

	flow
	Programs the switch to punt LACP PDU (Protocol Data Unit) to
controller

	packethandler
	Receives and transmits LACP PDUs to the LACP enabled endpoint

	Provides infrastructure services for group table programming

	core
	Performs LACP state machine processing

How LAG programming is implemented

The LAG representing the aggregated multiple physical ports are realized
in the OpenDaylight controlled switches by creating a group table entry
(Group table supported from OpenFlow 1.3 onwards). The group table entry
has a group type Select and action referring to the aggregated
physical ports. Any data traffic to be sent out through the LAG can be
sent through the group entry available for the LAG.

Suppose there are ports P1-P8 in a node. When LACP project is installed,
a group table entry for handling broadcast traffic is automatically
created on all the switches that have registered to the controller.

	GroupID
	GroupType
	EgressPorts

	<B’castgID>
	ALL
	P1,P2,…P8

Now, assume P1 & P2 are now part of LAG1. The group table would be
programmed as follows:

	GroupID
	GroupType
	EgressPorts

	<B’castgID>
	ALL
	P3,P4,…P8

	<LAG1>
	SELECT
	P1,P2

When a second LAG, LAG2, is formed with ports P3 and P4,

	GroupID
	GroupType
	EgressPorts

	<B’castgID>
	ALL
	P5,P6,…P8

	<LAG1>
	SELECT
	P1,P2

	<LAG2>
	SELECT
	P3,P4

How applications can program OpenFlow flows using LACP-created LAG groups

OpenDaylight controller modules can get the information of LAG by
listening/querying the LACP Aggregator datastore.

When any application receives packets, it can check, if the ingress port
is part of a LAG by verifying the LAG Aggregator reference
(lacp-agg-ref) for the source nodeConnector that OpenFlow plugin
provides.

When applications want to add flows to egress out of the LAG, they must
use the group entry corresponding to the LAG.

From the above example, for a flow to egress out of LAG1,

add-flow eth_type=<xxxx>,ip_dst=<x.x.x.x>,actions=output:<LAG1>

Similarly, when applications want traffic to be broadcasted, they should
use the group table entries <B’castgID>,<LAG1>,<LAG2> in output
action.

For all applications, the group table information is accessible from
LACP Aggregator datastore.

LISP Flow Mapping User Guide

Overview

Locator/ID Separation Protocol

Locator/ID Separation Protocol
(LISP) [http://tools.ietf.org/html/rfc6830] is a technology that
provides a flexible map-and-encap framework that can be used for overlay
network applications such as data center network virtualization and
Network Function Virtualization (NFV).

LISP provides the following name spaces:

	Endpoint Identifiers
(EIDs) [http://tools.ietf.org/html/rfc6830#page-6]

	Routing Locators
(RLOCs) [http://tools.ietf.org/html/rfc6830#section-3]

In a virtualization environment EIDs can be viewed as virtual address
space and RLOCs can be viewed as physical network address space.

The LISP framework decouples network control plane from the forwarding
plane by providing:

	A data plane that specifies how the virtualized network addresses are
encapsulated in addresses from the underlying physical network.

	A control plane that stores the mapping of the virtual-to-physical
address spaces, the associated forwarding policies and serves this
information to the data plane on demand.

Network programmability is achieved by programming forwarding policies
such as transparent mobility, service chaining, and traffic engineering
in the mapping system; where the data plane elements can fetch these
policies on demand as new flows arrive. This chapter describes the LISP
Flow Mapping project in OpenDaylight and how it can be used to enable
advanced SDN and NFV use cases.

LISP data plane Tunnel Routers are available at
OpenOverlayRouter.org [http://www.openoverlayrouter.org/] in the open source community on
the following platforms:

	Linux

	Android

	OpenWRT

For more details and support for LISP data plane software please visit
the OOR web site [http://www.openoverlayrouter.org/].

LISP Flow Mapping Service

The LISP Flow Mapping service provides LISP Mapping System services.
This includes LISP Map-Server and LISP Map-Resolver services to store
and serve mapping data to data plane nodes as well as to OpenDaylight
applications. Mapping data can include mapping of virtual addresses to
physical network address where the virtual nodes are reachable or hosted
at. Mapping data can also include a variety of routing policies
including traffic engineering and load balancing. To leverage this
service, OpenDaylight applications and services can use the northbound
REST API to define the mappings and policies in the LISP Mapping
Service. Data plane devices capable of LISP control protocol can
leverage this service through a southbound LISP plugin. LISP-enabled
devices must be configured to use this OpenDaylight service as their Map
Server and/or Map Resolver.

The southbound LISP plugin supports the LISP control protocol
(Map-Register, Map-Request, Map-Reply messages), and can also be used to
register mappings in the OpenDaylight mapping service.

LISP Flow Mapping Architecture

The following figure shows the various LISP Flow Mapping modules.

[image: LISP Mapping Service Internal Architecture]
LISP Mapping Service Internal Architecture

A brief description of each module is as follows:

	DAO (Data Access Object): This layer separates the LISP logic
from the database, so that we can separate the map server and map
resolver from the specific implementation of the mapping database.
Currently we have an implementation of this layer with an in-memory
HashMap, but it can be switched to any other key/value store and you
only need to implement the ILispDAO interface.

	Map Server: This module processes the adding or registration of
authentication tokens (keys) and mappings. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	Map Resolver: This module receives and processes the mapping
lookup queries and provides the mappings to requester. For a detailed
specification of LISP Map Server, see
LISP [http://tools.ietf.org/search/rfc6830].

	RPC/RESTCONF: This is the auto-generated RESTCONF-based
northbound API. This module enables defining key-EID associations as
well as adding mapping information through the Map Server. Key-EID
associations and mappings can also be queried via this API.

	GUI: This module enables adding and querying the mapping service
through a GUI based on ODL DLUX.

	Neutron: This module implements the OpenDaylight Neutron Service
APIs. It provides integration between the LISP service and the
OpenDaylight Neutron service, and thus OpenStack.

	Java API: The API module exposes the Map Server and Map Resolver
capabilities via a Java API.

	LISP Proto: This module includes LISP protocol dependent data
types and associated processing.

	In Memory DB: This module includes the in memory database
implementation of the mapping service.

	LISP Southbound Plugin: This plugin enables data plane devices
that support LISP control plane protocol (see
LISP [http://tools.ietf.org/search/rfc6830]) to register and
query mappings to the LISP Flow Mapping via the LISP control plane
protocol.

Configuring LISP Flow Mapping

In order to use the LISP mapping service for registering EID to RLOC
mappings from northbound or southbound, keys have to be defined for the
EID prefixes first. Once a key is defined for an EID prefix, it can be
used to add mappings for that EID prefix multiple times. If the service
is going to be used to process Map-Register messages from the southbound
LISP plugin, the same key must be used by the data plane device to
create the authentication data in the Map-Register messages for the
associated EID prefix.

The etc/custom.properties file in the Karaf distribution allows
configuration of several OpenDaylight parameters. The LISP service has
the following properties that can be adjusted:

	lisp.mappingOverwrite (default: true)

	Configures handling of mapping updates. When set to true (default)
a mapping update (either through the southbound plugin via a
Map-Register message or through a northbound API PUT REST call) the
existing RLOC set associated to an EID prefix is overwritten. When
set to false, the RLOCs of the update are merged to the existing
set.

	lisp.smr (default: false)

	Enables/disables the Solicit-Map-Request
(SMR) [http://tools.ietf.org/html/rfc6830#section-6.6.2]
functionality. SMR is a method to notify changes in an EID-to-RLOC
mapping to “subscribers”. The LISP service considers all
Map-Request’s source RLOC as a subscriber to the requested EID
prefix, and will send an SMR control message to that RLOC if the
mapping changes.

	lisp.elpPolicy (default: default)

	Configures how to build a Map-Reply southbound message from a
mapping containing an Explicit Locator Path (ELP) RLOC. It is used
for compatibility with dataplane devices that don’t understand the
ELP LCAF format. The default setting doesn’t alter the mapping,
returning all RLOCs unmodified. The both setting adds a new RLOC
to the mapping, with a lower priority than the ELP, that is the next
hop in the service chain. To determine the next hop, it searches the
source RLOC of the Map-Request in the ELP, and chooses the next hop,
if it exists, otherwise it chooses the first hop. The replace
setting adds a new RLOC using the same algorithm as the both
setting, but using the origin priority of the ELP RLOC, which is
removed from the mapping.

	lisp.lookupPolicy (default: northboundFirst)

	Configures the mapping lookup algorithm. When set to
northboundFirst mappings programmed through the northbound API
will take precedence. If no northbound programmed mappings exist,
then the mapping service will return mappings registered through the
southbound plugin, if any exists. When set to
northboundAndSouthbound the mapping programmed by the northbound
is returned, updated by the up/down status of these mappings as
reported by the southbound (if existing).

	lisp.mappingMerge (default: false)

	Configures the merge policy on the southbound registrations through
the LISP SB Plugin. When set to false, only the latest mapping
registered through the SB plugin is valid in the southbound mapping
database, independent of which device it came from. When set to
true, mappings for the same EID registered by different devices
are merged together and a union of the locators is maintained as the
valid mapping for that EID.

Textual Conventions for LISP Address Formats

In addition to the more common IPv4, IPv6 and MAC address data types,
the LISP control plane supports arbitrary Address Family
Identifiers [http://www.iana.org/assignments/address-family-numbers]
assigned by IANA, and in addition to those the LISP Canoncal Address
Format (LCAF) [https://tools.ietf.org/html/draft-ietf-lisp-lcaf].

The LISP Flow Mapping project in OpenDaylight implements support for
many of these different address formats, the full list being summarized
in the following table. While some of the address formats have well
defined and widely used textual representation, many don’t. It became
necessary to define a convention to use for text rendering of all
implemented address types in logs, URLs, input fields, etc. The below
table lists the supported formats, along with their AFI number and LCAF
type, including the prefix used for disambiguation of potential overlap,
and examples output.

	Name
	AFI
	LCAF
	Prefix
	Text Rendering

	No Address
	0
	
	

	no:
	No Address Present

	IPv4 Prefix
	1
	
	

	ipv4:
	192.0.2.0/24

	IPv6 Prefix
	2
	
	

	ipv6:
	2001:db8::/32

	MAC Address
	16389
	
	

	mac:
	00:00:5E:00:53:00

	Distinguished
Name
	17
	
	

	dn:
	stringAsIs

	AS Number
	18
	
	

	as:
	AS64500

	AFI List
	16387
	1
	list:
	{192.0.2.1,192.0.2.2,2001:db8::1
}

	Instance ID
	16387
	2
	
	

	[223] 192.0.2.0/24

	Application
Data
	16387
	4
	appdata:
	192.0.2.1!128!17!80-81!6667-7000

	Explicit
Locator Path
	16387
	10
	elp:
	{192.0.2.1→192.0.2.2|lps→192.0.
2.3}

	Source/Destina
tion
Key
	16387
	12
	srcdst:
	192.0.2.1/32|192.0.2.2/32

	Key/Value
Address Pair
	16387
	15
	kv:
	192.0.2.1⇒192.0.2.2

	Service Path
	16387
	N/A
	sp:
	42(3)

Table: LISP Address Formats

Please note that the forward slash character / typically separating
IPv4 and IPv6 addresses from the mask length is transformed into %2f
when used in a URL.

Karaf commands

In this section we will discuss two types of Karaf commands: built-in,
and LISP specific. Some built-in commands are quite useful, and are
needed for the tutorial, so they will be discussed here. A reference of
all LISP specific commands, added by the LISP Flow Mapping project is
also included. They are useful mostly for debugging.

Useful built-in commands

	help

	Lists all available command, with a short description of each.

	help <command_name>

	Show detailed help about a specific command.

	feature:list [-i]

	Show all locally available features in the Karaf container. The
-i option lists only features that are currently installed. It
is possible to use | grep to filter the output (for all
commands, not just this one).

	feature:install <feature_name>

	Install feature feature_name.

	log:set <level> <class>

	Set the log level for class to level. The default log level
for all classes is INFO. For debugging, or learning about LISP
internals it is useful to run
log:set TRACE org.opendaylight.lispflowmapping right after Karaf
starts up.

	log:display

	Outputs the log file to the console, and returns control to the
user.

	log:tail

	Continuously shows log output, requires Ctrl+C to return to the
console.

LISP specific commands

The available lisp commands can always be obtained by
help mappingservice. Currently they are:

	mappingservice:addkey

	Add the default password password for the IPv4 EID prefix
0.0.0.0/0 (all addresses). This is useful when experimenting with
southbound devices, and using the REST interface would be combersome
for whatever reason.

	mappingservice:mappings

	Show the list of all mappings stored in the internal non-persistent
data store (the DAO), listing the full data structure. The output is
not human friendly, but can be used for debugging.

LISP Flow Mapping Karaf Features

LISP Flow Mapping has the following Karaf features that can be installed
from the Karaf console:

	odl-lispflowmapping-msmr

	This includes the core features required to use the LISP Flow
Mapping Service such as mapping service and the LISP southbound
plugin.

	odl-lispflowmapping-ui

	This includes the GUI module for the LISP Mapping Service.

	odl-lispflowmapping-neutron

	This is the experimental Neutron provider module for LISP mapping
service.

Tutorials

This section provides a tutorial demonstrating various features in this
service. We have included tutorials using two forwarding platforms:

	Using Open Overlay Router (OOR) [https://github.com/OpenOverlayRouter/oor#overview]

	Using FD.io [https://wiki.fd.io/view/ONE]

Both have different approaches to create the overlay but ultimately do the
same job. Details of both approaches have been explained below.

Creating a LISP overlay with OOR

This section provides instructions to set up a LISP network of three
nodes (one “client” node and two “server” nodes) using OOR as data
plane LISP nodes and the LISP Flow Mapping project from OpenDaylight as
the LISP programmable mapping system for the LISP network.

Overview

The steps shown below will demonstrate setting up a LISP network between
a client and two servers, then performing a failover between the two
“server” nodes.

Prerequisites

	OpenDaylight Boron

	The Postman Chrome App: the most convenient way to follow along
this tutorial is to use the Postman
App [https://www.getpostman.com/apps]
to edit and send the requests. The project git repository hosts a
collection of the requests that are used in this tutorial in the
resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection
file. You can import this file to Postman by clicking Import at the
top, choosing Download from link and then entering the following
URL:
https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob_plain;f=resources/tutorial/OOR/Beryllium_Tutorial.json.postman_collection;hb=refs/heads/stable/boron.
Alternatively, you can save the file on your machine, or if you have
the repository checked out, you can import from there. You will need
to create a new Postman Environment and define some variables within:
controllerHost set to the hostname or IP address of the machine
running the OpenDaylight instance, and restconfPort to 8181, if you didn’t
modify the default controller settings.

	OOR version 1.0 or later The README.md lists the dependencies needed
to build it from source.

	A virtualization platform

Target Environment

The three LISP data plane nodes and the LISP mapping system are assumed
to be running in Linux virtual machines, which have the eth0
interface in NAT mode to allow outside internet access and eth1
connected to a host-only network, with the following IP addresses
(please adjust configuration files, JSON examples, etc. accordingly if
you’re using another addressing scheme):

	Node
	Node Type
	IP Address

	controller
	OpenDaylight
	192.168.16.11

	client
	OOR
	192.168.16.30

	server1
	OOR
	192.168.16.31

	server2
	OOR
	192.168.16.32

	service-node
	OOR
	192.168.16.33

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial]

In LISP terminology client, server1 and server2 are mobile nodes (MN in OOR),
controller is a MS/MR and service-node is a RTR.

Note

While the tutorial uses OOR as the data plane, it could be any
LISP-enabled hardware or software router (commercial/open source).

Instructions

The below steps use the command line tool cURL to talk to the LISP Flow
Mapping RPC REST API. This is so that you can see the actual request
URLs and body content on the page.

	Install and run OpenDaylight Boron release on the controller VM.
Please follow the general OpenDaylight Boron Installation Guide
for this step. Once the OpenDaylight controller is running install
the odl-lispflowmapping-msmr feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It takes quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	Install OOR on the client, server1, server2, and
service-node VMs following the installation instructions from
the OOR README
file [https://github.com/OpenOverlayRouter/oor#software-prerequisites].

	Configure the OOR installations from the previous step. Take a look
at the oor.conf.example to get a general idea of the structure
of the conf file. First, check if the file /etc/oor.conf exists.
If the file doesn’t exist, create the file /etc/oor.conf. Set the
EID in /etc/oor.conf file from the IP address space selected
for your virtual/LISP network. In this tutorial the EID of the
client is set to 1.1.1.1/32, and that of server1 and
server2 to 2.2.2.2/32.

	Set the RLOC interface to eth1 in each oor.conf file. LISP
will determine the RLOC (IP address of the corresponding VM) based
on this interface.

	Set the Map-Resolver address to the IP address of the
controller, and on the client the Map-Server too. On
server1 and server2 remove the Map-Server configuration, so
that it doesn’t interfere with the mappings on the controller, since
we’re going to program them manually.

	Modify the “key” parameter in each oor.conf file to a
key/password of your choice (password in this tutorial).

Note

The resources/tutorial/OOR directory in the stable/boron
branch of the project git repository has the files used in the
tutorial checked
in [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/OOR;hb=refs/heads/stable/boron],
so you can just copy the files to /etc/oor.conf on the
respective VMs. You will also find the JSON files referenced
below in the same directory.

	Define a key and EID prefix association in OpenDaylight using the
RPC REST API for the client EID (1.1.1.1/32) to allow
registration from the southbound. Since the mappings for the server
EID will be configured from the REST API, no such association is
necessary. Run the below command on the controller (or any
machine that can reach controller, by replacing localhost with
the IP address of controller).

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/ \
 --data @add-key.json

where the content of the add-key.json file is the following:

{
 "authentication-key": {
 "eid-uri": "ipv4:1.1.1.1/32",
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "1.1.1.1/32"
 },
 "mapping-authkey": {
 "key-string": "password",
 "key-type": 1
 }
 }
}

	Verify that the key is added properly by requesting the following
URL:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/authentication-key/ipv4:1.1.1.1%2f32/

The output the above invocation should look like this:

{
 "authentication-key":[
 {
 "eid-uri":"ipv4:1.1.1.1/32",
 "eid":{
 "ipv4-prefix":"1.1.1.1/32",
 "address-type":"ietf-lisp-address-types:ipv4-prefix-afi"
 },
 "mapping-authkey":{
 "key-string":"password"
 ,"key-type":1
 }
 }
]
}

	Run the oor OOR daemon on all VMs:

oor -f /etc/oor.conf

For more information on accessing OOR logs, take a look at
OOR README [https://github.com/OpenOverlayRouter/oor#readme]

	The client OOR node should now register its EID-to-RLOC
mapping in OpenDaylight. To verify you can lookup the corresponding
EIDs via the REST API

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/operational/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:1.1.1.1%2f32/southbound/

An alternative way for retrieving mappings from OpenDaylight using the
southbound interface is using the
`lig <https://github.com/davidmeyer/lig>`__ open source tool.

	Register the EID-to-RLOC mapping of the server EID 2.2.2.2/32 to the
controller, pointing to server1 and server2 with a higher
priority for server1

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @mapping.json

where the mapping.json file looks like this:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "server1",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.31"
 }
 },
 {
 "locator-id": "server2",
 "priority": 2,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:ipv4-afi",
 "ipv4": "192.168.16.32"
 }
 }
]
 }
 }
}

Here the priority of the second RLOC (192.168.16.32 - server2)
is 2, a higher numeric value than the priority of 192.168.16.31,
which is 1. This policy is saying that server1 is preferred to
server2 for reaching EID 2.2.2.2/32. Note that lower priority
value has higher preference in LISP.

	Verify the correct registration of the 2.2.2.2/32 EID:

curl -u "admin":"admin" -H "Content-type: application/json" -X GET \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/

	Now the LISP network is up. To verify, log into the client VM
and ping the server EID:

ping 2.2.2.2

	Let’s test fail-over now. Suppose you had a service on server1
which became unavailable, but server1 itself is still reachable.
LISP will not automatically fail over, even if the mapping for
2.2.2.2/32 has two locators, since both locators are still reachable
and uses the one with the higher priority (lowest priority value).
To force a failover, we need to set the priority of server2 to a
lower value. Using the file mapping.json above, swap the priority
values between the two locators (lines 14 and 28 in mapping.json)
and repeat the request from step 11. You can also repeat step 12 to
see if the mapping is correctly registered. If you leave the ping
on, and monitor the traffic using wireshark, you can see that the
ping traffic to 2.2.2.2 will be diverted from the server1 RLOC
to the server2 RLOC.

With the default OpenDaylight configuration the failover should be
near instantaneous (we observed 3 lost pings in the worst case),
because of the LISP Solicit-Map-Request (SMR)
mechanism [http://tools.ietf.org/html/rfc6830#section-6.6.2] that
can ask a LISP data plane element to update its mapping for a
certain EID (enabled by default). It is controlled by the
lisp.smr variable in etc/custom.porperties. When enabled,
any mapping change from the RPC interface will trigger an SMR packet
to all data plane elements that have requested the mapping in the
last 24 hours (this value was chosen because it’s the default TTL of
Cisco IOS xTR mapping registrations). If disabled, ITRs keep their
mappings until the TTL specified in the Map-Reply expires.

	To add a service chain into the path from the client to the server,
we can use an Explicit Locator Path, specifying the service-node
as the first hop and server1 (or server2) as the second hop.
The following will achieve that:

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:2.2.2.2%2f32/northbound/ \
 --data @elp.json

where the elp.json file is as follows:

{
 "mapping": {
 "eid-uri": "ipv4:2.2.2.2/32",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "2.2.2.2/32"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": true,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "service-node",
 "address": "192.168.16.33",
 "lrs-bits": "strict"
 },
 {
 "hop-id": "server1",
 "address": "192.168.16.31",
 "lrs-bits": "strict"
 }
]
 }
 }
 }
]
 }
 }
}

After the mapping for 2.2.2.2/32 is updated with the above, the ICMP
traffic from client to server1 will flow through the
service-node. You can confirm this in the OOR logs, or by
sniffing the traffic on either the service-node or server1.
Note that service chains are unidirectional, so unless another ELP
mapping is added for the return traffic, packets will go from
server1 to client directly.

	Suppose the service-node is actually a firewall, and traffic is
diverted there to support access control lists (ACLs). In this
tutorial that can be emulated by using iptables firewall rules
in the service-node VM. To deny traffic on the service chain
defined above, the following rule can be added:

iptables -A OUTPUT --dst 192.168.16.31 -j DROP

The ping from the client should now have stopped.

In this case the ACL is done on the destination RLOC. There is an
effort underway in the OOR community to allow filtering on EIDs,
which is the more logical place to apply ACLs.

	To delete the rule and restore connectivity on the service chain,
delete the ACL by issuing the following command:

iptables -D OUTPUT --dst 192.168.16.31 -j DROP

which should restore connectivity.

Creating a simple LISP overlay with FD.io

In this section, we use the Overlay Network Engine (ONE) project in FD.io
to facilitate fully scripted setup and testing of a LISP/VXLAN-GPE network.
Overlay Network Engine (ONE) is a FD.io [https://fd.io/] project that enables programmable
dynamic software defined overlays. Details about this project can be
found in ONE wiki [https://wiki.fd.io/view/ONE].

The steps shown below will demonstrate setting up a LISP network between
a client and a server using VPP. We demonstrate how to use VPP lite to
build a IP4 LISP overlay on an Ubuntu host using namespaces and af_packet
interfaces. All configuration files used in the tutorials can be found
here [https://gerrit.fd.io/r/gitweb?p=one.git;a=tree;f=tutorial;hb=HEAD].

Prerequisites

	OpenDaylight Boron

	The Postman Chrome App: Please follow the instructions and import
postman collection from the following URL: https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=blob;f=resources/tutorial/FD_io/lfm_vpp.postman_collection.json;hb=HEAD.

	Vagrant (optional): Download it from Vagrant website [https://www.vagrantup.com/downloads.html]
and follow the setup instructions.

Target Environment

Unlike the case with OOR, we use network namespace functionality of Linux
to create the overlay in this case. The following table contains ip addresses
of nodes in the overlay topology used in the tutorial. Our objective will be to
create this topology and be able to ping from client to server through an
intermediary hop, service node, which is a rtr node providing the
service of re-encapsulation. So, all the packets from client to server
will be through this service node.

	Node
	Node Type
	IP Address

	controller
	OpenDaylight
	6.0.3.100

	client
	VPP
	6.0.2.2

	server
	VPP
	6.0.4.4

	service node
	VPP
	6.0.3.3

Table: Nodes in the tutorial

The figure below gives a sketch of network topology that will be used in the tutorial.

[image: Network architecture of the tutorial for FD.io]

Instructions

Follow the instructions below sequentially.

	Pull the VPP code anonymously using:

git clone https://gerrit.fd.io/r/vpp

	Then, use the vagrant file from repository to build virtual machine
with proper environment.

cd vpp/build-root/vagrant/
vagrant up
vagrant ssh

	In case there is any error from vagrant up, try vargant ssh. if
it works, no worries. If it still doesn’t work, you can try any Ubuntu virtual
machine. Or sometimes there is an issue with the Vagrant properly copying
the VPP repo code from the host VM after the first installation. In that
case /vpp doesn’t exist. In both cases, follow the instructions
from below.

	Clone the code in / directory. So, the codes will be in /vpp.

	
	Run the following commands:

	cd /vpp/build-root
make distclean
./bootstrap.sh
make V=0 PLATFORM=vpp TAG=vpp install-deb
sudo dpkg -i /vpp/build-root/*.deb

Alternative and more detailed build instructions can be found in
VPP’s wiki [https://wiki.fd.io/view/VPP/Build,_install,_and_test_images]

	By now, you should have a Ubuntu VM with VPP repository in /vpp
with sudo access. Now, we need VPP Lite build. The following commands
builds VPP Lite.

cd /vpp
export PLATFORM=vpp_lite
make build

Successful build create the binary in /vpp/build-root/install-vpp_lite_debug-native/vpp/bin

	Install bridge-utils and ethtool if needed by using following commands:

sudo apt-get install bridge-utils ethtool

	Now, install and run OpenDaylight Boron release on the VM. Please
follow the general OpenDaylight Boron Installation Guide for this
step from Installing OpenDaylight. Before running OpenDaylight, we need
to change the configuration for RTR to work. Update etc/custom.properties
with the lisp.elpPolicy to be replace.

lisp.elpPolicy = replace

Then, run OpenDaylight. For details regarding configuring LISP
Flow Mapping, please take a look at Configuring LISP Flow Mapping.
Once the OpenDaylight controller is running install the odl-lispflowmapping-msmr
feature from the Karaf CLI:

feature:install odl-lispflowmapping-msmr

It may take quite a while to load and initialize all features and their
dependencies. It’s worth running the command log:tail in the
Karaf console to see when the log output is winding down, and
continue with the tutorial after that.

	For setting up VPP, get the files from resources/tutorial/FD_io
folder of the lispflowmapping repo. The files can also be found here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/boron].
Copy the vpp1.config, vpp2.config and rtr.config files in
/etc/vpp/lite/.

	In this example, VPP doesn’t make any southbound map registers to OpenDaylight.
So, we add the mappings directly from northbound. For that, we need
to add the mappings to OpenDaylight via RESTCONF API.

Register EID-to-RLOC mapping of the Client EID 6.0.2.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.2.0%2f24/northbound/ \
 --data @epl1.json

Content of epl1.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.2.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.2.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.1",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

Similarly add EID-to-RLOC mapping of the Server EID 6.0.4.0/24.

curl -u "admin":"admin" -H "Content-type: application/json" -X PUT \
 http://localhost:8181/restconf/config/odl-mappingservice:mapping-database/virtual-network-identifier/0/mapping/ipv4:6.0.4.0%2f24/northbound/ \
 --data @epl2.json

Content of elp2.json:

{
 "mapping": {
 "eid-uri": "ipv4:6.0.4.0/24",
 "origin": "northbound",
 "mapping-record": {
 "recordTtl": 1440,
 "action": "NoAction",
 "authoritative": true,
 "eid": {
 "address-type": "ietf-lisp-address-types:ipv4-prefix-afi",
 "ipv4-prefix": "6.0.4.0/24"
 },
 "LocatorRecord": [
 {
 "locator-id": "ELP",
 "priority": 1,
 "weight": 1,
 "multicastPriority": 255,
 "multicastWeight": 0,
 "localLocator": true,
 "rlocProbed": false,
 "routed": false,
 "rloc": {
 "address-type": "ietf-lisp-address-types:explicit-locator-path-lcaf",
 "explicit-locator-path": {
 "hop": [
 {
 "hop-id": "Hop 1",
 "address": "6.0.3.3",
 "lrs-bits": "lookup rloc-probe strict"
 },
 {
 "hop-id": "Hop 2",
 "address": "6.0.3.2",
 "lrs-bits": "lookup strict"
 }
]
 }
 }
 }
]
 }
 }
}

The JSON files regarding these can be found in here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/boron].
Even though there is no southbound registration for mapping to OpenDaylight, using
northbound policy we can specify mappings, when Client requests for
the Server eid, Client gets a reply from OpenDaylight.

	Assuming all files have been created and OpenDaylight has been configured as
explained above, execute the host script you’ve created or the topology_setup.sh
script from here [https://git.opendaylight.org/gerrit/gitweb?p=lispflowmapping.git;a=tree;f=resources/tutorial/FD_io;hb=refs/heads/stable/boron].

	If all goes well, you can now test connectivity between the namespaces with:

sudo ip netns exec vpp-ns1 ping 6.0.4.4

	Traffic and control plane message exchanges can be checked with a wireshark
listening on the odl interface.

	
Important

Delete the topology by running the topology_setup.sh with clean argument.

sudo ./topology_setup.sh clean

LISP Flow Mapping Support

For support the lispflowmapping project can be reached by emailing the
developer mailing list: lispflowmapping-dev@lists.opendaylight.org or on
the #opendaylight-lispflowmapping IRC channel on irc.freenode.net.

Additional information is also available on the Lisp Flow Mapping
wiki [https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Main]

Clustering in LISP Flow Mapping

Documentation regarding setting up a 3-node OpenDaylight cluster is
described at following odl wiki
page [https://wiki.opendaylight.org/view/Running_and_testing_an_OpenDaylight_Cluster#Three-node_cluster].

To turn on clustering in LISP Flow Mapping it is necessary:

	run script deploy.py script. This script is in
integration-test [https://git.opendaylight.org/gerrit/integration/test]
project placed at tools/clustering/cluster-deployer/deploy.py. A
whole deploy.py command can looks like:

{path_to_integration_test_project}/tools/clustering/cluster-deployer/deploy.py

–distribution {path_to_distribution_in_zip_format}

–rootdir {dir_at_remote_host_where_copy_odl_distribution}

–hosts {ip1},{ip2},{ip3}

–clean

–template lispflowmapping

–rf 3

–user {user_name_of_remote_hosts}

–password {password_to_remote_hosts}

Running this script will cause that specified distribution to be
deployed to remote hosts specified through their IP adresses with
using credentials (user and password). The distribution will
be copied to specified rootdir. As part of the deployment, a
template which contains a set of controller files which are
different from standard ones. In this case it is specified in

{path_to_integration_test_project}/tools/clustering/cluster-deployer/lispflowmapping
directory.

Lispflowmapping templates are part of integration-test project. There
are 5 template files:

	akka.conf.template

	jolokia.xml.template

	module-shards.conf.template

	modules.conf.template

	org.apache.karaf.features.cfg.template

After copying the distribution, it is unzipped and started on all of
specified hosts in cluster aware manner.

Remarks

It is necessary to have:

	unzip program installed on all of the host

	set all remote hosts /etc/sudoers files to not requiretty (should
only matter on debian hosts)

NATApp Developer Guide

Overview

NATApp acts as a basic framework for providing NAT functionality to the
SDN controller. One can use REST or Java APIs to enter global IP address
into YANG Data Store which will be used by the odl-natapp-feature to map
local IP to global IP addresses.

NATApp Architecture

NATApp listens on OpenFlow southbound interface for Packet_In messages.
The application parses the message for header information. If the
received message has a local IP address the application installs rules
on the OpenFlow switch for network address translation from local to
global IP addresses. NATApp has NATPacketHandler class that implements
the PacketProcessing interface to override the OnPacketReceived
notification by which the application is notified of Packet_In
messages.

NATApp is implemented with the help of a few java classes.

	NATPacketHandler
	Receives Packet_In messages coming to the controller and process
them appropriately

	NATPacketParsing
	Decodes Packet_In messages for packet header information (L2, L3
& L4 information)

	NATInventoryUtility
	Decodes Packet_In messages for OpenFlow Switch and Port
information

	NATFlowBuilder
	Creates NAT flow rules at the OpenFlow Switch

	NATYangStore
	Reads Global IP entered by user and maps local IP to Global IP
information

	NATFlowHandler
	Manages expired flows in the switch and frees up used global IP
address for future natting.

Key APIs and Interfaces

	RPC APIs
	Static - Configure Static Natting Functionality

	Dynamic - Configure Static Dynamic Functionality

	PAT - Configure PAT Functionality

	DataStore APIs
	StaticNatIp - Configure floating IP addresses for Static Natting

	StaticIpMapInfo - Mapped Information between floating and private
IP addresses in Static Natting

	DynamicNatIp - Configure floating IP addresses for Dynamic Natting

	DynamicIpMapInfo - Mapped Information between floating and private
IP addresses in Dynamic Natting

	PatIp - Configure floating IP addresses for Port Address
Translation

	PatIpMapInfo - Mapped Information between TCP Port numbers of
floating IP and private IP addresses

	Notification APIs
	DynamicIPExhaustion - Exhaustion of Dynamic Global IP Addresses

	PatOverConnection - More than 10 TCP or UDP connections from one
private IP address

NEtwork MOdeling (NEMO)

Overview

The NEMO engine provides REST APIs to express intent, and manage it. With this
northbound API, user could query what intents have been handled successfully, and
what types have been predefined.

NEMO Architecture

In NEMO project, it provides three features facing developer.

	odl-nemo-engine: it is a whole model to handle intent.

	odl-nemo-openflow-renderer: it is a southbound render to translate intent to flow
table in devices supporting for OpenFlow protocol.

	odl-nemo-cli-render: it is also a southbound render to translate intent into forwarding
table in devices supporting for traditional protocol.

Key APIs and Interfaces

NEMO projects provide four basic REST methods for user to use.

	PUT: store the information expressed in NEMO model directly without handled by NEMO engine.

	POST: the information expressed in NEMO model will be handled by NEMO engine, and will
be translated into southbound configuration.

	GET: obtain the data stored in data store.

	DELETE: delete the data in data store.

NEMO Intent API

NEMO provides several RPCs to handle user’s intent. All RPCs use POST method.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:register-user: a REST API
to register a new user. It is the first and necessary step to express intent.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:transaction-begin: a REST
type to start a transaction. The intent exist in the transaction will be handled together.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:transaction-end: a REST API
to end a transaction. The intent exist in the transaction will be handled together.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:structure-style-nemo-update: a
REST API to create, import or update intent in a structure style, that is, user could express the
structure of intent in json body.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:structure-style-nemo-delete: a
REST API to delete intent in a structure style.

	http://{controller-ip}:8181/restconf/operations/nemo-intent:language-style-nemo-request: a REST
API to create, import, update and delete intent in a language style, that is, user could express
intent with NEMO script. On the other hand, with this interface, user could query which intent have
been handled successfully.

API Reference Documentation

Go to http://${IPADDRESS}:8181/apidoc/explorer/index.html. User could see many useful APIs to
deploy or query intent.

NETCONF Developer Guide

Note

Reading the NETCONF section in the User Guide is likely useful as it
contains an overview of NETCONF in OpenDaylight and a how-to for
spawning and configuring NETCONF connectors.

This chapter is recommended for application developers who want to
interact with mounted NETCONF devices from their application code. It
tries to demonstrate all the use cases from user guide with RESTCONF but
now from the code level. One important difference would be the
demonstration of NETCONF notifications and notification listeners. The
notifications were not shown using RESTCONF because RESTCONF does not
support notifications from mounted NETCONF devices.

Note

It may also be useful to read the generic OpenDaylight MD-SAL app
development
tutorial [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:MD-SAL_App_Tutorial]
before diving into this chapter. This guide assumes awareness of
basic OpenDaylight application development.

Sample app overview

All the examples presented here are implemented by a sample OpenDaylight
application called ncmount in the coretutorials OpenDaylight
project. It can be found on the github mirror of OpenDaylight’s
repositories:

	https://github.com/opendaylight/coretutorials/tree/stable/boron/ncmount

or checked out from the official OpenDaylight repository:

	https://git.opendaylight.org/gerrit/#/admin/projects/coretutorials

The application was built using the project startup maven
archetype [https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Startup_Project_Archetype]
and demonstrates how to:

	preconfigure connectors to NETCONF devices

	retrieve MountPointService (registry of available mount points)

	listen and react to changing connection state of netconf-connector

	add custom device YANG models to the app and work with them

	read data from device in binding aware format (generated java APIs
from provided YANG models)

	write data into device in binding aware format

	trigger and listen to NETCONF notifications in binding aware format

Detailed information about the structure of the application can be found
at:
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

Note

The code in ncmount is fully binding aware (works with generated
java APIs from provided YANG models). However it is also possible to
perform the same operations in binding independent manner.

NcmountProvider

The NcmountProvider class (found in NcmountProvider.java) is the central
point of the ncmount application and all the application logic is
contained there. The following sections will detail its most interesting
pieces.

Retrieve MountPointService

The MountPointService is a central registry of all available mount
points in OpenDaylight. It is just another MD-SAL service and is
available from the session attribute passed by
onSessionInitiated callback:

@Override
public void onSessionInitiated(ProviderContext session) {
 LOG.info("NcmountProvider Session Initiated");

 // Get references to the data broker and mount service
 this.mountService = session.getSALService(MountPointService.class);

 ...

 }
}

Listen for connection state changes

It is important to know when a mount point appears, when it is fully
connected and when it is disconnected or removed. The exact states of a
mount point are:

	Connected

	Connecting

	Unable to connect

To receive this kind of information, an application has to register
itself as a notification listener for the preconfigured netconf-topology
subtree in MD-SAL’s datastore. This can be performed in the
onSessionInitiated callback as well:

@Override
public void onSessionInitiated(ProviderContext session) {

 ...

 this.dataBroker = session.getSALService(DataBroker.class);

 // Register ourselves as the REST API RPC implementation
 this.rpcReg = session.addRpcImplementation(NcmountService.class, this);

 // Register ourselves as data change listener for changes on Netconf
 // nodes. Netconf nodes are accessed via "Netconf Topology" - a special
 // topology that is created by the system infrastructure. It contains
 // all Netconf nodes the Netconf connector knows about. NETCONF_TOPO_IID
 // is equivalent to the following URL:
 // .../restconf/operational/network-topology:network-topology/topology/topology-netconf
 if (dataBroker != null) {
 this.dclReg = dataBroker.registerDataChangeListener(LogicalDatastoreType.OPERATIONAL,
 NETCONF_TOPO_IID.child(Node.class),
 this,
 DataChangeScope.SUBTREE);
 }
}

The implementation of the callback from MD-SAL when the data change can
be found in the
onDataChanged(AsyncDataChangeEvent<InstanceIdentifier<?>, DataObject>
change) callback of NcmountProvider
class [https://github.com/opendaylight/coretutorials/blob/stable/boron/ncmount/impl/src/main/java/ncmount/impl/NcmountProvider.java].

Reading data from the device

The first step when trying to interact with the device is to get the
exact mount point instance (identified by an instance identifier) from
the MountPointService:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {
 LOG.info("showNode called, input {}", input);

 // Get the mount point for the specified node
 // Equivalent to '.../restconf/<config | operational>/opendaylight-inventory:nodes/node/<node-name>/yang-ext:mount/'
 // Note that we can read both config and operational data from the same
 // mount point
 final Optional<MountPoint> xrNodeOptional = mountService.getMountPoint(NETCONF_TOPO_IID
 .child(Node.class, new NodeKey(new NodeId(input.getNodeName()))));

 Preconditions.checkArgument(xrNodeOptional.isPresent(),
 "Unable to locate mountpoint: %s, not mounted yet or not configured",
 input.getNodeName());
 final MountPoint xrNode = xrNodeOptional.get();

}

Note

The triggering method in this case is called showNode. It is a
YANG-defined RPC and NcmountProvider serves as an MD-SAL RPC
implementation among other things. This means that showNode an
be triggered using RESTCONF.

The next step is to retrieve an instance of the DataBroker API from
the mount point and start a read transaction:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

 ...

 // Get the DataBroker for the mounted node
 final DataBroker xrNodeBroker = xrNode.getService(DataBroker.class).get();
 // Start a new read only transaction that we will use to read data
 // from the device
 final ReadOnlyTransaction xrNodeReadTx = xrNodeBroker.newReadOnlyTransaction();

 ...
}

Finally, it is possible to perform the read operation:

@Override
public Future<RpcResult<ShowNodeOutput>> showNode(ShowNodeInput input) {

 ...

 InstanceIdentifier<InterfaceConfigurations> iid =
 InstanceIdentifier.create(InterfaceConfigurations.class);

 Optional<InterfaceConfigurations> ifConfig;
 try {
 // Read from a transaction is asynchronous, but a simple
 // get/checkedGet makes the call synchronous
 ifConfig = xrNodeReadTx.read(LogicalDatastoreType.CONFIGURATION, iid).checkedGet();
 } catch (ReadFailedException e) {
 throw new IllegalStateException("Unexpected error reading data from " + input.getNodeName(), e);
 }

 ...
}

The instance identifier is used here again to specify a subtree to read
from the device. At this point application can process the data as it
sees fit. The ncmount app transforms the data into its own format and
returns it from showNode.

Note

More information can be found in the source code of ncmount sample
app + on wiki:
https://wiki.opendaylight.org/view/Controller_Core_Functionality_Tutorials:Tutorials:Netconf_Mount

Network Intent Composition (NIC) Developer Guide

Overview

The Network Intent Composition (NIC) provides four features:

	odl-nic-core-hazelcast: Provides a distributed intent mapping
service, implemented using hazelcast, that stores metadata needed by
odl-nic-core feature.

	odl-nic-core-mdsal: Provides an intent rest API to external
applications for CRUD operations on intents, conflict resolution and
event handling. Uses MD-SAL as backend.

	odl-nic-console: Provides a karaf CLI extension for intent CRUD
operations and mapping service operations.

	odl-nic-renderer-of - Generic OpenFlow Renderer.

	odl-nic-renderer-vtn - a feature that transforms an intent to a
network modification using the VTN project

	odl-nic-renderer-gbp - a feature that transforms an intent to a
network modification using the Group Policy project

	odl-nic-renderer-nemo - a feature that transforms an intent to a
network modification using the NEMO project

	odl-nic-listeners - adds support for event listening. (depends on:
odl-nic-renderer-of)

	odl-nic-neutron-integration - allow integration with openstack
neutron to allow coexistence between existing neutron security rules
and intents pushed by ODL applications.

Only a single renderer feature should be installed at a time for the
Boron release.

odl-nic-core-mdsal XOR odl-nic-core-hazelcast

This feature supplies the base models for the Network Intent Composition
(NIC) capability. This includes the definition of intent as well as the
configuration and operational data trees.

This feature only provides an information model. The interface for NIC
is to modify the information model via the configuraiton data tree,
which will trigger the renderer to make the appropriate changes in the
controlled network.

Installation

First you need to install one of the core installations:

feature:install odl-nic-core-service-mdsal odl-nic-console

OR

feature:install odl-nic-core-service-hazelcast odl-nic-console

Then pick a renderer:

feature:install odl-nic-listeners (will install odl-nic-renderer-of)

OR

feature:install odl-nic-renderer-vtn

OR

feature:install odl-nic-renderer-gbp

OR

feature:install odl-nic-renderer-nemo

REST Supported operations

POST / PUT (configuration)

This operations create instances of an intent in the configuration data
tree and trigger the creation or modification of an intent.

GET (configuration / operational)

This operation lists all or fetches a single intent from the data tree.

DELETE (configuration)

This operation will cause an intent to be removed from the system and
trigger any configuration changes on the network rendered from this
intent to be removed.

odl-nic-cli user guide

This feature provides karaf console CLI command to manipulate the intent
data model. The CLI essentailly invokes the equivalent data operations.

intent:add

Creates a new intent in the configuration data tree

DESCRIPTION
 intent:add

 Adds an intent to the controller.

Examples: --actions [ALLOW] --from <subject> --to <subject>
 --actions [BLOCK] --from <subject>

SYNTAX
 intent:add [options]

OPTIONS
 -a, --actions
 Action to be performed.
 -a / --actions BLOCK/ALLOW
 (defaults to [BLOCK])
 --help
 Display this help message
 -t, --to
 Second Subject.
 -t / --to <subject>
 (defaults to any)
 -f, --from
 First subject.
 -f / --from <subject>
 (defaults to any)

intent:delete

Removes an existing intent from the system

DESCRIPTION
 intent:remove

 Removes an intent from the controller.

SYNTAX
 intent:remove id

ARGUMENTS
 id Intent Id

intent:list

Lists all the intents in the system

DESCRIPTION
 intent:list

 Lists all intents in the controller.

SYNTAX
 intent:list [options]

OPTIONS
 -c, --config
 List Configuration Data (optional).
 -c / --config <ENTER>
 --help
 Display this help message

intent:show

Displays the details of a single intent

DESCRIPTION
 intent:show

 Shows detailed information about an intent.

SYNTAX
 intent:show id

ARGUMENTS
 id Intent Id

intent:map

List/Add/Delete current state from/to the mapping service.

DESCRIPTION
 intent:map

 List/Add/Delete current state from/to the mapping service.

SYNTAX
 intent:map [options]

 Examples: --list, -l [ENTER], to retrieve all keys.
 --add-key <key> [ENTER], to add a new key with empty contents.
 --del-key <key> [ENTER], to remove a key with it's values."
 --add-key <key> --value [<value 1>, <value 2>, ...] [ENTER],
 to add a new key with some values (json format).
OPTIONS
 --help
 Display this help message
 -l, --list
 List values associated with a particular key.
 -l / --filter <regular expression> [ENTER]
 --add-key
 Adds a new key to the mapping service.
 --add-key <key name> [ENTER]
 --value
 Specifies which value should be added/delete from the mapping service.
 --value "key=>value"... --value "key=>value" [ENTER]
 (defaults to [])
 --del-key
 Deletes a key from the mapping service.
 --del-key <key name> [ENTER]

Sample Use case: MPLS

Description

The scope of this use-case is to add MPLS intents between two MPLS
endpoints. The use-case tries to address the real-world scenario
illustrated in the diagram below:

[image: MPLS VPN Service Diagram]
MPLS VPN Service Diagram

where PE (Provider Edge) and P (Provider) switches are managed by
OpenDaylight. In NIC’s terminology the endpoints are the PE switches.
There could be many P switches between the PEs.

In order for NIC to recognize endpoints as MPLS endpoints, the user is
expected to add mapping information about the PE switches to NIC’s
mapping service to include the below properties:

	MPLS Label to identify a PE

	IPv4 Prefix for the customer site that are connected to a PE

	Switch-Port: Ingress (or Egress) for source (or Destination) endpoint
of the source (or Destination) PE

An intent:add between two MPLS endpoints renders OpenFlow rules for: 1.
push/pop labels to the MPLS endpoint nodes after an IPv4 Prefix match.
2. forward to port rule after MPLS label match to all the switches that
form the shortest path between the endpoints (calculated using Dijkstra
algorithm).

Additionally, we have also added constraints to Intent model for
protection and failover mechanism to ensure end-to-end connectivity
between endpoints. By specifying these constraints to intent:add the
use-case aims to reduces the risk of connectivity failure due to a
single link or port down event on a forwarding device.

	Protection constraint: Constraint that requires an end-to-end
connectivity to be protected by providing redundant paths.

	Failover constraint: Constraint that specifies the type of failover
implementation. slow-reroute: Uses disjoint path calculation
algorithms like Suurballe to provide alternate end-to-end routes.
fast-reroute: Uses failure detection feature in hardware forwarding
device through OF group table features (Future plans) When no
constraint is requested by the user we default to offering a since
end-to-end route using Dijkstra shortest path.

How to use it?

	Start Karaf and install related features:

feature:install odl-nic-core-service-mdsal odl-nic-core odl-nic-console odl-nic-listeners
feature:install odl-dlux-all odl-dlux-core odl-dlux-yangui odl-dlux-yangvisualizer

	Start mininet topology and verify in DLUX Topology page for the nodes
and link.

mn --controller=remote,ip=$CONTROLLER_IP --custom ~/shortest_path.py --topo shortest_path --switch ovsk,protocols=OpenFlow13

cat shortest.py -->
from mininet.topo import Topo
from mininet.cli import CLI
from mininet.net import Mininet
from mininet.link import TCLink
from mininet.util import irange,dumpNodeConnections
from mininet.log import setLogLevel

class Fast_Failover_Demo_Topo(Topo):

def __init__(self):
 # Initialize topology and default options
 Topo.__init__(self)

s1 = self.addSwitch('s1',dpid='0000000000000001')
s2a = self.addSwitch('s2a',dpid='000000000000002a')
s2b = self.addSwitch('s2b',dpid='000000000000002b')
s2c = self.addSwitch('s2c',dpid='000000000000002c')
s3 = self.addSwitch('s3',dpid='0000000000000003')
self.addLink(s1, s2a)
self.addLink(s1, s2b)
self.addLink(s2b, s2c)
self.addLink(s3, s2a)
self.addLink(s3, s2c)
host_1 = self.addHost('h1',ip='10.0.0.1',mac='10:00:00:00:00:01')
host_2 = self.addHost('h2',ip='10.0.0.2',mac='10:00:00:00:00:02')
self.addLink(host_1, s1)
self.addLink(host_2, s3)

topos = { 'shortest_path': (lambda: Demo_Topo()) }

	Update the mapping service with required information

Sample payload:

{
 "mappings": {
 "outer-map": [
 {
 "id": "uva",
 "inner-map": [
 {
 "inner-key": "ip_prefix",
 "value": "10.0.0.1/32"
 },
 {
 "inner-key": "mpls_label",
 "value": "15"
 },
 {
 "inner-key": "switch_port",
 "value": "openflow:1:1"
 }
]
 },
 {
 "id": "eur",
 "inner-map": [
 {
 "inner-key": "ip_prefix",
 "value": "10.0.0.2/32"
 },
 {
 "inner-key": "mpls_label",
 "value": "16"
 },
 {
 "inner-key": "switch_port",
 "value": "openflow:3:1"
 }
]
 }
]
 }
}

	Create bidirectional Intents using Karaf command line or RestCONF:

Example:

intent:add -f uva -t eur -a ALLOW
intent:add -f eur -t uva -a ALLOW

	Verify by running ovs-ofctl command on mininet if the flows were pushed
correctly to the nodes that form the shortest path.

Example:

ovs-ofctl -O OpenFlow13 dump-flows s1

NetIDE Developer Guide

Overview

The NetIDE Network Engine enables portability and cooperation inside a
single network by using a client/server multi-controller SDN
architecture. Separate “Client SDN Controllers” host the various SDN
Applications with their access to the actual physical network abstracted
and coordinated through a single “Server SDN Controller”, in this
instance OpenDaylight. This allows applications written for
Ryu/Floodlight/Pyretic to execute on OpenDaylight managed
infrastructure.

The “Network Engine” is modular by design:

	An OpenDaylight plugin, “shim”, sends/receives messages to/from
subscribed SDN Client Controllers. This consumes the ODL OpenFlow
Plugin

	An initial suite of SDN Client Controller “Backends”: Floodlight,
Ryu, Pyretic. Further controllers may be added over time as the
engine is extensible.

The Network Engine provides a compatibility layer capable of translating
calls of the network applications running on top of the client
controllers, into calls for the server controller framework. The
communication between the client and the server layers is achieved
through the NetIDE intermediate protocol, which is an application-layer
protocol on top of TCP that transmits the network control/management
messages from the client to the server controller and vice-versa.
Between client and server controller sits the Core Layer which also
“speaks” the intermediate protocol. The core layer implements three main
functions:

	interfacing with the client backends and server shim, controlling
the lifecycle of controllers as well as modules in them,

	orchestrating the execution of individual modules (in one client
controller) or complete applications (possibly spread across
multiple client controllers),

	interfacing with the tools.

[image: NetIDE Network Engine Architecture]
NetIDE Network Engine Architecture

NetIDE Intermediate Protocol

The Intermediate Protocol serves several needs, it has to:

	carry control messages between core and shim/backend, e.g., to
start up/take down a particular module, providing unique
identifiers for modules,

	carry event and action messages between shim, core, and backend,
properly demultiplexing such messages to the right module based on
identifiers,

	encapsulate messages specific to a particular SBI protocol version
(e.g., OpenFlow 1.X, NETCONF, etc.) towards the client controllers
with proper information to recognize these messages as such.

The NetIDE packages can be added as dependencies in Maven projects by
putting the following code in the pom.xml file.

<dependency>
 <groupId>org.opendaylight.netide</groupId>
 <artifactId>api</artifactId>
 <version>${NETIDE_VERSION}</version>
</dependency>

The current stable version for NetIDE is 0.2.0-Boron.

Protocol specification

Messages of the NetIDE protocol contain two basic elements: the NetIDE
header and the data (or payload). The NetIDE header, described below, is
placed before the payload and serves as the communication and control
link between the different components of the Network Engine. The payload
can contain management messages, used by the components of the Network
Engine to exchange relevant information, or control/configuration
messages (such as OpenFlow, NETCONF, etc.) crossing the Network Engine
generated by either network application modules or by the network
elements.

The NetIDE header is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| netide_ver | type | length |
+-+
| xid |
+-+
| module_id |
+-+
| |
+ datapath_id +
| |
+-+

where each tick mark represents one bit position. Alternatively, in a
C-style coding format, the NetIDE header can be represented with the
following structure:

struct netide_header {
 uint8_t netide_ver ;
 uint8_t type ;
 uint16_t length ;
 uint32_t xid
 uint32_t module_id
 uint64_t datapath_id
};

	netide_ver is the version of the NetIDE protocol (the current
version is v1.2, which is identified with value 0x03).

	length is the total length of the payload in bytes.

	type contains a code that indicates the type of the message
according with the following values:

enum type {
 NETIDE_HELLO = 0x01 ,
 NETIDE_ERROR = 0x02 ,
 NETIDE_MGMT = 0x03 ,
 MODULE_ANNOUNCEMENT = 0x04 ,
 MODULE_ACKNOWLEDGE = 0x05 ,
 NETIDE_HEARTBEAT = 0x06 ,
 NETIDE_OPENFLOW = 0x11 ,
 NETIDE_NETCONF = 0x12 ,
 NETIDE_OPFLEX = 0x13
};

	datapath_id is a 64-bit field that uniquely identifies the
network elements.

	module_id is a 32-bits field that uniquely identifies Backends
and application modules running on top of each client controller. The
composition mechanism in the core layer leverages on this field to
implement the correct execution flow of these modules.

	xid is the transaction identifier associated to the each message.
Replies must use the same value to facilitate the pairing.

Module announcement

The first operation performed by a Backend is registering itself and the
modules that it is running to the Core. This is done by using the
MODULE_ANNOUNCEMENT and MODULE_ACKNOWLEDGE message types. As a
result of this process, each Backend and application module can be
recognized by the Core through an identifier (the module_id) placed
in the NetIDE header. First, a Backend registers itself by using the
following schema: backend-<platform name>-<pid>.

For example,odule a Ryu Backend will register by using the following
name in the message backend-ryu-12345 where 12345 is the process ID of
the registering instance of the Ryu platform. The format of the message
is the following:

struct NetIDE_message {
 netide_ver = 0x03
 type = MODULE_ANNOUNCEMENT
 length = len(" backend -< platform_name >-<pid >")
 xid = 0
 module_id = 0
 datapath_id = 0
 data = " backend -< platform_name >-<pid >"
}

The answer generated by the Core will include a module_id number and
the Backend name in the payload (the same indicated in the
MODULE_ANNOUNCEMENT message):

struct NetIDE_message {
 netide_ver = 0x03
 type = MODULE_ACKNOWLEDGE
 length = len(" backend -< platform_name >-<pid >")
 xid = 0
 module_id = MODULE_ID
 datapath_id = 0
 data = " backend -< platform_name >-<pid >"
}

Once a Backend has successfully registered itself, it can start
registering its modules with the same procedure described above by
indicating the name of the module in the data (e.g. data=”Firewall”).
From this point on, the Backend will insert its own module_id in the
header of the messages it generates (e.g. heartbeat, hello messages,
OpenFlow echo messages from the client controllers, etc.). Otherwise, it
will encapsulate the control/configuration messages (e.g. FlowMod,
PacketOut, FeatureRequest, NETCONF request, etc.) generated by network
application modules with the specific +module_id+s.

Heartbeat

The heartbeat mechanism has been introduced after the adoption of the
ZeroMQ messaging queuing library to transmit the NetIDE messages.
Unfortunately, the ZeroMQ library does not offer any mechanism to find
out about disrupted connections (and also completely unresponsive
peers). This limitation of the ZeroMQ library can be an issue for the
Core’s composition mechanism and for the tools connected to the Network
Engine, as they cannot understand when an client controller disconnects
or crashes. As a consequence, Backends must periodically send (let’s say
every 5 seconds) a “heartbeat” message to the Core. If the Core does not
receive at least one “heartbeat” message from the Backend within a
certain timeframe, the Core considers it disconnected, removes all the
related data from its memory structures and informs the relevant tools.
The format of the message is the following:

struct NetIDE_message {
 netide_ver = 0x03
 type = NETIDE_HEARTBEAT
 length = 0
 xid = 0
 module_id = backend -id
 datapath_id = 0
 data = 0
}

Handshake

Upon a successful connection with the Core, the client controller must
immediately send a hello message with the list of the control and/or
management protocols needed by the applications deployed on top of it.

struct NetIDE_message {
 struct netide_header header ;
 uint8 data [0]
};

The header contains the following values:

	netide ver=0x03

	type=NETIDE_HELLO

	length=2*NR_PROTOCOLS

	data contains one 2-byte word (in big endian order) for each
protocol, with the first byte containing the code of the protocol
according to the above enum, while the second byte in- dictates the
version of the protocol (e.g. according to the ONF specification,
0x01 for OpenFlow v1.0, 0x02 for OpenFlow v1.1, etc.). NETCONF
version is marked with 0x01 that refers to the specification in the
RFC6241, while OpFlex version is marked with 0x00 since this protocol
is still in work-in-progress stage.

The Core relays hello messages to the server controller which responds
with another hello message containing the following:

	netide ver=0x03

	type=NETIDE_HELLO

	length=2*NR_PROTOCOLS

If at least one of the protocols requested by the client is supported.
In particular, data contains the codes of the protocols that match
the client’s request (2-bytes words, big endian order). If the hand-
shake fails because none of the requested protocols is supported by the
server controller, the header of the answer is as follows:

	netide ver=0x03

	type=NETIDE_ERROR

	length=2*NR_PROTOCOLS

	data contains the codes of all the protocols supported by the
server controller (2-bytes words, big endian order). In this case,
the TCP session is terminated by the server controller just after the
answer is received by the client. `

NetVirt Developer Guide

	NetVirt Design Specifications
	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

Table of Contents

	Title of the feature
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

	Primary assignee:

	<developer-a>

	Other contributors:

	<developer-b>
<developer-c>

Work Items

Break up work into individual items. This should be a checklist on
Trello card for this feature. Give link to trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc.] This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is impact on documentation for this change? If documentation
change is needed call out one of the <contributors> who will work with
Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :
	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

Neutron Service Developer Guide

Overview

This Karaf feature (odl-neutron-service) provides integration
support for OpenStack Neutron via the OpenDaylight ML2 mechanism driver.
The Neutron Service is only one of the components necessary for
OpenStack integration. It defines YANG models for OpenStack Neutron data
models and northbound API via REST API and YANG model RESTCONF.

Those developers who want to add new provider for new OpenStack Neutron
extensions/services (Neutron constantly adds new extensions/services and
OpenDaylight will keep up with those new things) need to communicate
with this Neutron Service or add models to Neutron Service. If you want
to add new extensions/services themselves to the Neutron Service, new
YANG data models need to be added, but that is out of scope of this
document because this guide is for a developer who will be using the
feature to build something separate, but not somebody who will be
developing code for this feature itself.

Neutron Service Architecture

[image: Neutron Service Architecture]
Neutron Service Architecture

The Neutron Service defines YANG models for OpenStack Neutron
integration. When OpenStack admins/users request changes
(creation/update/deletion) of Neutron resources, e.g., Neutron network,
Neutron subnet, Neutron port, the corresponding YANG model within
OpenDaylight will be modified. The OpenDaylight OpenStack will subscribe
the changes on those models and will be notified those modification
through MD-SAL when changes are made. Then the provider will do the
necessary tasks to realize OpenStack integration. How to realize it (or
even not realize it) is up to each provider. The Neutron Service itself
does not take care of it.

How to Write a SB Neutron Consumer

In Boron, there is only one options for SB Neutron Consumers:

	Listening for changes via the Neutron YANG model

Until Beryllium there was another way with the legacy I*Aware
interface. From Boron, the interface was eliminated. So all the SB
Neutron Consumers have to use Neutron YANG model.

Neutron YANG models

Neutron service defines YANG models for Neutron. The details can be
found at

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=tree;f=model/src/main/yang;hb=refs/heads/stable/boron

Basically those models are based on OpenStack Neutron API definitions.
For exact definitions, OpenStack Neutron source code needs to be
referred as the above documentation doesn’t always cover the necessary
details. There is nothing special to utilize those Neutron YANG models.
The basic procedure will be:

	subscribe for changes made to the the model

	respond on the data change notification for each models

Note

Currently there is no way to refuse the request configuration at
this point. That is left to future work.

public class NeutronNetworkChangeListener implements DataChangeListener, AutoCloseable {
 private ListenerRegistration<DataChangeListener> registration;
 private DataBroker db;

 public NeutronNetworkChangeListener(DataBroker db){
 this.db = db;
 // create identity path to register on service startup
 InstanceIdentifier<Network> path = InstanceIdentifier
 .create(Neutron.class)
 .child(Networks.class)
 .child(Network.class);
 LOG.debug("Register listener for Neutron Network model data changes");
 // register for Data Change Notification
 registration =
 this.db.registerDataChangeListener(LogicalDatastoreType.CONFIGURATION, path, this, DataChangeScope.ONE);

 }

 @Override
 public void onDataChanged(
 AsyncDataChangeEvent<InstanceIdentifier<?>, DataObject> changes) {
 LOG.trace("Data changes : {}",changes);

 // handle data change notification
 Object[] subscribers = NeutronIAwareUtil.getInstances(INeutronNetworkAware.class, this);
 createNetwork(changes, subscribers);
 updateNetwork(changes, subscribers);
 deleteNetwork(changes, subscribers);
 }
}

Neutron configuration

From Boron, new models of configuration for OpenDaylight to tell
OpenStack neutron/networking-odl its configuration/capability.

hostconfig

This is for OpenDaylight to tell per-node configuration to Neutron.
Especially this is used by pseudo agent port binding heavily.

The model definition can be found at

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-hostconfig.yang;hb=refs/heads/stable/boron

How to populate this for pseudo agent port binding is documented at

	http://git.openstack.org/cgit/openstack/networking-odl/tree/doc/source/devref/hostconfig.rst

Neutron extension config

In Boron this is experimental. The model definition can be found at

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=model/src/main/yang/neutron-extensions.yang;hb=refs/heads/stable/boron

Each Neutron Service provider has its own feature set. Some support the
full features of OpenStack, but others support only a subset. With same
supported Neutron API, some functionality may or may not be supported.
So there is a need for a way that OpenDaylight can tell networking-odl
its capability. Thus networking-odl can initialize Neutron properly
based on reported capability.

Neutorn Logger

There is another small Karaf feature, odl-neutron-logger, which logs
changes of Neutron YANG models. which can be used for debug/audit.

It would also help to understand how to listen the change.

	https://git.opendaylight.org/gerrit/gitweb?p=neutron.git;a=blob;f=neutron-logger/src/main/java/org/opendaylight/neutron/logger/NeutronLogger.java;hb=refs/heads/stable/boron

API Reference Documentation

The OpenStack Neutron API references

	http://developer.openstack.org/api-ref-networking-v2.html

	http://developer.openstack.org/api-ref-networking-v2-ext.html

Neutron Northbound

How to add new API support

OpenStack Neutron is a moving target. It is continuously adding new
features as new rest APIs. Here is a basic step to add new API support:

In the Neutron Northbound project:

	Add new YANG model for it under neutron/model/src/main/yang and
update neutron.yang

	Add northbound API for it, and neutron-spi
	Implement Neutron<New API>Request.java and
Neutron<New API>Norhtbound.java under
neutron/northbound-api/src/main/java/org/opendaylight/neutron/northbound/api/

	Implement INeutron<New API>CRUD.java and new data structure if
any under
neutron/neutron-spi/src/main/java/org/opendaylight/neutron/spi/

	update
neutron/neutron-spi/src/main/java/org/opendaylight/neutron/spi/NeutronCRUDInterfaces.java
to wire new CRUD interface

	Add unit tests, Neutron<New structure>JAXBTest.java under
neutron/neutron-spi/src/test/java/org/opendaylight/neutron/spi/

	update
neutron/northbound-api/src/main/java/org/opendaylight/neutron/northbound/api/NeutronNorthboundRSApplication.java
to wire new northbound api to RSApplication

	Add transcriber, Neutron<New API>Interface.java under
transcriber/src/main/java/org/opendaylight/neutron/transcriber/

	update
transcriber/src/main/java/org/opendaylight/neutron/transcriber/NeutronTranscriberProvider.java
to wire a new transcriber
	Add integration tests Neutron<New API>Tests.java under
integration/test/src/test/java/org/opendaylight/neutron/e2etest/

	update
integration/test/src/test/java/org/opendaylight/neutron/e2etest/ITNeutronE2E.java
to run a newly added tests.

In OpenStack networking-odl

	Add new driver (or plugin) for new API with tests.

In a southbound Neutron Provider

	implement actual backend to realize those new API by listening
related YANG models.

How to write transcriber

For each Neutron data object, there is an Neutron*Interface defined
within the transcriber artifact that will write that object to the
MD-SAL configuration datastore.

All Neutron*Interface extend AbstractNeutronInterface, in which
two methods are defined:

	one takes the Neutron object as input, and will create a data object
from it.

	one takes an uuid as input, and will create a data object containing
the uuid.

protected abstract T toMd(S neutronObject);
protected abstract T toMd(String uuid);

In addition the AbstractNeutronInterface class provides several
other helper methods (addMd, updateMd, removeMd), which
handle the actual writing to the configuration datastore.

The semantics of the toMD() methods

Each of the Neutron YANG models defines structures containing data.
Further each YANG-modeled structure has it own builder. A particular
toMD() method instantiates an instance of the correct builder, fills
in the properties of the builder from the corresponding values of the
Neutron object and then creates the YANG-modeled structures via the
build() method.

As an example, one of the toMD code for Neutron Networks is
presented below:

protected Network toMd(NeutronNetwork network) {
 NetworkBuilder networkBuilder = new NetworkBuilder();
 networkBuilder.setAdminStateUp(network.getAdminStateUp());
 if (network.getNetworkName() != null) {
 networkBuilder.setName(network.getNetworkName());
 }
 if (network.getShared() != null) {
 networkBuilder.setShared(network.getShared());
 }
 if (network.getStatus() != null) {
 networkBuilder.setStatus(network.getStatus());
 }
 if (network.getSubnets() != null) {
 List<Uuid> subnets = new ArrayList<Uuid>();
 for(String subnet : network.getSubnets()) {
 subnets.add(toUuid(subnet));
 }
 networkBuilder.setSubnets(subnets);
 }
 if (network.getTenantID() != null) {
 networkBuilder.setTenantId(toUuid(network.getTenantID()));
 }
 if (network.getNetworkUUID() != null) {
 networkBuilder.setUuid(toUuid(network.getNetworkUUID()));
 } else {
 logger.warn("Attempting to write neutron network without UUID");
 }
 return networkBuilder.build();
}

NeXt Developer Guide

Please see the NeXt documentation and tutorials here: https://github.com/NeXt-UI/next-tutorials

ODL Parent Developer Guide

Parent POMs

Overview

The ODL Parent component for OpenDaylight provides a number of Maven
parent POMs which allow Maven projects to be easily integrated in the
OpenDaylight ecosystem. Technically, the aim of projects in OpenDaylight
is to produce Karaf features, and these parent projects provide common
support for the different types of projects involved.

These parent projects are:

	odlparent-lite — the basic parent POM for Maven modules which
don’t produce artifacts (e.g. aggregator POMs)

	odlparent — the common parent POM for Maven modules containing
Java code

	bundle-parent — the parent POM for Maven modules producing OSGi
bundles

	features-parent — the parent POM for Maven modules producing
Karaf features

odlparent-lite

This is the base parent for all OpenDaylight Maven projects and
modules. It provides the following, notably to allow publishing
artifacts to Maven Central:

	license information;

	organization information;

	issue management information (a link to our Bugzilla);

	continuous integration information (a link to our Jenkins setup);

	default Maven plugins (maven-clean-plugin,
maven-deploy-plugin, maven-install-plugin,
maven-javadoc-plugin with HelpMojo support,
maven-project-info-reports-plugin, maven-site-plugin with
Asciidoc support, jdepend-maven-plugin);

	distribution management information.

It also defines two profiles which help during development:

	q (-Pq), the quick profile, which disables tests, code
coverage, Javadoc generation, code analysis, etc. — anything which
isn’t necessary to build the bundles and features (see this blog
post [http://blog2.vorburger.ch/2016/06/improve-maven-build-speed-with-q.html]
for details);

	addInstallRepositoryPath
(-DaddInstallRepositoryPath=…/karaf/system) which can be used to
drop a bundle in the appropriate Karaf location, to enable
hot-reloading of bundles during development (see this blog
post [http://blog2.vorburger.ch/2016/06/maven-install-into-additional.html]
for details).

For modules which don’t produce any useful artifacts (e.g. aggregator
POMs), you should add the following to avoid processing artifacts:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-deploy-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-install-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 </plugins>
</build>

odlparent

This inherits from odlparent-lite and mainly provides dependency and
plugin management for OpenDaylight projects.

If you use any of the following libraries, you should rely on
odlparent to provide the appropriate versions:

	Akka (and Scala)

	
Apache Commons:

	commons-codec

	commons-fileupload

	commons-io

	commons-lang

	commons-lang3

	commons-net

	Apache Shiro

	Guava

	JAX-RS with Jersey

	
JSON processing:

	GSON

	Jackson

	
Logging:

	Logback

	SLF4J

	Netty

	
OSGi:

	Apache Felix

	core OSGi dependencies (core, compendium…)

	
Testing:

	Hamcrest

	JSON assert

	JUnit

	Mockito

	Pax Exam

	PowerMock

	
XML/XSL:

	Xerces

	XML APIs

Note

This list isn’t exhaustive. It’s also not cast in stone; if you’d
like to add a new dependency (or migrate a dependency), please
contact the mailing
list [https://lists.opendaylight.org/mailman/listinfo/odlparent-dev].

odlparent also enforces some Checkstyle verification rules. In
particular, it enforces the common license header used in all
OpenDaylight code:

/*
 * Copyright © ${year} ${holder} and others. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v1.0 which accompanies this distribution,
 * and is available at http://www.eclipse.org/legal/epl-v10.html
 */

where “${year}” is initially the first year of publication, then
(after a year has passed) the first and latest years of publication,
separated by commas (e.g. “2014, 2016”), and “${holder}” is
the initial copyright holder (typically, the first author’s employer).
“All rights reserved” is optional.

If you need to disable this license check, e.g. for files imported
under another license (EPL-compatible of course), you can override the
maven-checkstyle-plugin configuration. features-test does this
for its CustomBundleUrlStreamHandlerFactory class, which is
ASL-licensed:

<plugin>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <executions>
 <execution>
 <id>check-license</id>
 <goals>
 <goal>check</goal>
 </goals>
 <phase>process-sources</phase>
 <configuration>
 <configLocation>check-license.xml</configLocation>
 <headerLocation>EPL-LICENSE.regexp.txt</headerLocation>
 <includeResources>false</includeResources>
 <includeTestResources>false</includeTestResources>
 <sourceDirectory>${project.build.sourceDirectory}</sourceDirectory>
 <excludes>
 <!-- Skip Apache Licensed files -->
 org/opendaylight/odlparent/featuretest/CustomBundleUrlStreamHandlerFactory.java
 </excludes>
 <failsOnError>false</failsOnError>
 <consoleOutput>true</consoleOutput>
 </configuration>
 </execution>
 </executions>
</plugin>

bundle-parent

This inherits from odlparent and enables functionality useful for
OSGi bundles:

	maven-javadoc-plugin is activated, to build the Javadoc JAR;

	maven-source-plugin is activated, to build the source JAR;

	maven-bundle-plugin is activated (including extensions), to build
OSGi bundles (using the “bundle” packaging).

In addition to this, JUnit is included as a default dependency in “test”
scope.

features-parent

This inherits from odlparent and enables functionality useful for
Karaf features:

	karaf-maven-plugin is activated, to build Karaf features — but
for OpenDaylight, projects need to use “jar” packaging (not
“kar”);

	features.xml files are processed from templates stored in
src/main/features/features.xml;

	Karaf features are tested after build to ensure they can be activated
in a Karaf container.

The features.xml processing allows versions to be ommitted from
certain feature dependencies, and replaced with “{{version}}”.
For example:

<features name="odl-mdsal-${project.version}" xmlns="http://karaf.apache.org/xmlns/features/v1.2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://karaf.apache.org/xmlns/features/v1.2.0 http://karaf.apache.org/xmlns/features/v1.2.0">

 <repository>mvn:org.opendaylight.odlparent/features-odlparent/{{VERSION}}/xml/features</repository>

 [...]
 <feature name='odl-mdsal-broker-local' version='${project.version}' description="OpenDaylight :: MDSAL :: Broker">
 <feature version='${yangtools.version}'>odl-yangtools-common</feature>
 <feature version='${mdsal.version}'>odl-mdsal-binding-dom-adapter</feature>
 <feature version='${mdsal.model.version}'>odl-mdsal-models</feature>
 <feature version='${project.version}'>odl-mdsal-common</feature>
 <feature version='${config.version}'>odl-config-startup</feature>
 <feature version='${config.version}'>odl-config-netty</feature>
 <feature version='[3.3.0,4.0.0)'>odl-lmax</feature>
 [...]
 <bundle>mvn:org.opendaylight.controller/sal-dom-broker-config/{{VERSION}}</bundle>
 <bundle start-level="40">mvn:org.opendaylight.controller/blueprint/{{VERSION}}</bundle>
 <configfile finalname="${config.configfile.directory}/${config.mdsal.configfile}">mvn:org.opendaylight.controller/md-sal-config/{{VERSION}}/xml/config</configfile>
 </feature>

As illustrated, versions can be ommitted in this way for repository
dependencies, bundle dependencies and configuration files. They must be
specified traditionally (either hard-coded, or using Maven properties)
for feature dependencies.

Features

The ODL Parent component for OpenDaylight provides a number of Karaf
features which can be used by other Karaf features to use certain
third-party upstream dependencies.

These features are:

	
Akka features (in the features-akka repository):

	odl-akka-all — all Akka bundles;

	odl-akka-scala — Scala runtime for OpenDaylight;

	odl-akka-system — Akka actor framework bundles;

	odl-akka-clustering — Akka clustering bundles and
dependencies;

	odl-akka-leveldb — LevelDB;

	odl-akka-persistence — Akka persistence;

	general third-party features (in the features-odlparent
repository):

	odl-netty — all Netty bundles;

	odl-guava — Guava;

	odl-lmax — LMAX Disruptor.

To use these, you need to declare a dependency on the appropriate
repository in your features.xml file:

<repository>mvn:org.opendaylight.odlparent/features-odlparent/{{VERSION}}/xml/features</repository>

and then include the feature, e.g.:

<feature name='odl-mdsal-broker-local' version='${project.version}' description="OpenDaylight :: MDSAL :: Broker">
 [...]
 <feature version='[3.3.0,4.0.0)'>odl-lmax</feature>
 [...]
</feature>

You also need to depend on the features repository in your POM:

<dependency>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>features-odlparent</artifactId>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

assuming the appropriate dependency management:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>odlparent-artifacts</artifactId>
 <version>1.7.0-SNAPSHOT</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

(the version number there is appropriate for Boron). For the time being
you also need to depend separately on the individual JARs as
compile-time dependencies to build your dependent code; the relevant
dependencies are managed in odlparent‘s dependency management.

The suggested version ranges are as follows:

	odl-netty: [4.0.37,4.1.0) or [4.0.37,5.0.0);

	odl-guava: [18,19) (if your code is ready for it, [19,20)
is also available, but the current default version of Guava in
OpenDaylight is 18);

	odl-lmax: [3.3.4,4.0.0)

OCP Plugin Developer Guide

This document is intended for both OCP (ORI [Open Radio Interface] C&M
[Control and Management] Protocol) agent developers and OpenDaylight
service/application developers. It describes essential information
needed to implement an OCP agent that is capable of interoperating with
the OCP plugin running in OpenDaylight, including the OCP connection
establishment and state machines used on both ends of the connection. It
also provides a detailed description of the northbound/southbound APIs
that the OCP plugin exposes to allow automation and programmability.

Overview

OCP is an ETSI standard protocol for control and management of Remote
Radio Head (RRH) equipment. The OCP Project addresses the need for a
southbound plugin that allows applications and controller services to
interact with RRHs using OCP. The OCP southbound plugin will allow
applications acting as a Radio Equipment Control (REC) to interact with
RRHs that support an OCP agent.

[image: OCP southbound plugin]
OCP southbound plugin

Architecture

OCP is a vendor-neutral standard communications interface defined to
enable control and management between RE and REC of an ORI architecture.
The OCP Plugin supports the implementation of the OCP specification; it
is based on the Model Driven Service Abstraction Layer (MD-SAL)
architecture.

The OCP Plugin project consists of three main components: OCP southbound
plugin, OCP protocol library and OCP service. For details on each of
them, refer to the OCP Plugin User Guide.

[image: Overall architecture]
Overall architecture

Connection Establishment

The OCP layer is transported over a TCP/IP connection established
between the RE and the REC. OCP provides the following functions:

	Control & Management of the RE by the REC

	Transport of AISG/3GPP Iuant Layer 7 messages and alarms between REC
and RE

Hello Message

Hello message is used by the OCP agent during connection setup. It is
used for version negotiation. When the connection is established, the
OCP agent immediately sends a Hello message with the version field set
to highest OCP version supported by itself, along with the verdor ID and
serial number of the radio head it is running on.

The combinaiton of the verdor ID and serial number will be used by the
OCP plugin to uniquely identify a managed radio head. When not receiving
reply from the OCP plugin, the OCP agent can resend Hello message with
pre-defined Hello timeout (THLO) and Hello resend times (NHLO).

According to ORI spec, the default value of TCP Link Monitoring Timer
(TTLM) is 50 seconds. The RE shall trigger an OCP layer restart while
TTLM expires in RE or the RE detects a TCP link failure. So we may
define NHLO * THLO = 50 seconds (e.g. NHLO = 10, THLO = 5 seconds).

By nature the Hello message is a new type of indication, and it contains
supported OCP version, vendor ID and serial number as shown below.

Hello message.

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://uri.etsi.org/ori/002-2/v4.1.1">
 <header>
 <msgType>IND</msgType>
 <msgUID>0</msgUID>
 </header>
 <body>
 <helloInd>
 <version>4.1.1</version>
 <vendorId>XYZ</vendorId>
 <serialNumber>ABC123</serialNumber>
 </helloInd>
 </body>
</msg>

Ack Message

Hello from the OCP agent will always make the OCP plugin respond with
ACK. In case everything is OK, it will be ACK(OK). In case something is
wrong, it will be ACK(FAIL).

If the OCP agent receives ACK(OK), it goes to Established state. If the
OCP agent receives ACK(FAIL), it goes to Maintenance state. The failure
code and reason of ACK(FAIL) are defined as below:

	FAIL_OCP_VERSION (OCP version not supported)

	FAIL_NO_MORE_CAPACITY (OCP plugin cannot control any more radio
heads)

The result inside Ack message indicates OK or FAIL with different
reasons.

Ack message.

<?xml version="1.0" encoding="UTF-8"?>
<msg xmlns="http://uri.etsi.org/ori/002-2/v4.1.1">
 <header>
 <msgType>ACK</msgType>
 <msgUID>0</msgUID>
 </header>
 <body>
 <helloAck>
 <result>FAIL_OCP_VERSION</result>
 </helloAck>
 </body>
</msg>

State Machines

The following figures illustrate the Finite State Machine (FSM) of the
OCP agent and OCP plugin for new connection procedure.

[image: OCP agent state machine]
OCP agent state machine

[image: OCP plugin state machine]
OCP plugin state machine

Northbound APIs

There are ten exposed northbound APIs: health-check, set-time, re-reset,
get-param, modify-param, create-obj, delete-obj, get-state, modify-state
and get-fault

health-check

The Health Check procedure allows the application to verify that the OCP
layer is functioning correctly at the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:health-check-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required
?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	tcpLinkMonTimeout
	unsigned
Short
	TCP Link
Monitoring Timeout
(unit: seconds)
	50
	Yes

Example.

{
 "health-check-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "tcpLinkMonTimeout": "50"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	result
	String, enumerated
	Common default result codes

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

set-time

The Set Time procedure allows the application to set/update the absolute
time reference that shall be used by the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:set-time-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	newTime
	dateTime
	New datetime setting
for radio head
	2016-04-26T10:23:00-
05:00
	Yes

Example.

{
 "set-time-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "newTime": "2016-04-26T10:23:00-05:00"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	result
	String, enumerated
	Common default result codes +
FAIL_INVALID_TIMEDATA

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

re-reset

The RE Reset procedure allows the application to reset a specific RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:re-reset-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

Example.

{
 "re-reset-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	result
	String, enumerated
	Common default result codes

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

get-param

The Object Parameter Reporting procedure allows the application to
retrieve the following information:

	the defined object types and instances within the Resource Model of
the RE

	the values of the parameters of the objects

Default URL:
http://localhost:8181/restconf/operations/ocp-service:get-param-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objId
	String
	Object ID
	RxSigPath_5G:1
	Yes

	paramName
	String
	Parameter name
	dataLink
	Yes

Example.

{
 "get-param-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RxSigPath_5G:1",
 "paramName": "dataLink"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	id
	String
	Object ID

	name
	String
	Object parameter name

	value
	String
	Object parameter value

	result
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_PARAM”

Example.

{
 "output": {
 "obj": [
 {
 "id": "RxSigPath_5G:1",
 "param": [
 {
 "name": "dataLink",
 "value": "dataLink:1"
 }
]
 }
],
 "result": "SUCCESS"
 }
}

modify-param

The Object Parameter Modification procedure allows the application to
configure the values of the parameters of the objects identified by the
Resource Model.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:modify-param-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objId
	String
	Object ID
	RxSigPath_5G:1
	Yes

	name
	String
	Object parameter
name
	dataLink
	Yes

	value
	String
	Object parameter
value
	dataLink:1
	Yes

Example.

{
 "modify-param-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RxSigPath_5G:1",
 "param": [
 {
 "name": "dataLink",
 "value": "dataLink:1"
 }
]
 }
 }
}

POST Output

	Field Name
	Type
	Description

	objId
	String
	Object ID

	globResult
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_PARAMETER_FAIL”,
“FAIL_NOSUCH_RESOURCE”

	name
	String
	Object parameter name

	result
	String, enumerated
	“SUCCESS”, “FAIL_UNKNOWN_PARAM”,
“FAIL_PARAM_READONLY”,
“FAIL_PARAM_LOCKREQUIRED”,
“FAIL_VALUE_OUTOF_RANGE”,
“FAIL_VALUE_TYPE_ERROR”

Example.

{
 "output": {
 "objId": "RxSigPath_5G:1",
 "globResult": "SUCCESS",
 "param": [
 {
 "name": "dataLink",
 "result": "SUCCESS"
 }
]
 }
}

create-obj

The Object Creation procedure allows the application to create and
initialize a new instance of the given object type on the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:create-obj-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objType
	String
	Object type
	RxSigPath_5G
	Yes

	name
	String
	Object parameter
name
	dataLink
	No

	value
	String
	Object parameter
value
	dataLink:1
	No

Example.

{
 "create-obj-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objType": "RxSigPath_5G",
 "param": [
 {
 "name": "dataLink",
 "value": "dataLink:1"
 }
]
 }
 }
}

POST Output

	Field Name
	Type
	Description

	objId
	String
	Object ID

	globResult
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJTYPE”,
“FAIL_STATIC_OBJTYPE”,
“FAIL_UNKNOWN_OBJECT”,
“FAIL_CHILD_NOTALLOWED”,
“FAIL_OUTOF_RESOURCES”
“FAIL_PARAMETER_FAIL”,
“FAIL_NOSUCH_RESOURCE”

	name
	String
	Object parameter name

	result
	String, enumerated
	“SUCCESS”, “FAIL_UNKNOWN_PARAM”,
“FAIL_PARAM_READONLY”,
“FAIL_PARAM_LOCKREQUIRED”,
“FAIL_VALUE_OUTOF_RANGE”,
“FAIL_VALUE_TYPE_ERROR”

Example.

{
 "output": {
 "objId": "RxSigPath_5G:0",
 "globResult": "SUCCESS",
 "param": [
 {
 "name": "dataLink",
 "result": "SUCCESS"
 }
]
 }
}

delete-obj

The Object Deletion procedure allows the application to delete a given
object instance and recursively its entire child objects on the RE.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:delete-obj-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objId
	String
	Object ID
	RxSigPath_5G:1
	Yes

Example.

{
 "delete-obj-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "obj-id": "RxSigPath_5G:0"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	result
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_STATIC_OBJTYPE”,
“FAIL_LOCKREQUIRED”

Example.

{
 "output": {
 "result": "SUCCESS"
 }
}

get-state

The Object State Reporting procedure allows the application to acquire
the current state (for the requested state type) of one or more objects
of the RE resource model, and additionally configure event-triggered
reporting of the detected state changes for all state types of the
indicated objects.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:get-state-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required
?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objId
	String
	Object ID
	RxSigPath_5G:1
	Yes

	stateType
	String,
enumerat
ed
	Valid values:
“AST”, “FST”,
“ALL”
	ALL
	Yes

	eventDrivenReporti
ng
	Boolean
	Event-triggered
reporting of state
change
	true
	Yes

Example.

{
 "get-state-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "antPort:0",
 "stateType": "ALL",
 "eventDrivenReporting": "true"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	id
	String
	Object ID

	type
	String, enumerated
	State type. Valid values: “AST”,
“FST

	value
	String, enumerated
	State value. Valid values: For state
type = “AST”: “LOCKED”, “UNLOCKED”.
For state type = “FST”:
“PRE_OPERATIONAL”, “OPERATIONAL”,
“DEGRADED”, “FAILED”,
“NOT_OPERATIONAL”, “DISABLED”

	result
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_STATETYPE”,
“FAIL_VALUE_OUTOF_RANGE”

Example.

{
 "output": {
 "obj": [
 {
 "id": "antPort:0",
 "state": [
 {
 "type": "FST",
 "value": "DISABLED"
 },
 {
 "type": "AST",
 "value": "LOCKED"
 }
]
 }
],
 "result": "SUCCESS"
 }
}

modify-state

The Object State Modification procedure allows the application to
trigger a change in the state of an object of the RE Resource Model.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:modify-state-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objId
	String
	Object ID
	RxSigPath_5G:1
	Yes

	stateType
	String,
enumerated
	Valid values: “AST”,
“FST”, “ALL”
	AST
	Yes

	stateValue
	String,
enumerated
	Valid values: For
state type = “AST”:
“LOCKED”,
“UNLOCKED”. For
state type = “FST”:
“PRE_OPERATIONAL”,
“OPERATIONAL”,
“DEGRADED”,
“FAILED”,
“NOT_OPERATIONAL”,
“DISABLED”
	LOCKED
	Yes

Example.

{
 "modify-state-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RxSigPath_5G:1",
 "stateType": "AST",
 "stateValue": "LOCKED"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	objId
	String
	Object ID

	stateType
	String, enumerated
	State type. Valid values: “AST”,
“FST

	stateValue
	String, enumerated
	State value. Valid values: For state
type = “AST”: “LOCKED”, “UNLOCKED”.
For state type = “FST”:
“PRE_OPERATIONAL”, “OPERATIONAL”,
“DEGRADED”, “FAILED”,
“NOT_OPERATIONAL”, “DISABLED”

	result
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_UNKNOWN_STATETYPE”,
“FAIL_UNKNOWN_STATEVALUE”,
“FAIL_STATE_READONLY”,
“FAIL_RESOURCE_UNAVAILABLE”,
“FAIL_RESOURCE_INUSE”,
“FAIL_PARENT_CHILD_CONFLICT”,
“FAIL_PRECONDITION_NOTMET

Example.

{
 "output": {
 "objId": "RxSigPath_5G:1",
 "stateType": "AST",
 "stateValue": "LOCKED",
 "result": "SUCCESS",
 }
}

get-fault

The Fault Reporting procedure allows the application to acquire
information about all current active faults associated with a primary
object, as well as configure the RE to report when the fault status
changes for any of faults associated with the indicated primary object.

Default URL:
http://localhost:8181/restconf/operations/ocp-service:get-fault-nb

POST Input

	Field Name
	Type
	Description
	Example
	Required?

	nodeId
	String
	Inventory node
reference for OCP
radio head
	ocp:MTI-101-200
	Yes

	objId
	String
	Object ID
	RE:0
	Yes

	eventDrive
nReporting
	Boolean
	Event-triggered
reporting of fault
	true
	Yes

Example.

{
 "get-fault-nb": {
 "input": {
 "nodeId": "ocp:MTI-101-200",
 "objId": "RE:0",
 "eventDrivenReporting": "true"
 }
 }
}

POST Output

	Field Name
	Type
	Description

	result
	String, enumerated
	Common default result codes +
“FAIL_UNKNOWN_OBJECT”,
“FAIL_VALUE_OUTOF_RANGE”

	id (obj)
	String
	Object ID

	id (fault)
	String
	Fault ID

	severity
	String
	Fault severity

	timestamp
	dateTime
	Time stamp

	descr
	String
	Text description

	affectedObj
	String
	Affected object

Example.

{
 "output": {
 "result": "SUCCESS",
 "obj": [
 {
 "id": "RE:0",
 "fault": [
 {
 "id": "FAULT_OVERTEMP",
 "severity": "DEGRADED",
 "timestamp": "2012-02-12T16:35:00",
 "descr": "PA temp too high; Pout reduced",
 "affectedObj": [
 "TxSigPath_EUTRA:0",
 "TxSigPath_EUTRA:1"
]
 },
 {
 "id": "FAULT_VSWR_OUTOF_RANGE",
 "severity": "WARNING",
 "timestamp": "2012-02-12T16:01:05",
 }
]
 }
],
 }
}

Note

The northbound APIs described above wrap the southbound APIs to make
them accessible to external applications via RESTCONF, as well as
take care of synchronizing the RE resource model between radio heads
and the controller’s datastore. See
applications/ocp-service/src/main/yang/ocp-resourcemodel.yang for
the yang representation of the RE resource model.

Java Interfaces (Southbound APIs)

The southbound APIs provide concrete implementation of the following OCP
elementary functions: health-check, set-time, re-reset, get-param,
modify-param, create-obj, delete-obj, get-state, modify-state and
get-fault. Any OpenDaylight services/applications (of course, including
OCP service) wanting to speak OCP to radio heads will need to use them.

SalDeviceMgmtService

Interface SalDeviceMgmtService defines three methods corresponding to
health-check, set-time and re-reset.

SalDeviceMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.device.mgmt.rev150811;

public interface SalDeviceMgmtService
 extends
 RpcService
{

 Future<RpcResult<HealthCheckOutput>> healthCheck(HealthCheckInput input);

 Future<RpcResult<SetTimeOutput>> setTime(SetTimeInput input);

 Future<RpcResult<ReResetOutput>> reReset(ReResetInput input);

}

SalConfigMgmtService

Interface SalConfigMgmtService defines two methods corresponding to
get-param and modify-param.

SalConfigMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.config.mgmt.rev150811;

public interface SalConfigMgmtService
 extends
 RpcService
{

 Future<RpcResult<GetParamOutput>> getParam(GetParamInput input);

 Future<RpcResult<ModifyParamOutput>> modifyParam(ModifyParamInput input);

}

SalObjectLifecycleService

Interface SalObjectLifecycleService defines two methods corresponding to
create-obj and delete-obj.

SalObjectLifecycleService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.lifecycle.rev150811;

public interface SalObjectLifecycleService
 extends
 RpcService
{

 Future<RpcResult<CreateObjOutput>> createObj(CreateObjInput input);

 Future<RpcResult<DeleteObjOutput>> deleteObj(DeleteObjInput input);

}

SalObjectStateMgmtService

Interface SalObjectStateMgmtService defines two methods corresponding to
get-state and modify-state.

SalObjectStateMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.state.mgmt.rev150811;

public interface SalObjectStateMgmtService
 extends
 RpcService
{

 Future<RpcResult<GetStateOutput>> getState(GetStateInput input);

 Future<RpcResult<ModifyStateOutput>> modifyState(ModifyStateInput input);

}

SalFaultMgmtService

Interface SalFaultMgmtService defines only one method corresponding to
get-fault.

SalFaultMgmtService.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.fault.mgmt.rev150811;

public interface SalFaultMgmtService
 extends
 RpcService
{

 Future<RpcResult<GetFaultOutput>> getFault(GetFaultInput input);

}

Notifications

In addition to indication messages, the OCP southbound plugin will
translate specific events (e.g., connect, disconnect) coming up from the
OCP protocol library into MD-SAL Notification objects and then publish
them to the MD-SAL. Also, the OCP service will notify the completion of
certain operation via Notification as well.

SalDeviceMgmtListener

An onDeviceConnected Notification will be published to the MD-SAL as
soon as a radio head is connected to the controller, and when that radio
head is disconnected the OCP southbound plugin will publish an
onDeviceDisconnected Notification in response to the disconnect event
propagated from the OCP protocol library.

SalDeviceMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.device.mgmt.rev150811;

public interface SalDeviceMgmtListener
 extends
 NotificationListener
{

 void onDeviceConnected(DeviceConnected notification);

 void onDeviceDisconnected(DeviceDisconnected notification);

}

OcpServiceListener

The OCP service will publish an onAlignmentCompleted Notification to the
MD-SAL once it has completed the OCP alignment procedure with the radio
head.

OcpServiceListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.params.xml.ns.yang.ocp.applications.ocp.service.rev150811;

public interface OcpServiceListener
 extends
 NotificationListener
{

 void onAlignmentCompleted(AlignmentCompleted notification);

}

SalObjectStateMgmtListener

When receiving a state change indication message, the OCP southbound
plugin will propagate the indication message to upper layer
services/applications by publishing a corresponding onStateChangeInd
Notification to the MD-SAL.

SalObjectStateMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.object.state.mgmt.rev150811;

public interface SalObjectStateMgmtListener
 extends
 NotificationListener
{

 void onStateChangeInd(StateChangeInd notification);

}

SalFaultMgmtListener

When receiving a fault indication message, the OCP southbound plugin
will propagate the indication message to upper layer
services/applications by publishing a corresponding onFaultInd
Notification to the MD-SAL.

SalFaultMgmtListener.java.

package org.opendaylight.yang.gen.v1.urn.opendaylight.ocp.fault.mgmt.rev150811;

public interface SalFaultMgmtListener
 extends
 NotificationListener
{

 void onFaultInd(FaultInd notification);

}

ODL-SDNi Developer Guide

Overview

This project aims at enabling inter-SDN controller communication by
developing SDNi (Software Defined Networking interface) as an
application (ODL-SDNi App).

ODL-SDNi Architecture

	SDNi Aggregator: Northbound SDNi plugin acts as an aggregator for
collecting network information such as topology, stats, host etc.
This plugin can be evolving as per needs of network data requested to
be shared across federated SDN controllers.

	SDNi API: API view autogenerated and accessible through RESTCONF to
fetch the aggregated information from the northbound plugin – SDNi
aggregator.The RESTCONF protocol operates on a conceptual datastore
defined with the YANG data modeling language.

	SDNi Wrapper: SDNi BGP Wrapper will be responsible for the sharing
and collecting information to/from federated controllers.

	SDNi UI:This component displays the SDN controllers connected to each
other.

SDNi Aggregator

	SDNiAggregator connects with the Base Network Service Functions of
the controller. Currently it is querying network topology through
MD-SAL for creating SDNi network capability.

	SDNiAggregator is customized to retrieve the host controller’s
details, while running the controller in cluster mode. Rest of the
northbound APIs of controller will retrieve the entire topology
information of all the connected controllers.

	The SDNiAggregator creates a topology structure.This structure is
populated by the various network funtions.

SDNi API

Topology and QoS data is fetched from SDNiAggregator through RESTCONF.

http://${controlleripaddress}:8181/apidoc/explorer/index.html

http://${ipaddress}:8181/restconf/operations/opendaylight-sdni-topology-msg:getAllPeerTopology

Peer Topology Data: Controller IP Address, Links, Nodes, Link
Bandwidths, MAC Address of switches, Latency, Host IP address.

http://${ipaddress}:8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-node-connectors-statistics

QOS Data: Node, Port, Transmit Packets, Receive Packets, Collision
Count, Receive Frame Error, Receive Over Run Error, Receive Crc Error

http://${ipaddress}:8181/restconf/operations/opendaylight-sdni-qos-msg:get-all-peer-node-connectors-statistics

Peer QOS Data: Node, Port, Transmit Packets, Receive Packets,
Collision Count, Receive Frame Error, Receive Over Run Error, Receive
Crc Error

SDNi Wrapper

[image: SDNiWrapper]
SDNiWrapper

	SDNiWrapper is an extension of ODL-BGPCEP where SDNi topology data is
exchange along with the Update NLRI message. Refer
http://tools.ietf.org/html/draft-ietf-idr-ls-distribution-04 for more
information on NLRI.

	SDNiWrapper gets the controller’s network capabilities through SDNi
Aggregator and serialize it in Update NLRI message. This NLRI message
will get exchange between the clustered controllers through
BGP-UPDATE message. Similarly peer controller’s UPDATE message is
received and unpacked then format to SDNi Network capability data,
which will be stored for further purpose.

SDNi UI

This component displays the SDN controllers connected to each other.

http://localhost:8181/index.html#/sdniUI/sdnController

API Reference Documentation

Go to
http://${controlleripaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the opendaylight-sdni panel. From there, users can
execute various API calls to test their SDNi deployment.

OF-CONFIG Developer Guide

Overview

OF-CONFIG defines an OpenFlow switch as an abstraction called an
OpenFlow Logical Switch. The OF-CONFIG protocol enables configuration of
essential artifacts of an OpenFlow Logical Switch so that an OpenFlow
controller can communicate and control the OpenFlow Logical switch via
the OpenFlow protocol. OF-CONFIG introduces an operating context for one
or more OpenFlow data paths called an OpenFlow Capable Switch for one or
more switches. An OpenFlow Capable Switch is intended to be equivalent
to an actual physical or virtual network element (e.g. an Ethernet
switch) which is hosting one or more OpenFlow data paths by partitioning
a set of OpenFlow related resources such as ports and queues among the
hosted OpenFlow data paths. The OF-CONFIG protocol enables dynamic
association of the OpenFlow related resources of an OpenFlow Capable
Switch with specific OpenFlow Logical Switches which are being hosted on
the OpenFlow Capable Switch. OF-CONFIG does not specify or report how
the partitioning of resources on an OpenFlow Capable Switch is achieved.
OF-CONFIG assumes that resources such as ports and queues are
partitioned amongst multiple OpenFlow Logical Switches such that each
OpenFlow Logical Switch can assume full control over the resources that
is assigned to it.

How to start

	start OF-CONFIG feature as below:

feature:install odl-of-config-all

Compatible with NETCONF

	Config OpenFlow Capable Switch via OpenFlow Configuration Points

Method: POST

URI:
http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/controller-config/yang-ext:mount/config:modules

Headers: Content-Type” and “Accept” header attributes set to
application/xml

Payload:

<module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type>
 <name>testtool</name>
 <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">10.74.151.67</address>
 <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">830</port>
 <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">mininet</username>
 <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">mininet</password>
 <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only>
 <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type>
 <name>global-event-executor</name>
 </event-executor>
 <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-registry>
 <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type>
 <name>dom-broker</name>
 </dom-registry>
 <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type>
 <name>global-netconf-dispatcher</name>
 </client-dispatcher>
 <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool">prefix:threadpool</type>
 <name>global-netconf-processing-executor</name>
 </processing-executor>
</module>

	NETCONF establishes the connections with OpenFlow Capable Switches
using the parameters in the previous step. NETCONF also gets the
information of whether the OpenFlow Switch supports NETCONF during
the signal handshaking. The information will be stored in the NETCONF
topology as prosperity of a node.

	OF-CONFIG can be aware of the switches accessing and leaving by
monitoring the data changes in the NETCONF topology. For the detailed
information it can be refered to the
implementation [https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob_plain;f=southbound/southbound-impl/src/main/java/org/opendaylight/ofconfig/southbound/impl/OdlOfconfigApiServiceImpl.java;hb=refs/heads/stable/boron].

The establishment of OF-CONFIG topology

Firstly, OF-CONFIG will check whether the newly accessed switch supports
OF-CONFIG by querying the NETCONF interface.

	During the NETCONF connection’s establishment, the NETCONF and the
switches will exchange the their capabilities via the “hello”
message.

	OF-CONFIG gets the connection information between the NETCONF and
switches by monitoring the data changes via the interface of
DataChangeListener.

	After the NETCONF connection established, the OF-CONFIG module will
check whether OF-CONFIG capability is in the switch’s capabilities
list which is got in step 1.

	If the result of step 3 is yes, the OF-CONFIG will call the following
processing steps to create the topology database.

For the detailed information it can be referred to the
implementation [https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob_plain;f=southbound/southbound-impl/src/main/java/org/opendaylight/ofconfig/southbound/impl/listener/OfconfigListenerHelper.java;hb=refs/heads/stable/boron].

Secondly, the capable switch node and logical switch node are added in
the OF-CONFIG topology if the switch supports OF-CONFIG.

OF-CONFIG’s topology compromise: Capable Switch topology (underlay) and
logical Switch topology (overlay). Both of them are enhanced (augment)
on

/topo:network-topology/topo:topology/topo:node

The NETCONF will add the nodes in the Topology via the path of
“/topo:network-topology/topo:topology/topo:node” if it gets the
configuration information of the switches.

For the detailed information it can be referred to the
implementation [https://git.opendaylight.org/gerrit/gitweb?p=of-config.git;a=blob;f=southbound/southbound-api/src/main/yang/odl-ofconfig-topology.yang;h=dbdaec46ee59da3791386011f571d7434dd1e416;hb=refs/heads/stable/boron].

OpenFlow Protocol Library Developer Guide

Introduction

OpenFlow Protocol Library is component in OpenDaylight, that mediates
communication between OpenDaylight controller and hardware devices
supporting OpenFlow protocol. Primary goal is to provide user (or upper
layers of OpenDaylight) communication channel, that can be used for
managing network hardware devices.

Features Overview

There are three features inside openflowjava:

	odl-openflowjava-protocol provides all openflowjava bundles, that
are needed for communication with openflow devices. It ensures
message translation and handles network connections. It also provides
openflow protocol specific model.

	odl-openflowjava-all currently contains only
odl-openflowjava-protocol feature.

	odl-openflowjava-stats provides mechanism for message counting
and reporting. Can be used for performance analysis.

odl-openflowjava-protocol Architecture

Basic bundles contained in this feature are openflow-protocol-api,
openflow-protocol-impl, openflow-protocol-spi and util.

	openflow-protocol-api - contains openflow model, constants and
keys used for (de)serializer registration.

	openflow-protocol-impl - contains message factories, that
translate binary messages into DataObjects and vice versa. Bundle
also contains network connection handlers - servers, netty pipeline
handlers, …

	openflow-protocol-spi - entry point for openflowjava
configuration, startup and close. Basically starts implementation.

	util - utility classes for binary-Java conversions and to ease
experimenter key creation

odl-openflowjava-stats Feature

Runs over odl-openflowjava-protocol. It counts various message types /
events and reports counts in specified time periods. Statistics
collection can be configured in
openflowjava-config/src/main/resources/45-openflowjava-stats.xml

Key APIs and Interfaces

Basic API / SPI classes are ConnectionAdapter (Rpc/notifications) and
SwitchConnectionProcider (configure, start, shutdown)

Installation

Pull the code and import project into your IDE.

git clone ssh://<username>@git.opendaylight.org:29418/openflowjava.git

Configuration

Current implementation allows to configure:

	listening port (mandatory)

	transfer protocol (mandatory)

	switch idle timeout (mandatory)

	TLS configuration (optional)

	thread count (optional)

You can find exemplary Openflow Protocol Library instance configuration
below:

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <!-- default OF-switch-connection-provider (port 6633) -->
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
<!-- Possible transport-protocol options: TCP, TLS, UDP -->
 <transport-protocol>TCP</transport-protocol>
 <switch-idle-timeout>15000</switch-idle-timeout>
<!-- Exemplary TLS configuration:
 - uncomment the <tls> tag
 - copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem
 files into your virtual machine
 - set VM encryption options to use copied keys
 - start communication
 Please visit OpenflowPlugin or Openflow Protocol Library#Documentation wiki pages
 for detailed information regarding TLS -->
<!-- <tls>
 <keystore>/exemplary-ctlKeystore</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>CLASSPATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>/exemplary-ctlTrustStore</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>CLASSPATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to adjust default thread model -->
<!-- <threads>
 <boss-threads>2</boss-threads>
 <worker-threads>8</worker-threads>
 </threads> -->
 </module>

 <!-- default OF-switch-connection-provider (port 6653) -->
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
<!-- Possible transport-protocol options: TCP, TLS, UDP -->
 <transport-protocol>TCP</transport-protocol>
 <switch-idle-timeout>15000</switch-idle-timeout>
<!-- Exemplary TLS configuration:
 - uncomment the <tls> tag
 - copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and exemplary-cacert.pem
 files into your virtual machine
 - set VM encryption options to use copied keys
 - start communication
 Please visit OpenflowPlugin or Openflow Protocol Library#Documentation wiki pages
 for detailed information regarding TLS -->
<!-- <tls>
 <keystore>/exemplary-ctlKeystore</keystore>
 <keystore-type>JKS</keystore-type>
 <keystore-path-type>CLASSPATH</keystore-path-type>
 <keystore-password>opendaylight</keystore-password>
 <truststore>/exemplary-ctlTrustStore</truststore>
 <truststore-type>JKS</truststore-type>
 <truststore-path-type>CLASSPATH</truststore-path-type>
 <truststore-password>opendaylight</truststore-password>
 <certificate-password>opendaylight</certificate-password>
 </tls> -->
<!-- Exemplary thread model configuration. Uncomment <threads> tag below to adjust default thread model -->
<!-- <threads>
 <boss-threads>2</boss-threads>
 <worker-threads>8</worker-threads>
 </threads> -->
 </module>

 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-provider-impl</type>
 <name>openflow-provider-impl</name>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-default</name>
 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>
 <binding-aware-broker>
 <type xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
</modules>

Possible transport-protocol options:

	TCP

	TLS

	UDP

Switch-idle timeout specifies time needed to detect idle state of
switch. When no message is received from switch within this time, upper
layers are notified on switch idleness. To be able to use this exemplary
TLS configuration:

	uncomment the <tls> tag

	copy exemplary-switch-privkey.pem, exemplary-switch-cert.pem and
exemplary-cacert.pem files into your virtual machine

	set VM encryption options to use copied keys (please visit TLS
support wiki page for detailed information regarding TLS)

	start communication

Thread model configuration specifies how many threads are desired to
perform Netty’s I/O operations.

	boss-threads specifies the number of threads that register incoming
connections

	worker-threads specifies the number of threads performing read /
write (+ serialization / deserialization) operations.

Architecture

Public API (openflow-protocol-api)

Set of interfaces and builders for immutable data transfer objects
representing Openflow Protocol structures.

Transfer objects and service APIs are infered from several YANG models
using code generator to reduce verbosity of definition and repeatibility
of code.

The following YANG modules are defined:

	openflow-types - defines common Openflow specific types

	openflow-instruction - defines base Openflow instructions

	openflow-action - defines base Openflow actions

	openflow-augments - defines object augmentations

	openflow-extensible-match - defines Openflow OXM match

	openflow-protocol - defines Openflow Protocol messages

	system-notifications - defines system notification objects

	openflow-configuration - defines structures used in ConfigSubsystem

This modules also reuse types from following YANG modules:

	ietf-inet-types - IP adresses, IP prefixes, IP-protocol related types

	ietf-yang-types - Mac Address, etc.

The use of predefined types is to make APIs contracts more safe, better
readable and documented (e.g using MacAddress instead of byte array…)

TCP Channel pipeline (openflow-protocol-impl)

Creates channel processing pipeline based on configuration and support.

TCP Channel pipeline.

imageopenflowjava/500px-TCPChannelPipeline.png[width=500]

Switch Connection Provider.

Implementation of connection point for other projects. Library exposes
its functionality through this class. Library can be configured, started
and shutdowned here. There are also methods for custom (de)serializer
registration.

Tcp Connection Initializer.

In order to initialize TCP connection to a device (switch), OF Plugin
calls method initiateConnection() in SwitchConnectionProvider.
This method in turn initializes (Bootstrap) server side channel towards
the device.

TCP Handler.

Represents single server that is handling incoming connections over TCP
/ TLS protocol. TCP Handler creates a single instance of TCP Channel
Initializer that will initialize channels. After that it binds to
configured InetAddress and port. When a new device connects, TCP Handler
registers its channel and passes control to TCP Channel Initializer.

TCP Channel Initializer.

This class is used for channel initialization / rejection and passing
arguments. After a new channel has been registered it calls Switch
Connection Handler’s (OF Plugin) accept method to decide if the library
should keep the newly registered channel or if the channel should be
closed. If the channel has been accepted, TCP Channel Initializer
creates the whole pipeline with needed handlers and also with
ConnectionAdapter instance. After the channel pipeline is ready, Switch
Connection Handler is notified with onConnectionReady notification.
OpenFlow Plugin can now start sending messages downstream.

Idle Handler.

If there are no messages received for more than time specified, this
handler triggers idle state notification. The switch idle timeout is
received as a parameter from ConnectionConfiguration settings. Idle
State Handler is inactive while there are messages received within the
switch idle timeout. If there are no messages received for more than
timeout specified, handler creates SwitchIdleEvent message and sends it
upstream.

TLS Handler.

It encrypts and decrypts messages over TLS protocol. Engaging TLS
Handler into pipeline is matter of configuration (<tls> tag). TLS
communication is either unsupported or required. TLS Handler is
represented as a Netty’s SslHandler.

OF Frame Decoder.

Parses input stream into correct length message frames for further
processing. Framing is based on Openflow header length. If received
message is shorter than minimal length of OpenFlow message (8 bytes), OF
Frame Decoder waits for more data. After receiving at least 8 bytes the
decoder checks length in OpenFlow header. If there are still some bytes
missing, the decoder waits for them. Else the OF Frame Decoder sends
correct length message to next handler in the channel pipeline.

OF Version Detector.

Detects version of used OpenFlow Protocol and discards unsupported
version messages. If the detected version is supported, OF Version
Detector creates VersionMessageWrapper object containing the
detected version and byte message and sends this object upstream.

OF Decoder.

Chooses correct deserilization factory (based on message type) and
deserializes messages into generated DTOs (Data Transfer Object). OF
Decoder receives VersionMessageWrapper object and passes it to
DeserializationFactory which will return translated DTO.
DeserializationFactory creates MessageCodeKey object with
version and type of received message and Class of object that will be
the received message deserialized into. This object is used as key when
searching for appropriate decoder in DecoderTable. DecoderTable
is basically a map storing decoders. Found decoder translates received
message into DTO. If there was no decoder found, null is returned. After
returning translated DTO back to OF Decoder, the decoder checks if it is
null or not. When the DTO is null, the decoder logs this state and
throws an Exception. Else it passes the DTO further upstream. Finally,
the OF Decoder releases ByteBuf containing received and decoded byte
message.

OF Encoder.

Chooses correct serialization factory (based on type of DTO) and
serializes DTOs into byte messages. OF Encoder does the opposite than
the OF Decoder using the same principle. OF Encoder receives DTO, passes
it for translation and if the result is not null, it sends translated
DTO downstream as a ByteBuf. Searching for appropriate encoder is done
via MessageTypeKey, based on version and class of received DTO.

Delegating Inbound Handler.

Delegates received DTOs to Connection Adapter. It also reacts on
channelInactive and channelUnregistered events. Upon one of these events
is triggered, DelegatingInboundHandler creates DisconnectEvent message
and sends it upstream, notifying upper layers about switch
disconnection.

Channel Outbound Queue.

Message flushing handler. Stores outgoing messages (DTOs) and flushes
them. Flush is performed based on time expired and on the number of
messages enqueued.

Connection Adapter.

Provides a facade on top of pipeline, which hides netty.io specifics.
Provides a set of methods to register for incoming messages and to send
messages to particular channel / session. ConnectionAdapterImpl
basically implements three interfaces (unified in one superinterface
ConnectionFacade):

	ConnectionAdapter

	MessageConsumer

	OpenflowProtocolService

ConnectionAdapter interface has methods for setting up listeners
(message, system and connection ready listener), method to check if all
listeners are set, checking if the channel is alive and disconnect
method. Disconnect method clears responseCache and disables consuming of
new messages.

MessageConsumer interface holds only one method: consume().
Consume() method is called from DelegatingInboundHandler. This
method processes received DTO’s based on their type. There are three
types of received objects:

	System notifications - invoke system notifications in OpenFlow Plugin
(systemListener set). In case of DisconnectEvent message, the
Connection Adapter clears response cache and disables consume()
method processing,

	OpenFlow asynchronous messages (from switch) - invoke corresponding
notifications in OpenFlow Plugin,

	OpenFlow symmetric messages (replies to requests) - create
RpcResponseKey with XID and DTO’s class set. This
RpcResponseKey is then used to find corresponding future object
in responseCache. Future object is set with success flag, received
message and errors (if any occurred). In case no corresponding future
was found in responseCache, Connection Adapter logs warning and
discards the message. Connection Adapter also logs warning when an
unknown DTO is received.

OpenflowProtocolService interface contains all rpc-methods for
sending messages from upper layers (OpenFlow Plugin) downstream and
responding. Request messages return Future filled with expected reply
message, otherwise the expected Future is of type Void.

NOTE: MultipartRequest message is the only exception. Basically it
is request - reply Message type, but it wouldn’t be able to process more
following MultipartReply messages if this was implemented as rpc (only
one Future). This is why MultipartReply is implemented as notification.
OpenFlow Plugin takes care of correct message processing.

UDP Channel pipeline (openflow-protocol-impl)

Creates UDP channel processing pipeline based on configuration and
support. Switch Connection Provider, Channel Outbound Queue and
Connection Adapter fulfill the same role as in case of TCP
connection / channel pipeline (please see above).

[image: UDP Channel pipeline]
UDP Channel pipeline

UDP Handler.

Represents single server that is handling incoming connections over UDP
(DTLS) protocol. UDP Handler creates a single instance of UDP Channel
Initializer that will initialize channels. After that it binds to
configured InetAddress and port. When a new device connects, UDP Handler
registers its channel and passes control to UDP Channel Initializer.

UDP Channel Initializer.

This class is used for channel initialization and passing arguments.
After a new channel has been registered (for UDP there is always only
one channel) UDP Channel Initializer creates whole pipeline with needed
handlers.

DTLS Handler.

Haven’t been implemented yet. Will take care of secure DTLS connections.

OF Datagram Packet Handler.

Combines functionality of OF Frame Decoder and OF Version Detector.
Extracts messages from received datagram packets and checks if message
version is supported. If there is a message received from yet unknown
sender, OF Datagram Packet Handler creates Connection Adapter for this
sender and stores it under sender’s address in UdpConnectionMap.
This map is also used for sending the messages and for correct
Connection Adapter lookup - to delegate messages from one channel to
multiple sessions.

OF Datagram Packet Decoder.

Chooses correct deserilization factory (based on message type) and
deserializes messages into generated DTOs. OF Decoder receives
VersionMessageUdpWrapper object and passes it to
DeserializationFactory which will return translated DTO.
DeserializationFactory creates MessageCodeKey object with
version and type of received message and Class of object that will be
the received message deserialized into. This object is used as key when
searching for appropriate decoder in DecoderTable. DecoderTable
is basically a map storing decoders. Found decoder translates received
message into DTO (DataTransferObject). If there was no decoder found,
null is returned. After returning translated DTO back to OF Datagram
Packet Decoder, the decoder checks if it is null or not. When the DTO is
null, the decoder logs this state. Else it looks up appropriate
Connection Adapter in UdpConnectionMap and passes the DTO to found
Connection Adapter. Finally, the OF Decoder releases ByteBuf
containing received and decoded byte message.

OF Datagram Packet Encoder.

Chooses correct serialization factory (based on type of DTO) and
serializes DTOs into byte messages. OF Datagram Packet Encoder does the
opposite than the OF Datagram Packet Decoder using the same principle.
OF Encoder receives DTO, passes it for translation and if the result is
not null, it sends translated DTO downstream as a datagram packet.
Searching for appropriate encoder is done via MessageTypeKey, based on
version and class of received DTO.

SPI (openflow-protocol-spi)

Defines interface for library’s connection point for other projects.
Library exposes its functionality through this interface.

Integration test (openflow-protocol-it)

Testing communication with simple client.

Simple client(simple-client)

Lightweight switch simulator - programmable with desired scenarios.

Utility (util)

Contains utility classes, mainly for work with ByteBuf.

Library’s lifecycle

Steps (after the library’s bundle is started):

	[1] Library is configured by ConfigSubsystem (adress, ports,
encryption, …)

	[2] Plugin injects its SwitchConnectionHandler into the Library

	[3] Plugin starts the Library

	[4] Library creates configured protocol handler (e.g. TCP Handler)

	[5] Protocol Handler creates Channel Initializer

	[6] Channel Initializer asks plugin whether to accept incoming
connection on each new switch connection

	[7] Plugin responds:
	true - continue building pipeline

	false - reject connection / disconnect channel

	[8] Library notifies Plugin with onSwitchConnected(ConnectionAdapter)
notification, passing reference to ConnectionAdapter, that will
handle the connection

	[9] Plugin registers its system and message listeners

	[10] FireConnectionReadyNotification() is triggered, announcing that
pipeline handlers needed for communication have been created and
Plugin can start communication

	[11] Plugin shutdowns the Library when desired

[image: Library lifecycle]
Library lifecycle

Statistics collection

Introduction

Statistics collection collects message statistics. Current collected
statistics (DS - downstream, US - upstream):

	DS_ENTERED_OFJAVA - all messages that entered openflowjava
(picked up from openflowplugin)

	DS_ENCODE_SUCCESS - successfully encoded messages

	DS_ENCODE_FAIL - messages that failed during encoding
(serialization) process

	DS_FLOW_MODS_ENTERED - all flow-mod messages that entered
openflowjava

	DS_FLOW_MODS_SENT - all flow-mod messages that were successfully
sent

	US_RECEIVED_IN_OFJAVA - messages received from switch

	US_DECODE_SUCCESS - successfully decoded messages

	US_DECODE_FAIL - messages that failed during decoding
(deserialization) process

	US_MESSAGE_PASS - messages handed over to openflowplugin

Karaf

In orded to start statistics, it is needed to feature:install
odl-openflowjava-stats. To see the logs one should use log:set DEBUG
org.opendaylight.openflowjava.statistics and than probably log:display
(you can log:list to see if the logging has been set). To adjust
collection settings it is enough to modify 45-openflowjava-stats.xml.

JConsole

JConsole provides two commands for the statistics collection:

	printing current statistics

	resetting statistic counters

After attaching JConsole to correct process, one only needs to go into
MBeans
tab → org.opendaylight.controller → RuntimeBean → statistics-collection-service-impl
→ statistics-collection-service-impl → Operations to be able to use
this commands.

TLS Support

Note

see OpenFlow Plugin Developper Guide

Extensibility

Introduction

Entry point for the extensibility is SwitchConnectionProvider.
SwitchConnectionProvider contains methods for (de)serializer
registration. To register deserializer it is needed to use
.register*Deserializer(key, impl). To register serializer one must use
.register*Serializer(key, impl). Registration can occur either during
configuration or at runtime.

NOTE: In case when experimenter message is received and no
(de)serializer was registered, the library will throw
IllegalArgumentException.

Basic Principle

In order to use extensions it is needed to augment existing model and
register new (de)serializers.

Augmenting the model: 1. Create new augmentation

Register (de)serializers: 1. Create your (de)serializer 2. Let it
implement OFDeserializer<> / OFSerializer<> - in case the
structure you are (de)serializing needs to be used in Multipart
TableFeatures messages, let it implement HeaderDeserializer<> /
HeaderSerializer 3. Implement prescribed methods 4. Register your
deserializer under appropriate key (in our case
ExperimenterActionDeserializerKey) 5. Register your serializer under
appropriate key (in our case ExperimenterActionSerializerKey) 6.
Done, test your implementation

NOTE: If you don’t know what key should be used with your
(de)serializer implementation, please visit Registration
keys page.

Example

Let’s say we have vendor / experimenter action represented by this
structure:

struct foo_action {
 uint16_t type;
 uint16_t length;
 uint32_t experimenter;
 uint16_t first;
 uint16_t second;
 uint8_t pad[4];
}

First, we have to augment existing model. We create new module, which
imports “openflow-types.yang” (don’t forget to update your
pom.xml with api dependency). Now we create foo action identity:

import openflow-types {prefix oft;}
identity foo {
 description "Foo action description";
 base oft:action-base;
}

This will be used as type in our structure. Now we must augment existing
action structure, so that we will have the desired fields first and
second. In order to create new augmentation, our module has to import
“openflow-action.yang”. The augment should look like this:

import openflow-action {prefix ofaction;}
augment "/ofaction:actions-container/ofaction:action" {
 ext:augment-identifier "foo-action";
 leaf first {
 type uint16;
 }
 leaf second {
 type uint16;
 }
 }

We are finished with model changes. Run mvn clean compile to generate
sources. After generation is done, we need to implement our
(de)serializer.

Deserializer:

public class FooActionDeserializer extends OFDeserializer<Action> {
 @Override
 public Action deserialize(ByteBuf input) {
 ActionBuilder builder = new ActionBuilder();
 input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we know the type of action*
 builder.setType(Foo.class);
 input.skipBytes(SIZE_OF_SHORT_IN_BYTES); *// we don't need length*
 *// now create experimenterIdAugmentation - so that openflowplugin can
 differentiate correct vendor codec*
 ExperimenterIdActionBuilder expIdBuilder = new ExperimenterIdActionBuilder();
 expIdBuilder.setExperimenter(new ExperimenterId(input.readUnsignedInt()));
 builder.addAugmentation(ExperimenterIdAction.class, expIdBuilder.build());
 FooActionBuilder fooBuilder = new FooActionBuilder();
 fooBuilder.setFirst(input.readUnsignedShort());
 fooBuilder.setSecond(input.readUnsignedShort());
 builder.addAugmentation(FooAction.class, fooBuilder.build());
 input.skipBytes(4); *// padding*
 return builder.build();
 }
}

Serializer:

public class FooActionSerializer extends OFSerializer<Action> {
 @Override
 public void serialize(Action action, ByteBuf outBuffer) {
 outBuffer.writeShort(FOO_CODE);
 outBuffer.writeShort(16);
 *// we don't have to check for ExperimenterIdAction augmentation - our
 serializer*
 *// was called based on the vendor / experimenter ID, so we simply write
 it to buffer*
 outBuffer.writeInt(VENDOR / EXPERIMENTER ID);
 FooAction foo = action.getAugmentation(FooAction.class);
 outBuffer.writeShort(foo.getFirst());
 outBuffer.writeShort(foo.getSecond());
 outBuffer.writeZero(4); //write padding
 }
}

Register both deserializer and serializer:
SwitchConnectionProvider.registerDeserializer(new
ExperimenterActionDeserializerKey(0x04, VENDOR / EXPERIMENTER ID),
new FooActionDeserializer());
SwitchConnectionProvider.registerSerializer(new
ExperimenterActionSerializerKey(0x04, VENDOR / EXPERIMENTER ID),
new FooActionSerializer());

We are ready to test our implementation.

NOTE: Vendor / Experimenter structures define only vendor /
experimenter ID as common distinguisher (besides action type). Vendor /
Experimenter ID is unique for all vendor messages - that’s why vendor is
able to register only one class under
ExperimenterAction(De)SerializerKey. And that’s why vendor has to switch
/ choose between his subclasses / subtypes on his own.

Detailed walkthrough: Deserialization extensibility

External interface & class description.

OFGeneralDeserializer:

	OFDeserializer<E extends DataObject>
	deserialize(ByteBuf) - deserializes given ByteBuf

	HeaderDeserializer<E extends DataObject>
	deserializeHeaders(ByteBuf) - deserializes only E headers (used
in Multipart TableFeatures messages)

DeserializerRegistryInjector

	injectDeserializerRegistry(DeserializerRegistry) - injects
deserializer registry into deserializer. Useful when custom
deserializer needs access to other deserializers.

NOTE: DeserializerRegistryInjector is not OFGeneralDeserializer
descendand. It is a standalone interface.

MessageCodeKey and its descendants These keys are used as for
deserializer lookup in DeserializerRegistry. MessageCodeKey should is
used in general, while its descendants are used in more special cases.
For Example ActionDeserializerKey is used for Action deserializer lookup
and (de)registration. Vendor is provided with special keys, which
contain only the most necessary fields. These keys usually start with
“Experimenter” prefix (MatchEntryDeserializerKey is an exception).

MessageCodeKey has these fields:

	short version - Openflow wire version number

	int value - value read from byte message

	Class<?> clazz - class of object being creating

	[1] The scenario starts in a custom bundle which wants to extend
library’s functionality. The custom bundle creates deserializers
which implement exposed OFDeserializer / HeaderDeserializer
interfaces (wrapped under OFGeneralDeserializer unifying super
interface).

	[2] Created deserializers are paired with corresponding
ExperimenterKeys, which are used for deserializer lookup. If you
don’t know what key should be used with your (de)serializer
implementation, please visit Registration
keys page.

	[3] Paired deserializers are passed to the OF Library via
SwitchConnectionProvider.registerCustomDeserializer(key,
impl). Library registers the deserializer.
	While registering, Library checks if the deserializer is an
instance of DeserializerRegistryInjector interface. If yes,
the DeserializerRegistry (which stores all deserializer
references) is injected into the deserializer.

This is particularly useful when the deserializer needs access to other
deserializers. For example IntructionsDeserializer needs access to
ActionsDeserializer in order to be able to process
OFPIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

[image: Deserialization scenario walkthrough]
Deserialization scenario walkthrough

Detailed walkthrough: Serialization extensibility

External interface & class description.

OFGeneralSerializer:

	OFSerializer<E extends DataObject>
	serialize(E,ByteBuf) - serializes E into given ByteBuf

	HeaderSerializer<E extends DataObject>
	serializeHeaders(E,ByteBuf) - serializes E headers (used in
Multipart TableFeatures messages)

SerializerRegistryInjector *
injectSerializerRegistry(SerializerRegistry) - injects serializer
registry into serializer. Useful when custom serializer needs access to
other serializers.

NOTE: SerializerRegistryInjector is not OFGeneralSerializer
descendand.

MessageTypeKey and its descendants These keys are used as for
serializer lookup in SerializerRegistry. MessageTypeKey should is used
in general, while its descendants are used in more special cases. For
Example ActionSerializerKey is used for Action serializer lookup and
(de)registration. Vendor is provided with special keys, which contain
only the most necessary fields. These keys usually start with
“Experimenter” prefix (MatchEntrySerializerKey is an exception).

MessageTypeKey has these fields:

	short version - Openflow wire version number

	Class<E> msgType - DTO class

Scenario walkthrough

	[1] Serialization extensbility principles are similar to the
deserialization principles. The scenario starts in a custom bundle.
The custom bundle creates serializers which implement exposed
OFSerializer / HeaderSerializer interfaces (wrapped under
OFGeneralSerializer unifying super interface).

	[2] Created serializers are paired with their ExperimenterKeys, which
are used for serializer lookup. If you don’t know what key should be
used with your serializer implementation, please visit Registration
keys page.

	[3] Paired serializers are passed to the OF Library via
SwitchConnectionProvider.registerCustomSerializer(key, impl).
Library registers the serializer.

	While registering, Library checks if the serializer is an instance of
SerializerRegistryInjector interface. If yes, the
SerializerRegistry (which stores all serializer references) is
injected into the serializer.

This is particularly useful when the serializer needs access to other
deserializers. For example IntructionsSerializer needs access to
ActionsSerializer in order to be able to process
OFPIT_WRITE_ACTIONS/OFPIT_APPLY_ACTIONS instructions.

[image: Serialization scenario walkthrough]
Serialization scenario walkthrough

Internal description

SwitchConnectionProvider SwitchConnectionProvider constructs and
initializes both deserializer and serializer registries with default
(de)serializers. It also injects the DeserializerRegistry into the
DeserializationFactory, the SerializerRegistry into the
SerializationFactory. When call to register custom (de)serializer is
made, SwitchConnectionProvider calls register method on appropriate
registry.

DeserializerRegistry / SerializerRegistry Both registries contain
init() method to initialize default (de)serializers. Registration checks
if key or (de)serializer implementation are not null. If at least
one of the is null, NullPointerException is thrown. Else the
(de)serializer implementation is checked if it is
(De)SerializerRegistryInjector instance. If it is an instance of
this interface, the registry is injected into this (de)serializer
implementation.

GetSerializer(key) or GetDeserializer(key) performs registry
lookup. Because there are two separate interfaces that might be put into
the registry, the registry uses their unifying super interface.
Get(De)Serializer(key) method casts the super interface to desired type.
There is also a null check for the (de)serializer received from the
registry. If the deserializer wasn’t found, NullPointerException
with key description is thrown.

Registration keys

Deserialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and eight in
Openflow v1.3. These extensions are registered under registration keys,
that are shown in table below:

	Extension type
	OpenFlo
w
	Registration key
	Utility class

	Vendor message
	1.0
	ExperimenterIdDeserializerKe
y(1,
experimenterId,
ExperimenterMessage.class)
	ExperimenterDeseriali
zerKeyFactory

	Action
	1.0
	ExperimenterActionDeserializ
erKey(1,
experimenter ID)
	.

	Stats message
	1.0
	ExperimenterMultipartReplyMe
ssageDeserializerKey(1,
experimenter ID)
	ExperimenterDeseriali
zerKeyFactory

	Experimenter
message
	1.3
	ExperimenterIdDeserializerKe
y(4,
experimenterId,
ExperimenterMessage.class)
	ExperimenterDeseriali
zerKeyFactory

	Match entry
	1.3
	MatchEntryDeserializerKey(4,
(number) ${oxm_class},
(number) ${oxm_field});
	.

	
	
	key.setExperimenterId(experi
menter
ID);
	.

	Action
	1.3
	ExperimenterActionDeserializ
erKey(4,
experimenter ID)
	.

	Instruction
	1.3
	ExperimenterInstructionDeser
ializerKey(4,
experimenter ID)
	.

	Multipart
	1.3
	ExperimenterIdDeserializerKe
y(4,
experimenterId,
MultipartReplyMessage.class)
	ExperimenterDeseriali
zerKeyFactory

	Multipart -
Table features
	1.3
	ExperimenterIdDeserializerKe
y(4,
experimenterId,
TableFeatureProperties.class
)
	ExperimenterDeseriali
zerKeyFactory

	Error
	1.3
	ExperimenterIdDeserializerKe
y(4,
experimenterId,
ErrorMessage.class)
	ExperimenterDeseriali
zerKeyFactory

	Queue property
	1.3
	ExperimenterIdDeserializerKe
y(4,
experimenterId,
QueueProperty.class)
	ExperimenterDeseriali
zerKeyFactory

	Meter band
type
	1.3
	ExperimenterIdDeserializerKe
y(4,
experimenterId,
MeterBandExperimenterCase.cl
ass)
	ExperimenterDeseriali
zerKeyFactory

Table: Deserialization

Serialization.

Possible openflow extensions and their keys

There are three vendor specific extensions in Openflow v1.0 and seven
Openflow v1.3. These extensions are registered under registration keys,
that are shown in table below:

	Extension type
	OpenFlo
w
	Registration key
	Utility class

	Vendor message
	1.0
	ExperimenterIdSerializerKey<
>(1,
experimenterId,
ExperimenterInput.class)
	ExperimenterSerialize
rKeyFactory

	Action
	1.0
	ExperimenterActionSerializer
Key(1,
experimenterId, sub-type)
	.

	Stats message
	1.0
	ExperimenterMultipartRequest
SerializerKey(1,
experimenter ID)
	ExperimenterSerialize
rKeyFactory

	Experimenter
message
	1.3
	ExperimenterIdSerializerKey<
>(4,
experimenterId,
ExperimenterInput.class)
	ExperimenterSerialize
rKeyFactory

	Match entry
	1.3
	MatchEntrySerializerKey<>(4,
(class) ${oxm_class},
(class) ${oxm_field});
	.

	
	
	key.setExperimenterId(experi
menter
ID)
	.

	Action
	1.3
	ExperimenterActionSerializer
Key(4,
experimenterId, sub-type)
	.

	Instruction
	1.3
	ExperimenterInstructionSeria
lizerKey(4,
experimenter ID)
	.

	Multipart
	1.3
	ExperimenterIdSerializerKey<
>(4,
experimenterId,
MultipartRequestExperimenter
Case.class)
	ExperimenterSerialize
rKeyFactory

	Multipart -
Table features
	1.3
	ExperimenterIdSerializerKey<
>(4,
experimenterId,
TableFeatureProperties.class
)
	ExperimenterSerialize
rKeyFactory

	Meter band
type
	1.3
	ExperimenterIdSerializerKey<
>(4,
experimenterId,
MeterBandExperimenterCase.cl
ass)
	ExperimenterSerialize
rKeyFactory

Table: Serialization

OpenFlow Plugin Project Developer Guide

This section covers topics which are developer specific and which have
not been covered in the user guide. Please see the OpenFlow
plugin user guide first.

It can be found on the OpenDaylight software download
page [https://www.opendaylight.org/downloads].

Event Sequences

Session Establishment

The OpenFlow Protocol
Library provides
interface SwitchConnectionHandler which contains method
onSwitchConnected (step 1). This event is raised in the OpenFlow
Protocol Library when an OpenFlow device connects to OpenDaylight and
caught in the ConnectionManagerImpl class in the OpenFlow plugin.

There the plugin creates a new instance of the ConnectionContextImpl
class (step 1.1) and also instances of HandshakeManagerImpl (which
uses HandshakeListenerImpl) and ConnectionReadyListenerImpl.
ConnectionReadyListenerImpl contains method onConnectionReady()
which is called when connection is prepared. This method starts the
handshake with the OpenFlow device (switch) from the OpenFlow plugin
side. Then handshake can be also started from device side. In this case
method shake() from HandshakeManagerImpl is called (steps 1.1.1
and 2).

The handshake consists of an exchange of HELLO messages in addition to
an exchange of device features (steps 2.1. and 3). The handshake is
completed by HandshakeManagerImpl. After receiving device features,
the HandshakeListenerImpl is notifed via the
onHanshakeSuccessfull() method. After this, the device features, node
id and connection state are stored in a ConnectionContext and the
method deviceConnected() of DeviceManagerImpl is called.

When deviceConnected() is called, it does the following:

	creates a new transaction chain (step 4.1)

	creates a new instance of DeviceContext (step 4.2.2)

	initializes the device context: the static context of device is
populated by calling createDeviceFeaturesForOF<version>() to
populate table, group, meter features and port descriptions (step
4.2.1 and 4.2.1.1)

	creates an instance of RequestContext for each type of feature

When the OpenFlow device responds to these requests (step 4.2.1.1) with
multipart replies (step 5) they are processed and stored to MD-SAL
operational datastore. The createDeviceFeaturesForOF<version>() method
returns a Future which is processed in the callback (step 5.1) (part
of initializeDeviceContext() in the deviceConnected() method) by
calling the method onDeviceCtxLevelUp() from StatisticsManager
(step 5.1.1).

The call to createDeviceFeaturesForOF<version>(): . creates a new
instance of StatisticsContextImpl (step 5.1.1.1).

	calls gatherDynamicStatistics() on that instance which returns a
Future which will produce a value when done
	this method calls methods to get dynamic data (flows, tables,
groups) from the device (step 5.1.1.2, 5.1.1.2.1, 5.1.1.2.1.1)

	if everything works, this data is also stored in the MD-SAL
operational datastore

If the Future is successful, it is processed (step 6.1.1) in a
callback in StatisticsManagerImpl which:

	schedules the next time to poll the device for statistics

	sets the device state to synchronized (step 6.1.1.2)

	calls onDeviceContextLevelUp() in RpcManagerImpl

The onDeviceContextLevelUp() call:

	creates a new instance of RequestContextImpl

	registers implementation for supported services

	calls onDeviceContextLevelUp() in DeviceManagerImpl (step
6.1.1.2.1.2) which causes the information about the new device be be
written to the MD-SAL operational datastore (step 6.1.1.2.2)

[image: Session establishment]
Session establishment

Handshake

The first thing that happens when an OpenFlow device connects to
OpenDaylight is that the OpenFlow plugin gathers basic information about
the device and establishes agreement on key facts like the version of
OpenFlow which will be used. This process is called the handshake.

The handshake starts with HELLO message which can be sent either by the
OpenFlow device or the OpenFlow plugin. After this, there are several
scenarios which can happen:

	if the first HELLO message contains a version bitmap, it is
possible to determine if there is a common version of OpenFlow or
not:
	if there is a single common version use it and the VERSION IS
SETTLED

	if there are more than one common versions, use the highest
(newest) protocol and the VERSION IS SETTLED

	if there are no common versions, the device is DISCONNECTED

	if the first HELLO message does not contain a version bitmap, then
STEB-BY-STEP negotiation is used

	if second (or more) HELLO message is received, then STEP-BY-STEP
negotiation is used

STEP-BY-STEP negotiation:

	if last version proposed by the OpenFlow plugin is the same as the
version received from the OpenFlow device, then the VERSION IS
SETTLED

	if the version received in the current HELLO message from the device
is the same as from previous then negotiation has failed and the
device is DISCONNECTED

	if the last version from the device is greater than the last version
proposed from the plugin, wait for the next HELLO message in the hope
that it will advertise support for a lower version

	if the last version from the device is is less than the last version
proposed from the plugin:
	propose the highest version the plugin supports that is less than
or equal to the version received from the device and wait for the
next HELLO message

	if if the plugin doesn’t support a lower version, the device is
DISCONNECTED

After selecting of version we can say that the VERSION IS SETTLED
and the OpenFlow plugin can ask device for its features. At this point
handshake ends.

[image: Handshake process]
Handshake process

Adding a Flow

There are two ways to add a flow in in the OpenFlow plugin: adding it to
the MD-SAL config datastore or calling an RPC. Both of these can either
be done using the native MD-SAL interfaces or using RESTCONF. This
discussion focuses on calling the RPC.

If user send flow via REST interface (step 1) it will cause that
invokeRpc() is called on RpcBroker. The RpcBroker then looks
for an appropriate implementation of the interface. In the case of the
OpenFlow plugin, this is the addFlow() method of
SalFlowServiceImpl (step 1.1). The same thing happens if the RPC is
called directly from the native MD-SAL interfaces.

The addFlow() method then

	calls the commitEntry() method (step 2) from the OpenFlow Protocol
Library which is responsible for sending the flow to the device

	creates a new RequestContext by calling createRequestContext()
(step 3)

	creates a callback to handle any events that happen because of
sending the flow to the device

The callback method is triggered when a barrier reply message (step 2.1)
is received from the device indicating that the flow was either
installed or an appropriate error message was sent. If the flow was
successfully sent to the device, the RPC result is set to success (step
5). // SalFlowService contains inside method addFlow() other
callback which caught notification from callback for barrier message.

At this point, no information pertaining to the flow has been added to
the MD-SAL operational datastore. That is accomplished by the periodic
gathering of statistics from OpenFlow devices.

The StatisticsContext for each given OpenFlow device periodically
polls it using gatherStatistics() of StatisticsGatheringUtil which
issues an OpenFlow OFPT_MULTIPART_REQUEST - OFPMP_FLOW. The response
to this request (step 7) is processed in StatisticsGatheringUtil
class where flow data is written to the MD-SAL operational datastore via
the writeToTransaction() method of DeviceContext.

[image: Add flow]
Add flow

Description of OpenFlow Plugin Modules

The OpenFlow plugin project contains a variety of OpenDaylight modules,
which are loaded using the configuration subsystem. This section
describes the YANG files used to model each module.

General model (interfaces) - openflow-plugin-cfg.yang.

	the provided module is defined (identity openflow-provider)

	and target implementation is assigned (...OpenflowPluginProvider)

Implementation model - openflow-plugin-cfg-impl.yang

	the implementation of module is defined
(identity openflow-provider-impl)
	class name of generated implementation is defined
(ConfigurableOpenFlowProvider)

	via augmentation the configuration of module is defined:
	this module requires instance of binding-aware-broker
(container binding-aware-broker)

	and list of openflow-switch-connection-provider (those are
provided by openflowjava, one plugin instance will orchestrate
multiple openflowjava modules)

Generating config and sal classes out of yangs

In order to involve suitable code generators, this is needed in pom:

<build> ...
 <plugins>
 <plugin>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>yang-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>generate-sources</goal>
 </goals>
 <configuration>
 <codeGenerators>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.controller.config.yangjmxgenerator.plugin.JMXGenerator
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/config</outputBaseDir>
 <additionalConfiguration>
 <namespaceToPackage1>
 urn:opendaylight:params:xml:ns:yang:controller==org.opendaylight.controller.config.yang
 </namespaceToPackage1>
 </additionalConfiguration>
 </generator>
 <generator>
 <codeGeneratorClass>
 org.opendaylight.yangtools.maven.sal.api.gen.plugin.CodeGeneratorImpl
 </codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/generated-sources/sal</outputBaseDir>
 </generator>
 <generator>
 <codeGeneratorClass>org.opendaylight.yangtools.yang.unified.doc.generator.maven.DocumentationGeneratorImpl</codeGeneratorClass>
 <outputBaseDir>${project.build.directory}/site/models</outputBaseDir>
 </generator>
 </codeGenerators>
 <inspectDependencies>true</inspectDependencies>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.opendaylight.controller</groupId>
 <artifactId>yang-jmx-generator-plugin</artifactId>
 <version>0.2.5-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.opendaylight.yangtools</groupId>
 <artifactId>maven-sal-api-gen-plugin</artifactId>
 <version>${yangtools.version}</version>
 <type>jar</type>
 </dependency>
 </dependencies>
 </plugin>
 ...

	JMX generator (target/generated-sources/config)

	sal CodeGeneratorImpl (target/generated-sources/sal)

Altering generated files

Those files were generated under src/main/java in package as referred in
yangs (if exist, generator will not overwrite them):

	ConfigurableOpenFlowProviderModuleFactory

here the instantiateModule methods are extended in order to
capture and inject osgi BundleContext into module, so it can be
injected into final implementation - OpenflowPluginProvider +
module.setBundleContext(bundleContext);

	ConfigurableOpenFlowProviderModule

here the createInstance method is extended in order to inject
osgi BundleContext into module implementation +
pluginProvider.setContext(bundleContext);

Configuration xml file

Configuration file contains

	required capabilities
	modules definitions from openflowjava

	modules definitions from openflowplugin

	modules definition
	openflow:switch:connection:provider:impl (listening on port 6633,
name=openflow-switch-connection-provider-legacy-impl)

	openflow:switch:connection:provider:impl (listening on port 6653,
name=openflow-switch-connection-provider-default-impl)

	openflow:common:config:impl (having 2 services (wrapping those 2
previous modules) and binding-broker-osgi-registry injected)

	provided services
	openflow-switch-connection-provider-default

	openflow-switch-connection-provider-legacy

	openflow-provider

<snapshot>
 <required-capabilities>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl?module=openflow-switch-connection-provider-impl&revision=2014-03-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider?module=openflow-switch-connection-provider&revision=2014-03-28</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl?module=openflow-provider-impl&revision=2014-03-26</capability>
 <capability>urn:opendaylight:params:xml:ns:yang:openflow:common:config?module=openflow-provider&revision=2014-03-26</capability>
 </required-capabilities>

 <configuration>

 <modules xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-default-impl</name>
 <port>6633</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>
 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider:impl">prefix:openflow-switch-connection-provider-impl</type>
 <name>openflow-switch-connection-provider-legacy-impl</name>
 <port>6653</port>
 <switch-idle-timeout>15000</switch-idle-timeout>
 </module>

 <module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config:impl">prefix:openflow-provider-impl</type>
 <name>openflow-provider-impl</name>

 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-default</name>
 </openflow-switch-connection-provider>
 <openflow-switch-connection-provider>
 <type xmlns:ofSwitch="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">ofSwitch:openflow-switch-connection-provider</type>
 <name>openflow-switch-connection-provider-legacy</name>
 </openflow-switch-connection-provider>

 <binding-aware-broker>
 <type xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">binding:binding-broker-osgi-registry</type>
 <name>binding-osgi-broker</name>
 </binding-aware-broker>
 </module>
 </modules>

 <services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:switch:connection:provider">prefix:openflow-switch-connection-provider</type>
 <instance>
 <name>openflow-switch-connection-provider-default</name>
 <provider>/modules/module[type='openflow-switch-connection-provider-impl'][name='openflow-switch-connection-provider-default-impl']</provider>
 </instance>
 <instance>
 <name>openflow-switch-connection-provider-legacy</name>
 <provider>/modules/module[type='openflow-switch-connection-provider-impl'][name='openflow-switch-connection-provider-legacy-impl']</provider>
 </instance>
 </service>

 <service>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:openflow:common:config">prefix:openflow-provider</type>
 <instance>
 <name>openflow-provider</name>
 <provider>/modules/module[type='openflow-provider-impl'][name='openflow-provider-impl']</provider>
 </instance>
 </service>
 </services>

 </configuration>
</snapshot>

API changes

In order to provide multiple instances of modules from openflowjava
there is an API change. Previously OFPlugin got access to
SwitchConnectionProvider exposed by OFJava and injected collection of
configurations so that for each configuration new instance of tcp
listening server was created. Now those configurations are provided by
configSubsystem and configured modules (wrapping the original
SwitchConnectionProvider) are injected into OFPlugin (wrapping
SwitchConnectionHandler).

Providing config file (IT, local distribution/base, integration/distributions/base)

openflowplugin-it

Here the whole configuration is contained in one file (controller.xml).
Required entries needed in order to startup and wire OEPlugin + OFJava
are simply added there.

OFPlugin/distribution/base

Here new config file has been added
(src/main/resources/configuration/initial/42-openflow-protocol-impl.xml)
and is being copied to config/initial subfolder of build.

integration/distributions/build

In order to push the actual config into config/initial subfolder of
distributions/base in integration project there was a new artifact in
OFPlugin created - openflowplugin-controller-config, containing only
the config xml file under src/main/resources. Another change was
committed into integration project. During build this config xml is
being extracted and copied to the final folder in order to be accessible
during controller run.

Internal message statistics API

To aid in testing and diagnosis, the OpenFlow plugin provides
information about the number and rate of different internal events.

The implementation does two things: collects event counts and exposes
counts. Event counts are grouped by message type, e.g.,
PacketInMessage, and checkpoint, e.g.,
TO_SWITCH_ENQUEUED_SUCCESS. Once gathered, the results are logged
as well as being exposed using OSGi command line (deprecated) and JMX.

Collect

Each message is counted as it passes through various processing
checkpoints. The following checkpoints are defined as a Java enum and
tracked:

/**
 * statistic groups overall in OFPlugin
 */
enum STATISTIC_GROUP {
 /** message from switch, enqueued for processing */
 FROM_SWITCH_ENQUEUED,
 /** message from switch translated successfully - source */
 FROM_SWITCH_TRANSLATE_IN_SUCCESS,
 /** message from switch translated successfully - target */
 FROM_SWITCH_TRANSLATE_OUT_SUCCESS,
 /** message from switch where translation failed - source */
 FROM_SWITCH_TRANSLATE_SRC_FAILURE,
 /** message from switch finally published into MD-SAL */
 FROM_SWITCH_PUBLISHED_SUCCESS,
 /** message from switch - publishing into MD-SAL failed */
 FROM_SWITCH_PUBLISHED_FAILURE,

 /** message from MD-SAL to switch via RPC enqueued */
 TO_SWITCH_ENQUEUED_SUCCESS,
 /** message from MD-SAL to switch via RPC NOT enqueued */
 TO_SWITCH_ENQUEUED_FAILED,
 /** message from MD-SAL to switch - sent to OFJava successfully */
 TO_SWITCH_SUBMITTED_SUCCESS,
 /** message from MD-SAL to switch - sent to OFJava but failed*/
 TO_SWITCH_SUBMITTED_FAILURE
}

When a message passes through any of those checkpoints then counter
assigned to corresponding checkpoint and message is incremented by 1.

Expose statistics

As described above, there are three ways to access the statistics:

	OSGi command line (this is considered deprecated)

osgi> dumpMsgCount

	OpenDaylight logging console (statistics are logged here every 10
seconds)

required logback settings :
<logger name="org.opendaylight.openflowplugin.openflow.md.queue.MessageSpyCounterImpl" level="DEBUG"\/>

	JMX (via JConsole)

start OpenFlow plugin with the -jmx parameter

start JConsole by running jconsole

the JConsole MBeans tab should contain
org.opendaylight.controller

RuntimeBean has a msg-spy-service-impl

Operations provides makeMsgStatistics report functionality

Example results

[image: OFplugin Debug stats.png]
OFplugin Debug stats.png

DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_ENQUEUED: MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[PortStatusMessage] -> +0 | 1
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[MultipartReplyMessage] -> +24 | 81
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_IN_SUCCESS: MSG[PacketInMessage] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_OUT_SUCCESS: MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_TRANSLATE_SRC_FAILURE: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[QueueStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeConnectorStatisticsUpdate] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupDescStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[FlowsStatisticsUpdate] -> +3 | 19
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[PacketReceived] -> +8 | 111
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[GroupFeaturesUpdated] -> +0 | 3
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterConfigStatsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[MeterStatisticsUpdated] -> +3 | 7
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[NodeConnectorUpdated] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_SUCCESS: MSG[FlowTableStatisticsUpdate] -> +3 | 8
DEBUG o.o.o.s.MessageSpyCounterImpl - FROM_SWITCH_PUBLISHED_FAILURE: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_SUCCESS: MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_ENQUEUED_FAILED: no activity detected
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_SUCCESS: MSG[AddFlowInput] -> +0 | 12
DEBUG o.o.o.s.MessageSpyCounterImpl - TO_SWITCH_SUBMITTED_FAILURE: no activity detected

Application: Forwarding Rules Synchronizer

Basics

Description

Forwarding Rules Synchronizer (FRS) is a newer version of Forwarding
Rules Manager (FRM). It was created to solve most shortcomings of FRM.
FRS solving errors with retry mechanism. Sending barrier if needed.
Using one service for flows, groups and meters. And it has less changes
requests send to device since calculating difference and using
compression queue.

It is located in the Java package:

package org.opendaylight.openflowplugin.applications.frsync;

Listeners

	1x config - FlowCapableNode

	1x operational - Node

System of work

	one listener in config datastore waiting for changes
	update cache

	skip event if operational not present for node

	send syncup entry to reactor for synchronization
	node added: after part of modification and whole operational
snapshot

	node updated: after and before part of modification

	node deleted: null and before part of modification

	one listener in operational datastore waiting for changes
	update cache

	on device connected
	register for cluster services

	on device disconnected remove from cache
	remove from cache

	unregister for cluster services

	if registered for reconciliation
	do reconciliation through syncup (only when config present)

	reactor (provides syncup w/decorators assembled in this order)
	Cluster decorator - skip action if not master for device

	FutureZip decorator (FutureZip extends Future decorator)
	Future - run delegate syncup in future - submit task to
executor service

	FutureZip - provides state compression - compress optimized
config delta if waiting for execution with new one

	Guard decorator - per device level locking

	Retry decorator - register for reconciliation if syncup failed

	Reactor impl - calculate diff from after/before parts of syncup
entry and execute

Strategy

In the old FRM uses an incremental strategy with all changes made one
by one, where FRS uses a flat batch system with changes made in bulk. It
uses one service SalFlatBatchService instead of three (flow, group,
meter).

Boron release

FRS is used in Boron as separate feature and it is not loaded by any
other feature. It has to be run separately.

odl-openflowplugin-app-forwardingrules-sync

FRS additions

Retry mechanism

	is started when change request to device return as failed (register
for reconcile)

	wait for next consistent operational and do reconciliation with
actual config (not only diff)

ZipQueue

	only the diff (before/after) between last config changes is sent to
device

	when there are more config changes for device in a row waiting to be
processed they are compressed into one entry (after is still replaced
with the latest)

Cluster-aware

	FRS is cluster aware using ClusteringSingletonServiceProvider from
the MD-SAL

	on mastership change reconciliation is done (register for reconcile)

SalFlatBatchService

FRS uses service with implemented barrier waiting logic between
dependent objects

Service: SalFlatBatchService

Basics

SalFlatBatchService was created along forwardingrules-sync application
as the service that should application used by default. This service uses
only one input with bag of flow/group/meter objects and their common
add/update/remove action. So you practically send only one input (of specific
bags) to this service.

	interface: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.SalFlatBatchService

	implementation: org.opendaylight.openflowplugin.impl.services.SalFlatBatchServiceImpl

	method: processFlatBatch(input)

	input: org.opendaylight.yang.gen.v1.urn.opendaylight.flat.batch.service.rev160321.ProcessFlatBatchInput

Usage benefits

	possibility to use only one input bag with particular failure analysis preserved

	automatic barrier decision (chain+wait)

	less RPC routing in cluster environment (since one call encapsulates all others)

ProcessFlatBatchInput

Input for SalFlatBatchService (ProcessFlatBatchInput object) consists of:

	node - NodeRef

	batch steps - List<Batch> - defined action + bag of objects + order for failures analysis
	BatchChoice - yang-modeled action choice (e.g. FlatBatchAddFlowCase) containing batch bag of objects (e.g. flows to be added)

	BatchOrder - (integer) order of batch step (should be incremented by single action)

	exitOnFirstError - boolean flag

Workflow

	prepare list of steps based on input

	mark barriers in steps where needed

	prepare particular F/G/M-batch service calls from Flat-batch steps
	F/G/M-batch services encapsulate bulk of single service calls

	they actually chain barrier after processing all single calls if actual step is marked as barrier-needed

	chain futures and start executing
	start all actions that can be run simultaneously (chain all on one starting point)

	in case there is a step marked as barrier-needed
	wait for all fired jobs up to one with barrier

	merge rpc results (status, errors, batch failures) into single one

	the latest job with barrier is new starting point for chaining

Services encapsulation

	SalFlatBatchService
	SalFlowBatchService
	SalFlowService

	SalGroupBatchService
	SalGroupService

	SalMeterBatchService
	SalMeterService

Barrier decision

	decide on actual step and all previous steps since the latest barrier

	if condition in table below is satisfied the latest step before actual is marked as barrier-needed

	actual step
	previous steps contain

	FLOW_ADD or FLOW_UPDATE
	GROUP_ADD or METER_ADD

	GROUP_ADD
	GROUP_ADD or GROUP_UPDATE

	GROUP_REMOVE
	FLOW_UPDATE or FLOW_REMOVE or GROUP_UPDATE or GROUP_REMOVE

	METER_REMOVE
	FLOW_UPDATE or FLOW_REMOVE

Error handling

There is flag in ProcessFlatBatchInput to stop process on the first error.

	true - if partial step is not successful stop whole processing

	false (default) - try to process all steps regardless partial results

If error occurs in any of partial steps upper FlatBatchService call will return as unsuccessful in both cases.
However every partial error is attached to general flat batch result along with BatchFailure (contains BatchOrder
and BatchItemIdChoice to identify failed step).

Cluster singleton approach in plugin

Basics

Description

The existing OpenDaylight service deployment model assumes symmetric
clusters, where all services are activated on all nodes in the cluster.
However, many services require that there is a single active service
instance per cluster. We call such services singleton services. The
Entity Ownership Service (EOS) represents the base Leadership choice for
one Entity instance. Every Cluster Singleton service type must have
its own Entity and every Cluster Singleton service instance must
have its own Entity Candidate. Every registered Entity Candidate should
be notified about its actual role. All this “work” is done by MD-SAL so
the Openflowplugin need “only” to register as service in
SingletonClusteringServiceProvider given by MD-SAL.

Change against using EOS service listener

In this new clustering singleton approach plugin uses API from the
MD-SAL project: SingletonClusteringService which comes with three
methods.

instantiateServiceInstance()
closeServiceInstance()
getIdentifier()

This service has to be registered to a
SingletonClusteringServiceProvider from MD-SAL which take care if
mastership is changed in cluster environment.

First method in SingletonClusteringService is being called when the
cluster node becomes a MASTER. Second is being called when status
changes to SLAVE or device is disconnected from cluster. Last method
plugins returns NodeId as ServiceGroupIdentifier Startup after device is
connected

On the start up the plugin we need to initialize first four managers for
each working area providing information and services

	Device manager

	RPC manager

	Role manager

	Statistics manager

After connection the device the listener Device manager get the event
and start up to creating the context for this connection. Startup after
device connection

Services are managed by SinlgetonClusteringServiceProvider from MD-SAL
project. So in startup we simply create a instance of LifecycleService
and register all contexts into it.

Role change

Plugin is no longer registered as Entity Ownership Service (EOS)
listener therefore does not need to and cannot respond on EOS ownership
changes.

Service start

Services start asynchronously but the start is managed by
LifecycleService. If something goes wrong LifecycleService stop starting
services in context and this speeds up the reconnect process. But the
services haven’t changed and plugin need to start all this:

	Activating transaction chain manager

	Initial gathering of device statistics

	Initial submit to DS

	Sending role MASTER to device

	RPC services registration

	Statistics gathering start

Service stop

If closeServiceInstance occurred plugin just simply try to store all
unsubmitted transactions and close the transaction chain manager, stop
RPC services, stop Statistics gathering and after that all unregister
txEntity from EOS.

Yang models and API

	Model

	Openflow basic types

	opendaylight-table-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-table-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-action-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-action-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-flow-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-meter-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-meter-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-group-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-group-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-match-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-match-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-port-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-port-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-queue-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-base/src/main/yang/opendaylight-queue-types.yang;a=blob;hb=refs/heads/stable/boron]

	Openflow services

	sal-table.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-table.yang;a=blob;hb=refs/heads/stable/boron]

	sal-group.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-group.yang;a=blob;hb=refs/heads/stable/boron]

	sal-queue.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-queue.yang;a=blob;hb=refs/heads/stable/boron]

	flow-errors.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-errors.yang;a=blob;hb=refs/heads/stable/boron]

	flow-capable-transaction.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-capable-transaction.yang;a=blob;hb=refs/heads/stable/boron]

	sal-flow.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-flow.yang;a=blob;hb=refs/heads/stable/boron]

	sal-meter.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-meter.yang;a=blob;hb=refs/heads/stable/boron]

	flow-topology-discovery.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-topology-discovery.yang;a=blob;hb=refs/heads/stable/boron]

	node-errors.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-errors.yang;a=blob;hb=refs/heads/stable/boron]

	node-config.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/node-config.yang;a=blob;hb=refs/heads/stable/boron]

	sal-echo.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-echo.yang;a=blob;hb=refs/heads/stable/boron]

	sal-port.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/sal-port.yang;a=blob;hb=refs/heads/stable/boron]

	packet-processing.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/packet-processing.yang;a=blob;hb=refs/heads/stable/boron]

	flow-node-inventory.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-service/src/main/yang/flow-node-inventory.yang;a=blob;hb=refs/heads/stable/boron]

	Openflow statistics

	opendaylight-queue-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-queue-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-table-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-table-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-port-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-port-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-statistics-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-statistics-types.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-group-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-group-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-flow-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-flow-statistics.yang;a=blob;hb=refs/heads/stable/boron]

	opendaylight-meter-statistics.yang [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/model-flow-statistics/src/main/yang/opendaylight-meter-statistics.yang;a=blob;hb=refs/heads/stable/boron]

Karaf feature tree

[image: Openflow plugin karaf feature tree]
Openflow plugin karaf feature tree

Short
HOWTO [https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:FeatureTreeHowto]
create such a tree.

Wiring up notifications

Introduction

We need to translate OpenFlow messages coming up from the OpenFlow
Protocol Library into
MD-SAL Notification objects and then publish them to the MD-SAL.

Mechanics

	Create a Translator class

	Register the Translator

	Register the notificationPopListener to handle your Notification
Objects

Create a Translator class

You can see an example in
PacketInTranslator.java [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/translator/PacketInTranslator.java;hb=refs/heads/stable/boron].

First, simply create the class

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List<DataObject>> {

Then implement the translate function:

public class PacketInTranslator implements IMDMessageTranslator<OfHeader, List<DataObject>> {

 protected static final Logger LOG = LoggerFactory
 .getLogger(PacketInTranslator.class);
 @Override
 public PacketReceived translate(SwitchConnectionDistinguisher cookie,
 SessionContext sc, OfHeader msg) {
 ...
 }

Make sure to check that you are dealing with the expected type and cast
it:

if(msg instanceof PacketInMessage) {
 PacketInMessage message = (PacketInMessage)msg;
 List<DataObject> list = new CopyOnWriteArrayList<DataObject>();

Do your transation work and return

PacketReceived pktInEvent = pktInBuilder.build();
list.add(pktInEvent);
return list;

Register your Translator Class

Next you need to go to
MDController.java [https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;a=blob;f=openflowplugin/src/main/java/org/opendaylight/openflowplugin/openflow/md/core/MDController.java;hb=refs/heads/stable/boron]
and in init() add register your Translator:

public void init() {
 LOG.debug("Initializing!");
 messageTranslators = new ConcurrentHashMap<>();
 popListeners = new ConcurrentHashMap<>();
 //TODO: move registration to factory
 addMessageTranslator(ErrorMessage.class, OF10, new ErrorTranslator());
 addMessageTranslator(ErrorMessage.class, OF13, new ErrorTranslator());
 addMessageTranslator(PacketInMessage.class,OF10, new PacketInTranslator());
 addMessageTranslator(PacketInMessage.class,OF13, new PacketInTranslator());

Notice that there is a separate registration for each of OpenFlow 1.0
and OpenFlow 1.3. Basically, you indicate the type of OpenFlow Protocol
Library message you wish to translate for, the OpenFlow version, and an
instance of your Translator.

Register your MD-SAL Message for Notification to the MD-SAL

Now, also in MDController.init() register to have the
notificationPopListener handle your MD-SAL Message:

addMessagePopListener(PacketReceived.class, new NotificationPopListener<DataObject>());

You are done

That’s all there is to it. Now when a message comes up from the OpenFlow
Protocol Library, it will be translated and published to the MD-SAL.

Message Order Preservation

While the Helium release of OpenFlow Plugin relied on queues to ensure
messages were delivered in order, subsequent releases instead ensure
that all the messages from a given device are delivered using the same
thread and thus message order is guaranteed without queues. The OpenFlow
plugin allocates a number of threads equal to twice the number of
processor cores on machine it is run, e.g., 8 threads if the machine has
4 cores.

Note

While each device is assigned to one thread, multiple devices can be
assigned to the same thread.

OpFlex agent-ovs Developer Guide

Overview

agent-ovs is a policy agent that works with OVS to enforce a group-based
policy networking model with locally attached virtual machines or
containers. The policy agent is designed to work well with orchestration
tools like OpenStack.

agent-ovs Architecture

agent-ovs uses libopflex to communicate with an OpFlex-based policy
repository to enforce policy on network endpoints attached to OVS by an
orchestration system.

The key components are:

	Agent - coordinates startup and configuration

	Renderers - Renderers are responsible for rendering policy. This is a
very general mechanism but the currently-implemented renderer is the
stitched-mode renderer that can work along with with hardware fabrics
such as ACI that support policy enforcement.

	EndpointManager - Keep track of network endpoints and declare them to
the endpoint repository

	PolicyManager - Keep track of and index policies

	FlowManager - render policies to OVS

API Reference Documentation

Internal API documentation can be found here:
https://jenkins.opendaylight.org/opflex/job/opflex-merge/ws/agent-ovs/doc/html/index.html

OpFlex genie Developer Guide

Overview

Genie is a tool for code generation from a model. It supports generating
C++ and Java code. C++ can be generated suitable for use with libopflex.
C++ and Java can be generated as a plain set of objects.

Group-based Policy Model

The group-based policy model is included with the genie tool and can be
found under the MODEL directory. By running mvn exec:java, libmodelgbp
will be generated as a library project that, when built and installed,
will work with libopflex. This model is used by the OVS agent.

API Reference Documentation

Complete API documentation for the generated libmodelgbp can be found
here:
https://jenkins.opendaylight.org/opflex/job/opflex-merge/ws/libopflex/doc/html/index.html

OpFlex libopflex Developer Guide

Overview

The OpFlex framework allows you to develop agents that can communicate
using the OpFlex protocol and act as a policy element in an OpFlex-based
distributed control system. The OpFlex architecture provides a
distributed control system based on a declarative policy information
model. The policies are defined at a logically centralized policy
repository and enforced within a set of distributed policy elements. The
policy repository communicates with the subordinate policy elements
using the OpFlex control protocol. This protocol allows for
bidirectional communication of policy, events, statistics, and faults.

Rather than simply providing access to the OpFlex protocol, this
framework allows you to directly manipulate a management information
tree containing a hierarchy of managed objects. This tree is kept in
sync as needed with other policy elements in the system, and you are
automatically notified when important changes to the model occur.
Additionally, we can ensure that only those managed objects that are
important to the local policy element are synchronized locally.

Object Model

Interactions with the OpFlex framework happen through the management
information tree. This is a tree of managed objects defined by an object
model specific to your application. There are a few important major
category of objects that can appear in the model.

	First, there is the policy object. A policy object represents some
data related to a policy that describes a user intent for how the
system should behave. A policy object is stored in the policy
repository which is the source of “truth” for this object.

	Second, there is an endpoint object. A endpoint represents an entity
in the system to which we want to apply policy, which could be a
network interface, a storage array, or other relevent policy
endpoint. Endpoints are discovered and reported by policy elements
locally, and are synchronized into the endpoint repository. The
originating policy element is the source of truth for the endpoints
it discovers. Policy elements can retrieve information about
endpoints discovered by other policy elements by resolving endpoints
from the endpoint repository.

	Third, there is the observable object. An observable object
represents some state related to the operational status or health of
the policy element. Observable objects will be reported to the
observer.

	Finally, there is the local-only object. This is the simplest object
because it exists only local to a particular policy element. These
objects can be used to store state specific to that policy element,
or as helpers to resolve other objects. Read on to learn more.

You can use the genie tool that is included with the framework to
produce your application model along with a set of generated accessor
classes that can work with this framework library. You should refer to
the documentation that accompanies the genie tool for information on how
to use to to generate your object model. Later in this guide, we’ll go
through examples of how to use the generated managed object accessor
classes.

Programming by Side Effect

When developing software on the OpFlex framework, you’ll need to think
in a slightly different way. Rather than calling an API function that
would perform some specific action, you’ll need to write a managed
object to the managed object database. Writing that object to the store
will trigger the side effect of performing the action that you want.

For example, a policy element will need to have a component responsible
for discovering policy endpoints. When it discovers a policy endpoint,
it would write an endpoint object into the managed object database. That
endpoint object will contain a reference to policy that is relevant to
the endpoint object. This will trigger a whole cascade of events. First,
the framework will notice that an endpoint object has been created and
it will write it to the endpoint repository. Second, the framework to
will attempt to resolve the unresolved reference to the relevent policy
object. There might be a whole chain of policy resolutions that will be
automatically performed to download all the relevent policy until there
are no longer any dangling references.

As long as there is a locally-created object in the system with a
reference to that policy, the framework will continually ensure that the
policy and any transitive policies are kept up to date. The policy
element can subscribe to updates to these policy classes that will be
invoked either the first time the policy is resolved or any time the
policy changes.

A consequence of this design is that the managed object database can be
temporarily in an inconsistent state with unresolved dangling
references. Eventually, however, the inconsistency will be fully
resolved. The policy element must be able to cleanly handle
partially-resolved or inconsistent state and eventually reach the
correct state as it receives these update notifications. Note that, in
the OpFlex architecture, when there is no policy that specifically
allows a particular action, that action must be prevented.

Let’s cover one slightly more complex example. If a policy element needs
to discover information about an endpoint that is not local to that
policy element, it will need to retrieve that information from the
endpoint repository. However, just as there is no API call to retrieve a
policy object from the policy repository, there is no API call to
retrieve an endpoint from the endpoint repository.

To get this information, the policy element needs to create a local-only
object that references the endpoint. Once it creates this local-only
object, if the endpoint is not already resolved, the framework will
notice the dangling reference and automatically resolve the endpoint
from the endpoint respository. When the endpoint resolution completes,
the framework deliver an update notification to the policy element. The
policy element will continue to receive any updates related to that
endpoint until the policy element remove the local-only reference to the
object. Once this occurs, the framework can garbage-collect any
unreferenced objects.

Threading and Ownership

The OpFlex framework uses a somewhat unique threading model. Each
managed object in the system belongs to a particular owner. An owner
would typically be a single thread that is reponsible for all updates to
objects with that owner. Though anything can read the state of a managed
object, only the owner of a managed object is permitted to write to it.
Though this is not strictly required for correctness, the performance of
the system wil be best if you ensure that only one thread at a time is
writing to objects with a particular owner.

Change notifications are delivered in a serialized fashion by a single
thread. Blocking this thread from a notification callback will stall
delivery of all notifications. It is therefore best practice to ensure
that you do not block or perform long-running operations from a
notification callback.

Key APIs and Interfaces

Basic Usage and Initialization

The primary interface point into the framework is
opflex::ofcore::OFFramework. You can choose to instantiate your own copy
of the framework, or you can use the static default instance.

Before you can use the framework, you must initialize it by installing
your model metadata. The model metadata is accessible through the
generated model library. In this case, it assumes your model is called
“mymodel”:

#include <opflex/ofcore/OFFramework.h>
#include <mymodel/metadata/metadata.hpp>
// ...
using opflex::ofcore::OFFramework;
OFFramework::defaultInstance().setModel(mymodel::getMetadata());

The other critical piece of information required for initialization is
the OpFlex identity information. The identity information is required in
order to successfully connect to OpFlex peers. In OpFlex, each component
has a unique name within its policy domain, and each policy domain is
identified by a globally unique domain name. You can set this identity
information by calling:

OFFramework::defaultInstance()
 .setOpflexIdentity("[component name]", "[unique domain]");

You can then start the framework simply by calling:

OFFramework::defaultInstance().start();

Finally, you can add peers after the framework is started by calling the
opflex::ofcore::OFFramework::addPeer method:

OFFramework::defaultInstance().addPeer("192.168.1.5", 1234);

When connecting to the peer, that peer may provide an additional list of
peers to connect to, which will be automatically added as peers. If the
peer does not include itself in the list, then the framework will
disconnect from that peer and add the peers in the list. In this way, it
is possible to automatically bootstrap the correct set of peers using a
known hostname or IP address or a known, fixed anycast IP address.

To cleanly shut down, you can call:

OFFramework::defaultInstance().stop();

Working with Data in the Tree

Reading from the Tree

You can access data in the managed tree using the generated accessor
classes. The details of exactly which classes you’ll use will depend on
the model you’re using, but let’s assume that we have a simple model
called “simple” with the following classes:

	root - The root node. The URI for the root node is “/”

	foo - A policy object, and a child of root, with a scalar string
property called “bar”, and a unsigned 64-bit integer property called
baz. The bar property is the naming property for foo. The URI for a
foo object would be “/foo/[value of bar]/”

	fooref - A local-only child of root, with a reference to a foo, and a
scalar string property called “bar”. The bar property is the naming
property for foo. The URI for a fooref object would be
“/fooref/[value of bar]/”

In this example, we’ll have a generated class for each of the objects.
There are two main ways to get access to an object in the tree.

First, we can get instantiate an accessor class to any node in the tree
by calling one of its static resolve functions. The resolve functions
can take either an already-built URI that represents the object, or you
can call the version that will locate the object by its naming
properties.

Second, we can access the object also from its parent object using the
appropriate child resolver member functions.

However we read it, the object we get back is an immutable view into the
object it references. The properties set locally on that object will not
change even though the underlying object may have been updated in the
store. Note, however, that its children can change between when you
first retrieve the object and when you resolve any children.

Another thing that is critical to note again is that when you attempt to
resolve an object, you can get back nothing, even if the object actually
does exist on another OpFlex node. You must ensure that some object in
the managed object database references the remote managed object you
want before it will be visible to you.

To get access to the root node using the default framework instance, we
can simply call:

using boost::shared_ptr;
using boost::optional;
optional<shared_ptr<simple::root> > r(simple::root::resolve());

Note that whenever we can a resolve function, we get back our data in
the form of an optional shared pointer to the object instance. If the
node does not exist, then the optional will be set to boost::none. Note
that if you dereference an optional that has not been set, you’ll
trigger an assert, so you must check the return as follows:

if (!r) {
 // handle missing object
}

Now let’s get a child node of the root in three different ways:

// Get foo1 by constructing its URI from the root
optional<shared_ptr<simple::foo> > foo1(simple::foo::resolve("test"));
// get foo1 by constructing its URI relative to its parent
foo1 = r.get()->resolveFoo("test");
// get foo1 by manually building its URI
foo1 = simple::foo::resolve(opflex::modb::URIBuilder()
 .addElement("foo")
 .addElement("test")
 .build());

All three of these calls will give us the same object, which is the
“foo” object located at “/foo/test/”.

The foo class has a single string property called “bar”. We can easily
access it as follows:

const std::string& barv = foo1.getBar();

Writing to the Tree

Writing to the tree is nearly as easy as reading from it. The key
concept to understand is the mutator object. If you want to make changes
to the tree, you must allocate a mutator object. The mutator will
register itself in some thread-local storage in the framework instance
you’re using. The mutator is specific to a single “owner” for the data,
so you can only make changes to data associated with that owner.

Whenever you modify one of the accessor classes, the change is actually
forwarded to the currently-active mutator. You won’t see any of the
changes you make until you call the commit member function on the
mutator. When you do that, all the changes you made are written into the
store.

Once the changes are written into the store, you will need to call the
appropriate resolve function again to see the changes.

Allocating a mutator is simple. To create a mutator for the default
framework instance associated with the owner “owner1”, just allocate the
mutator on the stack. Be sure to call commit() before it goes out of
scope or you’ll lose your changes.

{
 opflex::modb::Mutator mutator("owner1");
 // make changes here
 mutator.commit();
}

Note that if an exception is thrown while making changes but before
committing, the mutator will go out of scope and the changes will be
discarded.

To create a new node, you must call the appropriate add[Child] member
function on its parent. This function takes parameters for each of the
naming properties for the object:

shared_ptr<simple::foo> newfoo(root->addFoo("test"));

This will return a shared pointer to a new foo object that has been
registered in the active mutator but not yet committed. The “bar” naming
property will be set automatically, but if you want to set the “baz”
property now, you can do so by calling:

newfoo->setBaz(42);

Note that creating the root node requires a call to the special static
class method createRootElement:

shared_ptr<simple::root> newroot(simple::root::createRootElement());

Here’s a complete example that ties this all together:

{
 opflex::modb::Mutator mutator("owner1");
 shared_ptr<simple::root> newroot(simple::root::createRootElement());
 shared_ptr<simple::root> newfoo(newroot->addFoo("test"));
 newfoo->setBaz(42);

 mutator.commit();
}

Update Notifications

When using the OpFlex framework, you’re likely to find that most of your
time is spend responding to changes in the managed object database. To
get these notifications, you’re going to need to register some number of
listeners.

You can register an object listener to see all changes related to a
particular class by calling a static function for that class. You’ll
then get notifications whenever any object in that class is added,
updated, or deleted. The listener should queue a task to read the new
state and perform appropriate processing. If this function blocks or
peforms a long-running operation, then the dispatching of update
notifications will be stalled, but there will not be any other
deleterious effects.

If multiple changes happen to the same URI, then at least one
notification will be delivered but some events may be consolidated.

The update you get will tell you the URI and the Class ID of the changed
object. The class ID is a unique ID for each class. When you get the
update, you’ll need to call the appropriate resolve function to retrieve
the new value.

You’ll need to create your own object listener derived from
opflex::modb::ObjectListener:

class MyListener : public ObjectListener {
public:
 MyListener() { }
 virtual void objectUpdated(class_id_t class_id, const URI& uri) {
 // Your handler here
 }
};

To register your listener with the default framework instance, just call
the appropriate class static method:

MyListener listener;
simple::foo::registerListener(&listener);
// main loop
simple::foo::unregisterListener(&listener);

The listener will now recieve notifications whenever any foo or any
children of any foo object changes.

Note that you must ensure that you unregister your listeners before
deallocating them.

API Reference Documentation

Complete API documentation can be found through doxygen here:
https://jenkins.opendaylight.org/opflex/job/opflex-merge/ws/libopflex/doc/html/index.html

OVSDB Developer Guide

OVSDB Integration

The Open vSwitch database (OVSDB) Southbound Plugin component for
OpenDaylight implements the OVSDB RFC
7047 [https://tools.ietf.org/html/rfc7047] management protocol that
allows the southbound configuration of switches that support OVSDB. The
component comprises a library and a plugin. The OVSDB protocol uses
JSON-RPC calls to manipulate a physical or virtual switch that supports
OVSDB. Many vendors support OVSDB on various hardware platforms. The
OpenDaylight controller uses the library project to interact with an OVS
instance.

Note

Read the OVSDB User Guide before you begin development.

OpenDaylight OVSDB southbound plugin architecture and design

OpenVSwitch (OVS) is generally accepted as the unofficial standard for
Virtual Switching in the Open hypervisor based solutions. Every other
Virtual Switch implementation, properietery or otherwise, uses OVS in
some form. For information on OVS, see Open
vSwitch [http://openvswitch.org/].

In Software Defined Networking (SDN), controllers and applications
interact using two channels: OpenFlow and OVSDB. OpenFlow addresses the
forwarding-side of the OVS functionality. OVSDB, on the other hand,
addresses the management-plane. A simple and concise overview of Open
Virtual Switch Database(OVSDB) is available at:
http://networkstatic.net/getting-started-ovsdb/

Overview of OpenDaylight Controller architecture

The OpenDaylight controller platform is designed as a highly modular and
plugin based middleware that serves various network applications in a
variety of use-cases. The modularity is achieved through the Java OSGi
framework. The controller consists of many Java OSGi bundles that work
together to provide the required controller functionalities.

The bundles can be placed in the following broad categories:

	Network Service Functional Modules (Examples: Topology Manager,
Inventory Manager, Forwarding Rules Manager,and others)

	NorthBound API Modules (Examples: Topology APIs, Bridge Domain APIs,
Neutron APIs, Connection Manager APIs, and others)

	Service Abstraction Layer(SAL)- (Inventory Services, DataPath
Services, Topology Services, Network Config, and others)

	SouthBound Plugins (OpenFlow Plugin, OVSDB Plugin, OpenDove Plugin,
and others)

	Application Modules (Simple Forwarding, Load Balancer)

Each layer of the Controller architecture performs specified tasks, and
hence aids in modularity. While the Northbound API layer addresses all
the REST-Based application needs, the SAL layer takes care of
abstracting the SouthBound plugin protocol specifics from the Network
Service functions.

Each of the SouthBound Plugins serves a different purpose, with some
overlapping. For example, the OpenFlow plugin might serve the Data-Plane
needs of an OVS element, while the OVSDB plugin can serve the management
plane needs of the same OVS element. As the OpenFlow Plugin talks
OpenFlow protocol with the OVS element, the OVSDB plugin will use OVSDB
schema over JSON-RPC transport.

OVSDB southbound plugin

The Open vSwitch Database Management
Protocol-draft-02 [http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-02]
and Open vSwitch
Manual [http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf] provide
theoretical information about OVSDB. The OVSDB protocol draft is
generic enough to lay the groundwork on Wire Protocol and Database
Operations, and the OVS Manual currently covers 13 tables leaving
space for future OVS expansion, and vendor expansions on proprietary
implementations. The OVSDB Protocol is a database records transport
protocol using JSON RPC1.0. For information on the protocol structure,
see Getting Started with
OVSDB [http://networkstatic.net/getting-started-ovsdb/]. The
OpenDaylight OVSDB southbound plugin consists of one or more OSGi
bundles addressing the following services or functionalities:

	Connection Service - Based on Netty

	Network Configuration Service

	Bidirectional JSON-RPC Library

	OVSDB Schema definitions and Object mappers

	Overlay Tunnel management

	OVSDB to OpenFlow plugin mapping service

	Inventory Service

Connection service

One of the primary services that most southbound plugins provide in
OpenDaylight a Connection Service. The service provides protocol
specific connectivity to network elements, and supports the
connectivity management services as specified by the OpenDaylight
Connection Manager. The connectivity services include:

	Connection to a specified element given IP-address, L4-port, and
other connectivity options (such as authentication,…)

	Disconnection from an element

	Handling Cluster Mode change notifications to support the
OpenDaylight Clustering/High-Availability feature

Network Configuration Service

The goal of the OpenDaylight Network Configuration services is to
provide complete management plane solutions needed to successfully
install, configure, and deploy the various SDN based network services.
These are generic services which can be implemented in part or full by
any south-bound protocol plugin. The south-bound plugins can be either
of the following:

	The new network virtualization protocol plugins such as OVSDB
JSON-RPC

	The traditional management protocols such as SNMP or any others in
the middle.

The above definition, and more information on Network Configuration
Services, is available at :
https://wiki.opendaylight.org/view/OpenDaylight_Controller:NetworkConfigurationServices

Bidirectional JSON-RPC library

The OVSDB plugin implements a Bidirectional JSON-RPC library. It is easy
to design the library as a module that manages the Netty connection
towards the Element.

The main responsibilities of this Library are:

	Demarshal and marshal JSON Strings to JSON objects

	Demarshal and marshal JSON Strings from and to the Network Element.

OVSDB Schema definitions and Object mappers

The OVSDB Schema definitions and Object Mapping layer sits above the
JSON-RPC library. It maps the generic JSON objects to OVSDB schema POJOs
(Plain Old Java Object) and vice-versa. This layer mostly provides the
Java Object definition for the corresponding OVSDB schema (13 of them)
and also will provide much more friendly API abstractions on top of
these object data. This helps in hiding the JSON semantics from the
functional modules such as Configuration Service and Tunnel management.

On the demarshaling side the mapping logic differentiates the Request
and Response messages as follows :

	Request messages are mapped by its “method”

	
Response messages are mapped by their IDs which were originally
populated by the Request message. The JSON semantics of these OVSDB
schema is quite complex. The following figures summarize two of the
end-to-end scenarios:

[image: End-to-end handling of a Create Bridge request]
End-to-end handling of a Create Bridge request

[image: End-to-end handling of a monitor response]
End-to-end handling of a monitor response

Overlay tunnel management

Network Virtualization using OVS is achieved through Overlay Tunnels.
The actual Type of the Tunnel may be GRE, VXLAN, or STT. The differences
in the encapsulation and configuration decide the tunnel types.
Establishing a tunnel using configuration service requires just the
sending of OVSDB messages towards the ovsdb-server. However, the scaling
issues that would arise on the state management at the data-plane (using
OpenFlow) can get challenging. Also, this module can assist in various
optimizations in the presence of Gateways. It can also help in providing
Service guarantees for the VMs using these overlays with the help of
underlay orchestration.

OVSDB to OpenFlow plugin mapping service

The connect() of the ConnectionService would result in a Node that
represents an ovsdb-server. The CreateBridgeDomain() Configuration on
the above Node would result in creating an OVS bridge. This OVS Bridge
is an OpenFlow Agent for the OpenDaylight OpenFlow plugin with its own
Node represented as (example) OF|xxxx.yyyy.zzzz. Without any help
from the OVSDB plugin, the Node Mapping Service of the Controller
platform would not be able to map the following:

{OVSDB_NODE + BRIDGE_IDENTFIER} <---> {OF_NODE}.

Without such mapping, it would be extremely difficult for the
applications to manage and maintain such nodes. This Mapping Service
provided by the OVSDB plugin would essentially help in providing more
value added services to the orchestration layers that sit atop the
Northbound APIs (such as OpenStack).

OVSDB: New features

Schema independent library

The OVS connection is a node which can have multiple databases. Each
database is represented by a schema. A single connection can have
multiple schemas. OSVDB supports multiple schemas. Currently, these are
two schemas available in the OVSDB, but there is no restriction on the
number of schemas. Owing to the Northbound v3 API, no code changes in
ODL are needed for supporting additional schemas.

Schemas:

	openvswitch : Schema wrapper that represents
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

	hardwarevtep: Schema wrapper that represents
http://openvswitch.org/docs/vtep.5.pdf

OVSDB Library Developer Guide

Overview

The OVSDB library manages the Netty connections to network nodes and
handles bidirectional JSON-RPC messages. It not only provides OVSDB
protocol functionality to OpenDaylight OVSDB plugin but also can be used
as standalone JAVA library for OVSDB protocol.

The main responsibilities of OVSDB library include:

	Manage connections to peers

	Marshal and unmarshal JSON Strings to JSON objects.

	Marshal and unmarshal JSON Strings from and to the Network Element.

Connection Service

The OVSDB library provides connection management through the
OvsdbConnection interface. The OvsdbConnection interface provides OVSDB
connection management APIs which include both active and passive
connections. From the library perspective, active OVSDB connections are
initiated from the controller to OVS nodes while passive OVSDB
connections are initiated from OVS nodes to the controller. In the
active connection scenario an application needs to provide the IP
address and listening port of OVS nodes to the library management API.
On the other hand, the library management API only requires the info of
the controller listening port in the passive connection scenario.

For a passive connection scenario, the library also provides a
connection event listener through the OvsdbConnectionListener interface.
The listener interface has connected() and disconnected() methods to
notify an application when a new passive connection is established or an
existing connection is terminated.

SSL Connection

In addition to a regular TCP connection, the OvsdbConnection interface
also provides a connection management API for an SSL connection. To
start an OVSDB connection with SSL, an application will need to provide
a Java SSLContext object to the management API. There are different ways
to create a Java SSLContext, but in most cases a Java KeyStore with
certificate and private key provided by the application is required.
Detailed steps about how to create a Java SSLContext is out of the scope
of this document and can be found in the Java documentation for JAVA
Class SSlContext [http://goo.gl/5svszT].

In the active connection scenario, the library uses the given SSLContext
to create a Java SSLEngine and configures the SSL engine with the client
mode for SSL handshaking. Normally clients are not required to
authenticate themselves.

In the passive connection scenario, the library uses the given
SSLContext to create a Java SSLEngine which will operate in server mode
for SSL handshaking. For security reasons, the SSLv3 protocol and some
cipher suites are disabled. Currently the OVSDB server only supports the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite and the following
protocols: SSLv2Hello, TLSv1, TLSv1.1, TLSv1.2.

The SSL engine is also configured to operate on two-way authentication
mode for passive connection scenarios, i.e., the OVSDB server
(controller) will authenticate clients (OVS nodes) and clients (OVS
nodes) are also required to authenticate the server (controller). In the
two-way authentication mode, an application should keep a trust manager
to store the certificates of trusted clients and initialize a Java
SSLContext with this trust manager. Thus during the SSL handshaking
process the OVSDB server (controller) can use the trust manager to
verify clients and only accept connection requests from trusted clients.
On the other hand, users should also configure OVS nodes to authenticate
the controller. Open vSwitch already supports this functionality in the
ovsdb-server command with option --ca-cert=cacert.pem and
--bootstrap-ca-cert=cacert.pem. On the OVS node, a user can use the
option --ca-cert=cacert.pem to specify a controller certificate
directly and the node will only allow connections to the controller with
the specified certificate. If the OVS node runs ovsdb-server with option
--bootstrap-ca-cert=cacert.pem, it will authenticate the controller
with the specified certificate cacert.pem. If the certificate file
doesn’t exist, it will attempt to obtain a certificate from the peer
(controller) on its first SSL connection and save it to the named PEM
file cacert.pem. Here is an example of ovsdb-server with
--bootstrap-ca-cert=cacert.pem option:

ovsdb-server

 PCEP Developer Guide

PCEP Developer Guide

Overview

This section provides an overview of feature odl-bgpcep-pcep-all .
This feature will install everything needed for PCEP (Path Computation
Element Protocol) including establishing the connection, storing
information about LSPs (Label Switched Paths) and displaying data in
network-topology overview.

PCEP Architecture

Each feature represents a module in the BGPCEP codebase. The following
diagram illustrates how the features are related.

[image: PCEP Dependency Tree]
PCEP Dependency Tree

Key APIs and Interfaces

PCEP

Session handling

32-pcep.xml defines only pcep-dispatcher the parser should be using
(global-pcep-extensions), factory for creating session proposals (you
can create different proposals for different PCCs (Path Computation
Clients)).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:impl">prefix:pcep-dispatcher-impl</type>
 <name>global-pcep-dispatcher</name>
 <pcep-extensions>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extensions</type>
 <name>global-pcep-extensions</name>
 </pcep-extensions>
 <pcep-session-proposal-factory>
 <type xmlns:pcep="urn:opendaylight:params:xml:ns:yang:controller:pcep">pcep:pcep-session-proposal-factory</type>
 <name>global-pcep-session-proposal-factory</name>
 </pcep-session-proposal-factory>
 <boss-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-boss-group</name>
 </boss-group>
 <worker-group>
 <type xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">netty:netty-threadgroup</type>
 <name>global-worker-group</name>
 </worker-group>
</module>

For user configuration of PCEP, check User Guide.

Parser

The base PCEP parser includes messages and attributes from
RFC5441 [http://tools.ietf.org/html/rfc5441],
RFC5541 [http://tools.ietf.org/html/rfc5541],
RFC5455 [http://tools.ietf.org/html/rfc5455],
RFC5557 [http://tools.ietf.org/html/rfc5557] and
RFC5521 [http://tools.ietf.org/html/rfc5521].

Registration

All parsers and serializers need to be registered into Extension
provider. This Extension provider is configured in initial
configuration of the parser-spi module (32-pcep.xml).

<module>
 <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">prefix:pcep-extensions-impl</type>
 <name>global-pcep-extensions</name>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-base</name>
 </extension>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-ietf-stateful07</name>
 </extension>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-ietf-initiated00</name>
 </extension>
 <extension>
 <type xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">pcepspi:extension</type>
 <name>pcep-parser-sync-optimizations</name>
 </extension>
</module>

	pcep-parser-base - will register parsers and serializers
implemented in pcep-impl module

	pcep-parser-ietf-stateful07 - will register parsers and serializers
of draft-ietf-pce-stateful-pce-07 implementation

	pcep-parser-ietf-initiated00 - will register parser and serializer
of draft-ietf-pce-pce-initiated-lsp-00 implementation

	pcep-parser-sync-optimizations - will register parser and
serializers of draft-ietf-pce-stateful-sync-optimizations-03
implementation

Stateful07 module is a good example of a PCEP parser extension.

Configuration of PCEP parsers specifies one implementation of Extension
provider that will take care of registering mentioned parser
extensions:
SimplePCEPExtensionProviderContext [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo/SimplePCEPExtensionProviderContext.java;hb=refs/for/stable/boron].
All registries are implemented in package
pcep-spi [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=tree;f=pcep/spi/src/main/java/org/opendaylight/protocol/pcep/spi/pojo;hb=refs/for/stable/boron].

Parsing

Parsing of PCEP elements is mostly done equally to BGP, the only
exception is message parsing, that is described here.

In BGP messages, parsing of first-level elements (path-attributes) can
be validated in a simple way, as the attributes should be ordered
chronologically. PCEP, on the other hand, has a strict object order
policy, that is described in RBNF (Routing Backus-Naur Form) in each
RFC. Therefore the algorithm for parsing here is to parse all objects in
order as they appear in the message. The result of parsing is a list of
PCEPObjects, that is put through validation. validate() methods are
present in each message parser. Depending on the complexity of the
message, it can contain either a simple condition (checking the presence
of a mandatory object) or a full state machine.

In addition to that, PCEP requires sending error message for each
documented parsing error. This is handled by creating an empty list of
messages errors which is then passed as argument throughout whole
parsing process. If some parser encounters PCEPDocumentedException, it
has the duty to create appropriate PCEP error message and add it to this
list. In the end, when the parsing is finished, this list is examined
and all messages are sent to peer.

Better understanding provides this sequence diagram:

[image: Parsing]
Parsing

PCEP IETF stateful

This section summarizes module pcep-ietf-stateful07. The term stateful
refers to
draft-ietf-pce-stateful-pce [http://tools.ietf.org/html/draft-ietf-pce-stateful-pce]
and
draft-ietf-pce-pce-initiated-lsp [http://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp]
in versions draft-ietf-pce-stateful-pce-07 with
draft-ietf-pce-pce-initiated-lsp-00.

We will upgrade our implementation, when the stateful draft gets
promoted to RFC.

The stateful module is implemented as extensions to pcep-base-parser.
The stateful draft declared new elements as well as additional fields or
TLVs (type,length,value) to known objects. All new elements are defined
in yang models, that contain augmentations to elements defined in
pcep-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/api/src/main/yang/pcep-types.yang;hb=refs/for/stable/boron].
In the case of extending known elements, the Parser class merely
extends the base class and overrides necessary methods as shown in
following diagram:

[image: Extending existing parsers]
Extending existing parsers

All parsers (including those for newly defined PCEP elements) have to be
registered via the Activator class. This class is present in both
modules.

In addition to parsers, the stateful module also introduces additional
session proposal. This proposal includes new fields defined in stateful
drafts for Open object.

PCEP segment routing (SR)

PCEP Segment Routing is an extension of base PCEP and
pcep-ietf-stateful-07 extension. The pcep-segment-routing module
implements
draft-ietf-pce-segment-routing-01 [http://tools.ietf.org/html/draft-ietf-pce-segment-routing-01].

The extension brings new SR-ERO (Explicit Route Object) and SR-RRO
(Reported Route Object) subobject composed of SID (Segment Identifier)
and/or NAI (Node or Adjacency Identifier). The segment Routing path is
carried in the ERO and RRO object, as a list of SR-ERO/SR-RRO subobjects
in an order specified by the user. The draft defines new TLV -
SR-PCE-CAPABILITY TLV, carried in PCEP Open object, used to negotiate
Segment Routing ability.

The yang models of subobject, SR-PCE-CAPABILITY TLV and appropriate
augmentations are defined in
odl-pcep-segment-routing.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/yang/odl-pcep-segment-routing.yang;hb=refs/for/stable/boron].

The pcep-segment-routing module includes parsers/serializers for new
subobject
(SrEroSubobjectParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/java/org/opendaylight/protocol/pcep/segment/routing/SrEroSubobjectParser.java;hb=refs/for/stable/boron])
and TLV
(SrPceCapabilityTlvParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/segment-routing/src/main/java/org/opendaylight/protocol/pcep/segment/routing/SrPceCapabilityTlvParser.java;hb=refs/for/stable/boron]).

The pcep-segment-routing module implements
draft-ietf-pce-lsp-setup-type-01 [http://tools.ietf.org/html/draft-ietf-pce-lsp-setup-type-01],
too. The draft defines new TLV - Path Setup Type TLV, which value
indicate path setup signaling technique. The TLV may be included in
RP(Request Parameters)/SRP(Stateful PCE Request Parameters) object. For
the default RSVP-TE (Resource Reservation Protocol), the TLV is omitted.
For Segment Routing, PST = 1 is defined.

The Path Setup Type TLV is modeled with yang in module
pcep-types.yang [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/api/src/main/yang/pcep-types.yang;hb=refs/for/stable/boron].
A parser/serializer is implemented in
PathSetupTypeTlvParser [https://git.opendaylight.org/gerrit/gitweb?p=bgpcep.git;a=blob;f=pcep/impl/src/main/java/org/opendaylight/protocol/pcep/impl/tlv/PathSetupTypeTlvParser.java;hb=refs/for/stable/boron]
and it is overriden in segment-routing module to provide the aditional
PST.

PCEP Synchronization Procedures Optimization

Optimizations of Label Switched Path State Synchronization Procedures
for a Stateful PCE draft-ietf-pce-stateful-sync-optimizations-03
specifies following optimizations for state synchronization and the
corresponding PCEP procedures and extensions:

	State Synchronization Avoidance: To skip state synchronization if
the state has survived and not changed during session restart.

	Incremental State Synchronization: To do incremental (delta)
state synchronization when possible.

	PCE-triggered Initial Synchronization: To let PCE control the
timing of the initial state synchronization. The capability can be
applied to both full and incremental state synchronization.

	PCE-triggered Re-synchronization: To let PCE re-synchronize the
state for sanity check.

PCEP Topology

PCEP data is displayed only through one URL that is accessible from the
base network-topology URL:

http://localhost:8181/restconf/operational/network-topology:network-topology/topology/pcep-topology

Each PCC will be displayed as a node:

<node>
 <path-computation-client>
 <ip-address>42.42.42.42</ip-address>
 <state-sync>synchronized</state-sync>
 <stateful-tlv>
 <stateful>
 <initiation>true</initiation>
 <lsp-update-capability>true</lsp-update-capability>
 </stateful>
 </stateful-tlv>
 </path-computation-client>
 <node-id>pcc://42.42.42.42</node-id>
</node>
</source>

If some tunnels are configured on the network, they would be displayed
on the same page, within a node that initiated the tunnel:

<node>
 <path-computation-client>
 <state-sync>synchronized</state-sync>
 <stateful-tlv>
 <stateful>
 <initiation>true</initiation>
 <lsp-update-capability>true</lsp-update-capability>
 </stateful>
 </stateful-tlv>
 <reported-lsp>
 <name>foo</name>
 <lsp>
 <operational>down</operational>
 <sync>false</sync>
 <ignore>false</ignore>
 <plsp-id>1</plsp-id>
 <create>false</create>
 <administrative>true</administrative>
 <remove>false</remove>
 <delegate>true</delegate>
 <processing-rule>false</processing-rule>
 <tlvs>
 <lsp-identifiers>
 <ipv4>
 <ipv4-tunnel-sender-address>43.43.43.43</ipv4-tunnel-sender-address>
 <ipv4-tunnel-endpoint-address>0.0.0.0</ipv4-tunnel-endpoint-address>
 <ipv4-extended-tunnel-id>0.0.0.0</ipv4-extended-tunnel-id>
 </ipv4>
 <tunnel-id>0</tunnel-id>
 <lsp-id>0</lsp-id>
 </lsp-identifiers>
 <symbolic-path-name>
 <path-name>Zm9v</path-name>
 </symbolic-path-name>
 </tlvs>
 </lsp>
 </reported-lsp>
 <ip-address>43.43.43.43</ip-address>
 </path-computation-client>
 <node-id>pcc://43.43.43.43</node-id>
</node>

Note that, the <path-name> tag displays tunnel name in Base64
encoding.

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

 PacketCable Developer Guide

PacketCable Developer Guide

PCMM Specification

PacketCable™ Multimedia
Specification [http://www.cablelabs.com/specification/packetcable-multimedia-specification]

System Overview

These components introduce a DOCSIS QoS Service Flow management using
the PCMM protocol. The driver component is responsible for the
PCMM/COPS/PDP functionality required to service requests from
PacketCable Provider and FlowManager. Requests are transposed into PCMM
Gate Control messages and transmitted via COPS to the CCAP/CMTS. This
plugin adheres to the PCMM/COPS/PDP functionality defined in the
CableLabs specification. PacketCable solution is an MDSAL compliant
component.

PacketCable Components

The packetcable maven project is comprised of several modules.

	Bundle
	Description

	packetcable-driver
	A common module that containts the
COPS stack and manages all
connections to CCAPS/CMTSes.

	packetcable-emulator
	A basic CCAP emulator to facilitate
testing the the plugin when no
physical CCAP is avaible.

	packetcable-policy-karaf
	Generates a Karaf distribution with
a config that loads all the
packetcable features at runtime.

	packetcable-policy-model
	Contains the YANG information model.

	packetcable-policy-server
	Provider hosts the model processing,
RESTCONF, and API implementation.

Setting Logging Levels

From the Karaf console

log:set <LEVEL> (<PACKAGE>|<BUNDLE>)
Example
log:set DEBUG org.opendaylight.packetcable.packetcable-policy-server

Tools for Testing

Postman REST client for Chrome

Install the Chrome
extension [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en]

Download and import sample packetcable
collection [https://git.opendaylight.org/gerrit/gitweb?p=packetcable.git;a=tree;f=packetcable-policy-server/doc/restconf-samples]

View Rest API

	Install the odl-mdsal-apidocs feature from the karaf console.

	Open http://localhost:8181/apidoc/explorer/index.html default dev
build user/pass is admin/admin

	Navigate to the PacketCable section.

Yang-IDE

Editing yang can be done in any text editor but Yang-IDE will help
prevent mistakes.

Setup and Build Yang-IDE for
Eclipse [https://github.com/xored/yang-ide/wiki/Setup-and-build]

Using Wireshark to Trace PCMM

	To start wireshark with privileges issue the following command:

sudo wireshark &

	Select the interface to monitor.

	Use the Filter to only display COPS messages by applying “cops” in
the filter field.

[image: ../_images/packetcable-developer-wireshark.png]
Wireshark looking for COPS messages.

Debugging and Verifying DQoS Gate (Flows) on the CCAP/CMTS

Below are some of the most useful CCAP/CMTS commands to verify flows
have been enabled on the CMTS.

Cisco

Cisco CMTS Cable Command
Reference [http://www.cisco.com/c/en/us/td/docs/cable/cmts/cmd_ref/b_cmts_cable_cmd_ref.pdf]

Find the Cable Modem

10k2-DSG#show cable modem
 D
MAC Address IP Address I/F MAC Prim RxPwr Timing Num I
 State Sid (dBmv) Offset CPE P
0010.188a.faf6 0.0.0.0 C8/0/0/U0 offline 1 0.00 1482 0 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 1.00 1677 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419 1 Y

Show PCMM Plugin Connection

10k2-DSG#show packetcabl ?
 cms Gate Controllers connected to this PacketCable client
 event Event message server information
 gate PacketCable gate information
 global PacketCable global information

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg

10k2-DSG#show packetcable cms
GC-Addr GC-Port Client-Addr COPS-handle Version PSID Key PDD-Cfg
10.32.0.240 54238 10.32.15.3 0x4B9C8150/1 4.0 0 0 0

Show COPS Messages

debug cops details

Use CM Mac Address to List Service Flows

10k2-DSG#show cable modem
 D
MAC Address IP Address I/F MAC Prim RxPwr Timing Num I
 State Sid (dBmv) Offset CPE P
0010.188a.faf6 --- C8/0/0/UB w-online 1 0.50 1480 1 N
74ae.7600.01f3 10.32.115.150 C8/0/10/U0 online 1 -0.50 1431 0 Y
0010.188a.fad8 10.32.115.142 C8/0/10/UB w-online 2 -0.50 1507 1 Y
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0.00 1677 0 Y
e86d.5271.304f 10.32.115.168 C8/0/10/UB w-online 6 -0.50 1419 1 Y

10k2-DSG#show cable modem 000e.0900.00dd service-flow

SUMMARY:
MAC Address IP Address Host MAC Prim Num Primary DS
 Interface State Sid CPE Downstream RfId
000e.0900.00dd 10.32.115.143 C8/0/10/UB w-online 3 0 Mo8/0/2:1 2353

Sfid Dir Curr Sid Sched Prio MaxSusRate MaxBrst MinRsvRate Throughput
 State Type
23 US act 3 BE 0 0 3044 0 39
30 US act 16 BE 0 500000 3044 0 0
24 DS act N/A N/A 0 0 3044 0 17

UPSTREAM SERVICE FLOW DETAIL:

SFID SID Requests Polls Grants Delayed Dropped Packets
 Grants Grants
23 3 784 0 784 0 0 784
30 16 0 0 0 0 0 0

DOWNSTREAM SERVICE FLOW DETAIL:

SFID RP_SFID QID Flg Policer Scheduler FrwdIF
 Xmits Drops Xmits Drops
24 33019 131550 0 0 777 0 Wi8/0/2:2

Flags Legend:
$: Low Latency Queue (aggregated)
~: CIR Queue

Deleting a PCMM Gate Message from the CMTS

10k2-DSG#test cable dsd 000e.0900.00dd 30

Find service flows

All gate controllers currently connected to the PacketCable client are
displayed

show cable modem 00:11:22:33:44:55 service flow ????
show cable modem

Debug and display PCMM Gate messages

debug packetcable gate control
debug packetcable gate events
show packetcable gate summary
show packetcable global
show packetcable cms

Debug COPS messages

debug cops detail
debug packetcable cops
debug cable dynamic_qos trace

Integration Verification

Checkout the integration project and perform regression tests.

git clone ssh://${ODL_USERNAME}@git.opendaylight.org:29418/integration.git
git clone https:/git.opendaylight.org/gerrit/integration.git

	Check and edit the
integration/features/src/main/resources/features.xml and follow the
directions there.

	Check and edit the integration/features/pom.xml and add a dependency
for your feature file

	Build integration/features and debug

 Service Function Chaining

Service Function Chaining

OpenDaylight Service Function Chaining (SFC) Overview

OpenDaylight Service Function Chaining (SFC) provides the ability to
define an ordered list of a network services (e.g. firewalls, load
balancers). These service are then “stitched” together in the network to
create a service chain. This project provides the infrastructure
(chaining logic, APIs) needed for ODL to provision a service chain in
the network and an end-user application for defining such chains.

	ACE - Access Control Entry

	ACL - Access Control List

	SCF - Service Classifier Function

	SF - Service Function

	SFC - Service Function Chain

	SFF - Service Function Forwarder

	SFG - Service Function Group

	SFP - Service Function Path

	RSP - Rendered Service Path

	NSH - Network Service Header

SFC Classifier Control and Date plane Developer guide

Overview

Description of classifier can be found in:
https://datatracker.ietf.org/doc/draft-ietf-sfc-architecture/

Classifier manages everything from starting the packet listener to
creation (and removal) of appropriate ip(6)tables rules and marking
received packets accordingly. Its functionality is available only on
Linux as it leverdges NetfilterQueue, which provides access to
packets matched by an iptables rule. Classifier requires root
privileges to be able to operate.

So far it is capable of processing ACL for MAC addresses, ports, IPv4
and IPv6. Supported protocols are TCP and UDP.

Classifier Architecture

Python code located in the project repository
sfc-py/common/classifier.py.

Note

classifier assumes that Rendered Service Path (RSP) already
exists in ODL when an ACL referencing it is obtained

	sfc_agent receives an ACL and passes it for processing to the
classifier

	the RSP (its SFF locator) referenced by ACL is requested from ODL

	if the RSP exists in the ODL then ACL based iptables rules for it are
applied

After this process is over, every packet successfully matched to an
iptables rule (i.e. successfully classified) will be NSH encapsulated
and forwarded to a related SFF, which knows how to traverse the RSP.

Rules are created using appropriate iptables command. If the Access
Control Entry (ACE) rule is MAC address related both iptables and
ip6tabeles rules re issued. If ACE rule is IPv4 address related, only
iptables rules are issued, same for IPv6.

Note

iptables raw table contains all created rules

Information regarding already registered RSP(s) are stored in an
internal data-store, which is represented as a dictionary:

{rsp_id: {'name': <rsp_name>,
 'chains': {'chain_name': (<ipv>,),
 ...
 },
 'sff': {'ip': <ip>,
 'port': <port>,
 'starting-index': <starting-index>,
 'transport-type': <transport-type>
 },
 },
...
}

	name: name of the RSP

	chains: dictionary of iptables chains related to the RSP with
information about IP version for which the chain exists

	SFF: SFF forwarding parameters
	ip: SFF IP address

	port: SFF port

	starting-index: index given to packet at first RSP hop

	transport-type: encapsulation protocol

Key APIs and Interfaces

This features exposes API to configure classifier (corresponds to
service-function-classifier.yang)

API Reference Documentation

See: sfc-model/src/main/yang/service-function-classifier.yang

SFC-OVS Plugin

Overview

SFC-OVS provides integration of SFC with Open vSwitch (OVS) devices.
Integration is realized through mapping of SFC objects (like SF, SFF,
Classifier, etc.) to OVS objects (like Bridge,
TerminationPoint=Port/Interface). The mapping takes care of automatic
instantiation (setup) of corresponding object whenever its counterpart
is created. For example, when a new SFF is created, the SFC-OVS plugin
will create a new OVS bridge and when a new OVS Bridge is created, the
SFC-OVS plugin will create a new SFF.

SFC-OVS Architecture

SFC-OVS uses the OVSDB MD-SAL Southbound API for getting/writing
information from/to OVS devices. The core functionality consists of two
types of mapping:

	mapping from OVS to SFC
	OVS Bridge is mapped to SFF

	OVS TerminationPoints are mapped to SFF DataPlane locators

	mapping from SFC to OVS
	SFF is mapped to OVS Bridge

	SFF DataPlane locators are mapped to OVS TerminationPoints

[image: SFC < — > OVS mapping flow diagram]
SFC < — > OVS mapping flow diagram

Key APIs and Interfaces

	SFF to OVS mapping API (methods to convert SFF object to OVS Bridge
and OVS TerminationPoints)

	OVS to SFF mapping API (methods to convert OVS Bridge and OVS
TerminationPoints to SFF object)

SFC Southbound REST Plugin

Overview

The Southbound REST Plugin is used to send configuration from DataStore
down to network devices supporting a REST API (i.e. they have a
configured REST URI). It supports POST/PUT/DELETE operations, which are
triggered accordingly by changes in the SFC data stores.

	Access Control List (ACL)

	Service Classifier Function (SCF)

	Service Function (SF)

	Service Function Group (SFG)

	Service Function Schedule Type (SFST)

	Service Function Forwader (SFF)

	Rendered Service Path (RSP)

Southbound REST Plugin Architecture

	listeners - used to listen on changes in the SFC data stores

	JSON exporters - used to export JSON-encoded data from
binding-aware data store objects

	tasks - used to collect REST URIs of network devices and to send
JSON-encoded data down to these devices

[image: Southbound REST Plugin Architecture diagram]
Southbound REST Plugin Architecture diagram

Key APIs and Interfaces

The plugin provides Southbound REST API designated to listening REST
devices. It supports POST/PUT/DELETE operations. The operation (with
corresponding JSON-encoded data) is sent to unique REST URL belonging to
certain datatype.

	Access Control List (ACL):
http://<host>:<port>/config/ietf-acl:access-lists/access-list/

	Service Function (SF):
http://<host>:<port>/config/service-function:service-functions/service-function/

	Service Function Group (SFG):
http://<host>:<port>/config/service-function:service-function-groups/service-function-group/

	Service Function Schedule Type (SFST):
http://<host>:<port>/config/service-function-scheduler-type:service-function-scheduler-types/service-function-scheduler-type/

	Service Function Forwarder (SFF):
http://<host>:<port>/config/service-function-forwarder:service-function-forwarders/service-function-forwarder/

	Rendered Service Path (RSP):
http://<host>:<port>/operational/rendered-service-path:rendered-service-paths/rendered-service-path/

Therefore, network devices willing to receive REST messages must listen
on these REST URLs.

Note

Service Classifier Function (SCF) URL does not exist, because SCF is
considered as one of the network devices willing to receive REST
messages. However, there is a listener hooked on the SCF data store,
which is triggering POST/PUT/DELETE operations of ACL object,
because ACL is referenced in service-function-classifier.yang

Service Function Load Balancing Developer Guide

Overview

SFC Load-Balancing feature implements load balancing of Service
Functions, rather than a one-to-one mapping between Service Function
Forwarder and Service Function.

Load Balancing Architecture

Service Function Groups (SFG) can replace Service Functions (SF) in the
Rendered Path model. A Service Path can only be defined using SFGs or
SFs, but not a combination of both.

Relevant objects in the YANG model are as follows:

	Service-Function-Group-Algorithm:

Service-Function-Group-Algorithms {
 Service-Function-Group-Algorithm {
 String name
 String type
 }
}

Available types: ALL, SELECT, INDIRECT, FAST_FAILURE

	Service-Function-Group:

Service-Function-Groups {
 Service-Function-Group {
 String name
 String serviceFunctionGroupAlgorithmName
 String type
 String groupId
 Service-Function-Group-Element {
 String service-function-name
 int index
 }
 }
}

	ServiceFunctionHop: holds a reference to a name of SFG (or SF)

Key APIs and Interfaces

This feature enhances the existing SFC API.

REST API commands include: * For Service Function Group (SFG): read
existing SFG, write new SFG, delete existing SFG, add Service Function
(SF) to SFG, and delete SF from SFG * For Service Function Group
Algorithm (SFG-Alg): read, write, delete

Bundle providing the REST API: sfc-sb-rest * Service Function Groups
and Algorithms are defined in: sfc-sfg and sfc-sfg-alg * Relevant JAVA
API: SfcProviderServiceFunctionGroupAPI,
SfcProviderServiceFunctionGroupAlgAPI

Service Function Scheduling Algorithms

Overview

When creating the Rendered Service Path (RSP), the earlier release of
SFC chose the first available service function from a list of service
function names. Now a new API is introduced to allow developers to
develop their own schedule algorithms when creating the RSP. There are
four scheduling algorithms (Random, Round Robin, Load Balance and
Shortest Path) are provided as examples for the API definition. This
guide gives a simple introduction of how to develop service function
scheduling algorithms based on the current extensible framework.

Architecture

The following figure illustrates the service function selection
framework and algorithms.

[image: SF Scheduling Algorithm framework Architecture]
SF Scheduling Algorithm framework Architecture

The YANG Model defines the Service Function Scheduling Algorithm type
identities and how they are stored in the MD-SAL data store for the
scheduling algorithms.

The MD-SAL data store stores all informations for the scheduling
algorithms, including their types, names, and status.

The API provides some basic APIs to manage the informations stored in
the MD-SAL data store, like putting new items into it, getting all
scheduling algorithms, etc.

The RESTCONF API provides APIs to manage the informations stored in the
MD-SAL data store through RESTful calls.

The Service Function Chain Renderer gets the enabled scheduling
algorithm type, and schedules the service functions with scheduling
algorithm implementation.

Key APIs and Interfaces

While developing a new Service Function Scheduling Algorithm, a new
class should be added and it should extend the base schedule class
SfcServiceFunctionSchedulerAPI. And the new class should implement the
abstract function:

public List<String> scheduleServiceFuntions(ServiceFunctionChain chain, int serviceIndex).

	``ServiceFunctionChain chain``: the chain which will be rendered

	``int serviceIndex``: the initial service index for this rendered
service path

	``List<String>``: a list of service funtion names which scheduled
by the Service Function Scheduling Algorithm.

API Reference Documentation

Please refer the API docs generated in the mdsal-apidocs.

 SNBI Developer Guide

SNBI Developer Guide

Overview

Key distribution in a scaled network has always been a challenge.
Typically, operators must perform some manual key distribution process
before secure communication is possible between a set of network
devices. The Secure Network Bootstrapping Infrastructure (SNBI) project
securely and automatically brings up an integrated set of network
devices and controllers, simplifying the process of bootstrapping
network devices with the keys required for secure communication. SNBI
enables connectivity to the network devices by assigning unique IPv6
addresses and bootstrapping devices with the required keys. Admission
control of devices into a specific domain is achieved using whitelist of
authorized devices.

SNBI Architecture

At a high level, SNBI architecture consists of the following components:

	SNBI Registrar

	SNBI Forwarding Element (FE)

[image: SNBI Architecture Diagram]
SNBI Architecture Diagram

SNBI Registrar

Registrar is a device in a network that validates device against a
whitelist and delivers device domain certificate. Registrar includes the
following:

	RESTCONF API for Domain Whitelist Configuration

	Certificate Authority

	SNBI Southbound Plugin

RESTCONF API for Domain Whitelist Configuration:.

RESTCONF APIs are used to configure the whitelist set device in the
registrar in the controller. The registrar interacts with the MD-SAL to
obtain the whitelist set of devices and validate the device trying to
join a domain. Furthermore it is possible to run multiple registrar
instances pertaining to each domain.

SNBI Southbound Plugin:.

The Southbound Plugin implements the protocol state machine necessary to
exchange device identifiers, and deliver certificates. The southbound
plugin interacts with MD-SAL and the certificate authority to validate
and create device domain certificates. The device domain certificate
thus generated could be used to prove the validity of the devices within
the domain.

Certificate Authority:.

A simple certificate authority is implemented using the Bouncy Castle
package. The Certificate Authority creates the certificates from the
device CSR requests received from the devices. The certificates thus
generated are delievered to the devices using the Southbound Plugin as
discussed earlier.

SNBI Forwarding Element (FE)

The SNBI Forwarding Element runs on Linux machines which have to join
the domain. The Device UDI(Universal Device Identifier) or the device
identifier could be derived from a multitude of parameters in the host
machine, but most of the parameters derived from the host are known
ahead or doesn’t remain constant across reloads. Therefore, each of the
SNBI FE should be configured explicitly with a UDI that is already
present in the device white list. The registrar service IP address must
be provided to the first host (Forwarding Element) to be bootstrapped.
As mentioned in the section_title section,
the registrar service IP address is fd08::aaaa:bbbb:1. The First
Forwarding Element must be configured with this IPv6 address.

The forwarding element must be installed or unpacked on a Linux host
whose network layer traffic must be secured. The FE performs the
following functions:

	Neighour Discovery

	Bootstrapping with device domain certificates

	Host Configuration

Neighbour Discovery

Neighbour Discovery (ND) is the first step in accommodating devices in a
secure network. SNBI performs periodic neighbour discovery of SNBI
agents by transmitting ND hello packets. The discovered devices are
populated in an ND table. Neighbour Discovery is periodic and
bidirectional. ND hello packets are transmitted every 10 seconds. A 40
second refresh timer is set for each discovered neighbour. On expiry of
the refresh timer, the Neighbour Adjacency is removed from the ND table
as the Neighbour Adjacency is no longer valid. It is possible that the
same SNBI neighbour is discovered on multiple links, the expiry of a
device on one link does not automatically remove the device entry from
the ND table. In the exchange of ND keepalives, the device UDI is
exchanged.

Bootstrapping with Device Domain Certificates

Bootstrapping a device involves the following sequential steps:

	Authenticate a device using device identifier (UDI-Universal Device
Identifier or SUDI-Secure Universal Device Identifier) - The device
identifier is exchanged in the hello messages.

	Allocate the appropriate device ID and IPv6 address to uniquely
identify the device in the network

	Allocate the required keys by installing a Device Domain Certificate

	Accommodate the device in the domain

A device which is already bootstrapped acts as a proxy to bootstrap the
new device which is trying to join the domain.

	Neighbour Invite phase - When a proxy device detects a new neighbor
bootStrap connect message is initiated on behalf of the New device
–NEIGHBOUR CONNECT Msg. The message is sent to the registrar to
authenticate the device UDI against the whitelist of devices. The
source IPv6 address is the proxy IPv6 address and the destination
IPv6 address is the registrar IPv6 address. The SNBI Registrar
provides appropriate device ID and IPv6 address to uniquely identify
the device in the network and then invites the device to join the
domain. — NEIGHBOUR INVITE Msg.

	Neighbour Reject - If the Device UDI is not in the white list of
devices, then the device is rejected and is not accepted into the
domain. The proxy device just updates its DB with the reject
information but still maintains the Neighbour relationship.

	Neighbour BootStrap Phase - Once the new device gets a neighbour
invite message, it tries to boot strap itself by generating a key
pair. The device generates a Certificate Sign Request (CSR) PKCS10
request and gets it signed by the CA running at the SNBI
Registrar. — BS REQ Msg. Once the certificate is enrolled and
signed by the CA, the generated x.509 certificate is returned to the
new device to complete the bootstrap process. — BS RESP Msg.

Host Configuration

Host configuration involves configuring a host to create a secure
overlay network, assigning appropriate IPv6 address, setting up GRE
tunnels, securing the tunnels traffic via IPsec and enabling
connectivity via a routing protocol. Docker is used to package all the
required dependent software modules.

[image: SNBI Bootstrap Process]
SNBI Bootstrap Process

	Interace configuration: The Iproute2 package, which comes by default
packaged in the Linux distributions, is used to configure the
required interface (snbi-fe) and assign the appropriate IPv6 address.

	GRE Tunnel Creation: LinkLocal GRE tunnels are created to each of the
discovered devices that are part of the domain. The GRE tunnels are
used to create the overlay network for the domain.

	Routing over the Overlay: To enable reachability of devices within
the overlay network a light weight routing protocol is used. The
routing protocol of choice is the RPL (Routing Protocol for Low-Power
and Lossy Networks) protocol. The routing protocol advertises the
device domain IPv6 address over the overlay network. Unstrung is
the open source implementation of RPL and is packaged within the
docker image. More details on unstrung is available at
http://unstrung.sandelman.ca/

	IPsec: IPsec is used to secure any traffic routed over the tunnels.
StrongSwan is used to encrypt traffic using IPsec. More details on
StrongSwan is available at https://www.strongswan.org/

Docker Image

The SNBI Forwarding Element is packaged in a docker container available
at this link: https://hub.docker.com/r/snbi/boron/. For more information
on docker, refer to this link: https://docs.docker.com/linux/.

To update an SNBI FE Daemon, build the image and copy the image to
/home/snbi directory. When the docker image is run, it autoamtically
generates a startup configuration file for the SNBI FE daemon. The
startup configuration script is also available at /home/snbi.

[image: SNBI Docker Image]
SNBI Docker Image

Key APIs and Interfaces

The only API that SNBI exposes is to configure the whitelist of devices
for a domain.

The POST method below configures a domain - “secure-domain” and
configures a whitelist set of devices to be accommodated to the domain.

{
 "snbi-domain": {
 "domain-name": "secure-domain",
 "device-list": [
 {
 "list-name": "demo list",
 "list-type": "white",
 "active": true,
 "devices": [
 {
 "device-id": "UDI-FirstFE"
 },
 {
 "device-id": "UDI-dev1"
 },
 {
 "device-id": "UDI-dev2"
 }
]
 }
]
 }
}

The associated device ID must be configured on the SNBI FE (see above).

API Reference Documentation

See the generated RESTCONF API documentation at:
http://localhost:8181/apidoc/explorer/index.html

Look for the SNBI module to expand and see the various RESTCONF APIs.

 SNMP4SDN Developer Guide

SNMP4SDN Developer Guide

Overview

We propose a southbound plugin that can control the off-the-shelf
commodity Ethernet switches for the purpose of building SDN using
Ethernet switches. For Ethernet switches, forwarding table, VLAN table,
and ACL are where one can install flow configuration on, and this is
done via SNMP and CLI in the proposed plugin. In addition, some settings
required for Ethernet switches in SDN, e.g., disabling STP and flooding,
are proposed.

[image: SNMP4SDN as an OpenDaylight southbound plugin]
SNMP4SDN as an OpenDaylight southbound plugin

Architecture

The modules in the plugin are depicted as the following figure.

[image: Modules in the SNMP4SDN Plugin]
Modules in the SNMP4SDN Plugin

	AclService: add/remove ACL profile and rule on the switches.

	FdbService: add/modify/remove FDB table entry on the switches.

	VlanService: add/modify/remove VLAN table entry on the switches.

	TopologyService: query and acquire the subnet topology.

	InventoryService: acquire the switches and their ports.

	DiscoveryService: probe and resolve the underlying switches as well
as the port pairs connecting the switches. The probing is realized by
SNMP queries. The updates from discovery will also be reflected to
the TopologyService.

	MiscConfigService: do kinds of settings on switches
	Supported STP and ARP settings such as enable/disable STP, get
port’s STP state, get ARP table, set ARP entry, and others

	VendorSpecificHandler: to assist the flow configuration services to
call the switch-talking modules with correct parameters value and
order.

	Switch-talking modules
	For the services above, when they need to read or configure the
underlying switches via SNMP or CLI, these queries are dealt with
the modules SNMPHandler and CLIHandler which directly talk with
the switches. The SNMPListener is to listen to snmp trap such as
link up/down event or switch on/off event.

Design

In terms of the architecture of the SNMP4SDN Plugin’s features, the
features include flow configuration, topology discovery, and
multi-vendor support. Their architectures please refer to Wiki
(Developer Guide -
Design [https://wiki.opendaylight.org/view/SNMP4SDN:Developer_Guide#Design]).

Installation and Configuration Guide

	Please refer to the Getting Started Guide in
https://www.opendaylight.org/downloads, find the SNMP4SDN section.

	For the latest full guide, please refer to Wiki (Installation
Guide [https://wiki.opendaylight.org/view/SNMP4SDN:Installation_Guide],
User Guide -
Configuration [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Configuration]).

Tutorial

	For the latest full guide, please refer to Wiki (User Guide -
Tutorial [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Tutorial_.2F_How-To]).

Programmatic Interface(s)

SNMP4SDN Plugin exposes APIs via MD-SAL with YANG model. The methods
(RPC call) and data structures for them are listed below.

TopologyService

	RPC call
	get-edge-list

	get-node-list

	get-node-connector-list

	set-discovery-interval (given interval time in seconds)

	rediscover

	Data structure
	node: composed of node-id, node-type

	node-connector: composed of node-connector-id,
node-connector-type, node

	topo-edge: composed of head-node-connector-id,
head-node-connector-type, head-node-id, head-node-type,
tail-node-connector-id, tail-node-connector-type, tail-node-id,
tail-node-type

VlanService

	RPC call
	add-vlan (given node ID, VLAN ID, VLAN name)

	add-vlan-and-set-ports (given node ID, VLAN ID, VLAN name, tagged
ports, untagged ports)

	set-vlan-ports (given node ID, VLAN ID, tagged ports, untagged
ports)

	delete-vlan (given node ID, VLAN ID)

	get-vlan-table (given node ID)

AclService

	RPC call
	create-acl-profile (given node ID, acl-profile-index, acl-profile)

	del-acl-profile (given node ID, acl-profile-index)

	set-acl-rule (given node ID, acl-index, acl-rule)

	del-acl-rule (given node ID, acl-index)

	clear-acl-table (given node ID)

	Data structure
	acl-profile-index: composed of profile-id, profile name

	acl-profile: composed of acl-layer, vlan-mask, src-ip-mask,
dst-ip-mask

	acl-layer: IP or ETHERNET

	acl-index: composed of acl-profile-index, acl-rule-index

	acl-rule-index: composed of rule-id, rule-name

	acl-rule: composed of port-list, acl-layer, acl-field, acl-action

	acl-field: composed of vlan-id, src-ip, dst-ip

	acl-action: PERMIT or DENY

FdbService

	RPC call
	set-fdb-entry (given fdb-entry)

	del-fdb-entry (given node-id, vlan-id, dest-mac-adddr)

	get-fdb-entry (given node-id, vlan-id, dest-mac-adddr)

	get-fdb-table (given node-id)

	Data structure
	fdb-entry: composed of node-id, vlan-id, dest-mac-addr, port,
fdb-entry-type

	fdb-entry-type: OTHER/INVALID/LEARNED/SELF/MGMT

MiscConfigService

	RPC call
	set-stp-port-state (given node-id, port, is_nable)

	get-stp-port-state (given node-id, port)

	get-stp-port-root (given node-id, port)

	enable-stp (given node-id)

	disable-stp (given node-id)

	delete-arp-entry (given node-id, ip-address)

	set-arp-entry (given node-id, arp-entry)

	get-arp-entry (given node-id, ip-address)

	get-arp-table (given node-id)

	Data structure
	stp-port-state:
DISABLE/BLOCKING/LISTENING/LEARNING/FORWARDING/BROKEN

	arp-entry: composed of ip-address and mac-address

SwitchDbService

	RPC call
	reload-db (The following 4 RPC implemention is TBD)

	add-switch-entry

	delete-switch-entry

	clear-db

	update-db

	Data structure
	switch-info: compose of node-ip, node-mac, community,
cli-user-name, cli-password, model

Help

	SNMP4SDN Wiki [https://wiki.opendaylight.org/view/SNMP4SDN:Main]

	SNMP4SDN Mailing List
(user [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-users],
developer [https://lists.opendaylight.org/mailman/listinfo/snmp4sdn-dev])

	Latest troubleshooting in
Wiki [https://wiki.opendaylight.org/view/SNMP4SDN:User_Guide#Troubleshooting]

 SXP Developer Guide

SXP Developer Guide

Overview

SXP (Source-Group Tag eXchange Protocol) project is an effort to enhance
OpenDaylight platform with IP-SGT (IP Address to Source Group Tag)
bindings that can be learned from connected SXP-aware network nodes. The
current implementation supports SXP protocol version 4 according to the
Smith, Kandula - SXP IETF
draft [https://tools.ietf.org/html/draft-smith-kandula-sxp-04] and
grouping of peers and creating filters based on ACL/Prefix-list syntax
for filtering outbound and inbound IP-SGT bindings. All protocol legacy
versions 1-3 are supported as well. Additionally, version 4 adds
bidirectional connection type as an extension of a unidirectional one.

SXP Architecture

The SXP Server manages all connected clients in separate threads and a
common SXP protocol agreement is used between connected peers. Each SXP
network peer is modelled with its pertaining class, e.g., SXP Server
represents the SXP Speaker, SXP Listener the Client. The server program
creates the ServerSocket object on a specified port and waits until a
client starts up and requests connect on the IP address and port of the
server. The client program opens a Socket that is connected to the
server running on the specified host IP address and port.

The SXP Listener maintains connection with its speaker peer. From an
opened channel pipeline, all incoming SXP messages are processed by
various handlers. Message must be decoded, parsed and validated.

The SXP Speaker is a counterpart to the SXP Listener. It maintains a
connection with its listener peer and sends composed messages.

The SXP Binding Handler extracts the IP-SGT binding from a message and
pulls it into the SXP-Database. If an error is detected during the
IP-SGT extraction, an appropriate error code and sub-code is selected
and an error message is sent back to the connected peer. All transitive
messages are routed directly to the output queue of SXP Binding
Dispatcher.

The SXP Binding Dispatcher represents a selector that will decides how
many data from the SXP-database will be sent and when. It is responsible
for message content composition based on maximum message length.

The SXP Binding Filters handles filtering of outgoing and incoming
IP-SGT bindings according to BGP filtering using ACL and Prefix List
syntax for specifying filter or based on Peer-sequence length.

The SXP Domains feature provides isolation of SXP peers and bindings
learned between them, also exchange of Bindings is possible across
SXP-Domains by ACL, Prefix List or Peer-Sequence filters

Key APIs and Interfaces

As this project is fairly small, it provides only few features that
install and provide all APIs and implementations for this project.

	sxp-controller

	sxp-api

	spx-core

sxp-controller

RPC request handling

sxp-api

Contains data holders and entities

spx-core

Main logic and core features

API Reference Documentation

RESTCONF Interface and Dynamic
Tree [https://wiki.opendaylight.org/images/9/91/SXP_Restconf_Interface_and_Dynamic_Tree.pdf]
Specification and
Architecture [https://wiki.opendaylight.org/images/6/6e/SXP_Specification_and_Architecture_v03.pdf]

 Topology Processing Framework Developer Guide

Topology Processing Framework Developer Guide

Overview

The Topology Processing Framework allows developers to aggregate and
filter topologies according to defined correlations. It also provides
functionality, which you can use to make your own topology model by
automating the translation from one model to another. For example to
translate from the opendaylight-inventory model to only using the
network-topology model.

Architecture

Chapter Overview

In this chapter we describe the architecture of the Topology Processing
Framework. In the first part, we provide information about available
features and basic class relationships. In the second part, we describe
our model specific approach, which is used to provide support for
different models.

Basic Architecture

The Topology Processing Framework consists of several Karaf features:

	odl-topoprocessing-framework

	odl-topoprocessing-inventory

	odl-topoprocessing-network-topology

	odl-topoprocessing-i2rs

	odl-topoprocessing-inventory-rendering

The feature odl-topoprocessing-framework contains the
topoprocessing-api, topoprocessing-spi and topoprocessing-impl bundles.
This feature is the core of the Topology Processing Framework and is
required by all others features.

	topoprocessing-api - contains correlation definitions and definitions
required for rendering

	topoprocessing-spi - entry point for topoprocessing service (start
and close)

	topoprocessing-impl - contains base implementations of handlers,
listeners, aggregators and filtrators

TopoProcessingProvider is the entry point for Topology Processing
Framework. It requires a DataBroker instance. The DataBroker is needed
for listener registration. There is also the TopologyRequestListener
which listens on aggregated topology requests (placed into the
configuration datastore) and UnderlayTopologyListeners which listen on
underlay topology data changes (made in operational datastore). The
TopologyRequestHandler saves toporequest data and provides a method for
translating a path to the specified leaf. When a change in the topology
occurs, the registered UnderlayTopologyListener processes this
information for further aggregation and/or filtration. Finally, after an
overlay topology is created, it is passed to the TopologyWriter, which
writes this topology into operational datastore.

[image: Class relationship]
Class relationship

[1] TopologyRequestHandler instantiates TopologyWriter and
TopologyManager. Then, according to the request, initializes either
TopologyAggregator, TopologyFiltrator or LinkCalculator.

[2] It creates as many instances of UnderlayTopologyListener as there
are underlay topologies.

[3] PhysicalNodes are created for relevant incoming nodes (those having
node ID).

[4a] It performs aggregation and creates logical nodes.

[4b] It performs filtration and creates logical nodes.

[4c] It performs link computation and creates links between logical
nodes.

[5] Logical nodes are put into wrapper.

[6] The wrapper is translated into the appropriate format and written
into datastore.

Model Specific Approach

The Topology Processing Framework consists of several modules and Karaf
features, which provide support for different input models. Currently we
support the network-topology, opendaylight-inventory and i2rs models.
For each of these input models, the Topology Processing Framework has
one module and one Karaf feature.

How it works

User point of view:

When you start the odl-topoprocessing-framework feature, the Topology
Processing Framework starts without knowledge how to work with any input
models. In order to allow the Topology Processing Framework to process
some kind of input model, you must install one (or more) model specific
features. Installing these features will also start
odl-topoprocessing-framework feature if it is not already running. These
features inject appropriate logic into the odl-topoprocessing-framework
feature. From that point, the Topology Processing Framework is able to
process different kinds of input models, specifically those that you
install features for.

Developer point of view:

The topoprocessing-impl module contains (among other things) classes and
interfaces, which are common for every model specific topoprocessing
module. These classes and interfaces are implemented and extended by
classes in particular model specific modules. Model specific modules
also depend on the TopoProcessingProvider class in the
topoprocessing-spi module. This dependency is injected during
installation of model specific features in Karaf. When a model specific
feature is started, it calls the registerAdapters(adapters) method of
the injected TopoProcessingProvider object. After this step, the
Topology Processing Framework is able to use registered model adapters
to work with input models.

To achieve the described functionality we created a ModelAdapter
interface. It represents installed feature and provides methods for
creating crucial structures specific to each model.

[image: ModelAdapter interface]
ModelAdapter interface

Model Specific Features

	odl-topoprocessing-network-topology - this feature contains logic to
work with network-topology model

	odl-topoprocessing-inventory - this feature contains logic to work
with opendaylight-inventory model

	odl-topoprocessing-i2rs - this feature contains logic to work with
i2rs model

Inventory Model Support

The opendaylight-inventory model contains only nodes, termination
points, information regarding these structures. This model co-operates
with network-topology model, where other topology related information is
stored. This means that we have to handle two input models at once. To
support the inventory model, InventoryListener and
NotificationInterConnector classes were introduced. Please see the flow
diagrams below.

[image: Network topology model]
Network topology model

[image: Inventory model]
Inventory model

Here we can see the InventoryListener and NotificationInterConnector
classes. InventoryListener listens on data changes in the inventory
model and passes these changes wrapped as an UnderlayItem for further
processing to NotificationInterConnector. It doesn’t contain node
information - it contains a leafNode (node based on which aggregation
occurs) instead. The node information is stored in the topology model,
where UnderlayTopologyListener is registered as usual. This listener
delivers the missing information.

Then the NotificationInterConnector combines the two notifications into
a complete UnderlayItem (no null values) and delivers this UnderlayItem
for further processing (to next TopologyOperator).

Aggregation and Filtration

Chapter Overview

The Topology Processing Framework allows the creation of aggregated
topologies and filtered views over existing topologies. Currently,
aggregation and filtration is supported for topologies that follow
network-topology [https://github.com/opendaylight/yangtools/blob/master/model/ietf/ietf-topology/src/main/yang/network-topology%402013-10-21.yang],
opendaylight-inventory or i2rs model. When a request to create an
aggregated or filtered topology is received, the framework creates one
listener per underlay topology. Whenever any specified underlay topology
is changed, the appropriate listener is triggered with the change and
the change is processed. Two types of correlations (functionalities) are
currently supported:

	Aggregation
	Unification

	Equality

	Filtration

Terminology

We use the term underlay item (physical node) for items (nodes, links,
termination-points) from underlay and overlay item (logical node) for
items from overlay topologies regardless of whether those are actually
physical network elements.

Aggregation

Aggregation is an operation which creates an aggregated item from two or
more items in the underlay topology if the aggregation condition is
fulfilled. Requests for aggregated topologies must specify a list of
underlay topologies over which the overlay (aggregated) topology will be
created and a target field in the underlay item that the framework will
check for equality.

Create Overlay Node

First, each new underlay item is inserted into the proper topology
store. Once the item is stored, the framework compares it (using the
target field value) with all stored underlay items from underlay
topologies. If there is a target-field match, a new overlay item is
created containing pointers to all equal underlay items. The newly
created overlay item is also given new references to its supporting
underlay items.

Equality case:

If an item doesn’t fulfill the equality condition with any other items,
processing finishes after adding the item into topology store. It will
stay there for future use, ready to create an aggregated item with a new
underlay item, with which it would satisfy the equality condition.

Unification case:

An overlay item is created for all underlay items, even those which
don’t fulfill the equality condition with any other items. This means
that an overlay item is created for every underlay item, but for items
which satisfy the equality condition, an aggregated item is created.

Update Node

Processing of updated underlay items depends on whether the target field
has been modified. If yes, then:

	if the underlay item belonged to some overlay item, it is removed
from that item. Next, if the aggregation condition on the target
field is satisfied, the item is inserted into another overlay item.
If the condition isn’t met then:
	in equality case - the item will not be present in overlay
topology.

	in unification case - the item will create an overlay item with a
single underlay item and this will be written into overlay
topology.

	if the item didn’t belong to some overlay item, it is checked again
for aggregation with other underlay items.

Remove Node

The underlay item is removed from the corresponding topology store, from
it’s overlay item (if it belongs to one) and this way it is also removed
from overlay topology.

Equality case:

If there is only one underlay item left in the overlay item, the overlay
item is removed.

Unification case:

The overlay item is removed once it refers to no underlay item.

Filtration

Filtration is an operation which results in creation of overlay topology
containing only items fulfilling conditions set in the topoprocessing
request.

Create Underlay Item

If a newly created underlay item passes all filtrators and their
conditions, then it is stored in topology store and a creation
notification is delivered into topology manager. No operation otherwise.

Update Underlay Item

First, the updated item is checked for presence in topology store:

	if it is present in topology store:
	if it meets the filtering conditions, then processUpdatedData
notification is triggered

	else processRemovedData notification is triggered

	if item isn’t present in topology store
	if item meets filtering conditions, then processCreatedData
notification is triggered

	else it is ignored

Remove Underlay Item

If an underlay node is supporting some overlay node, the overlay node is
simply removed.

Default Filtrator Types

There are seven types of default filtrators defined in the framework:

	IPv4-address filtrator - checks if specified field meets IPv4 address
+ mask criteria

	IPv6-address filtrator - checks if specified field meets IPv6 address
+ mask criteria

	Specific number filtrator - checks for specific number

	Specific string filtrator - checks for specific string

	Range number filtrator - checks if specified field is higher than
provided minimum (inclusive) and lower than provided maximum
(inclusive)

	Range string filtrator - checks if specified field is alphabetically
greater than provided minimum (inclusive) and alphabetically lower
than provided maximum (inclusive)

	Script filtrator - allows a user or application to implement their
own filtrator

Register Custom Filtrator

There might be some use case that cannot be achieved with the default
filtrators. In these cases, the framework offers the possibility for a
user or application to register a custom filtrator.

Pre-Filtration / Filtration & Aggregation

This feature was introduced in order to lower memory and performance
demands. It is a combination of the filtration and aggregation
operations. First, uninteresting items are filtered out and then
aggregation is performed only on items that passed filtration. This way
the framework saves on compute time. The PreAggregationFiltrator and
TopologyAggregator share the same TopoStoreProvider (and thus topology
store) which results in lower memory demands (as underlay items are
stored only in one topology store - they aren’t stored twice).

Link Computation

Chapter Overview

While processing the topology request, we create overlay nodes with
lists of supporting underlay nodes. Because these overlay nodes have
completely new identifiers, we lose link information. To regain this
link information, we provide Link Computation functionality. Its main
purpose is to create new overlay links based on the links from the
underlay topologies and underlay items from overlay items. The required
information for Link Computation is provided via the Link Computation
model in
(topology-link-computation.yang [https://git.opendaylight.org/gerrit/gitweb?p=topoprocessing.git;a=blob;f=topoprocessing-api/src/main/yang/topology-link-computation.yang;hb=refs/heads/stable/boron]).

Link Computation Functionality

Let us consider two topologies with following components:

Topology 1:

	Node: node:1:1

	Node: node:1:2

	Node: node:1:3

	Link: link:1:1 (from node:1:1 to node:1:2)

	Link: link:1:2 (from node:1:3 to node:1:2)

Topology 2:

	Node: node:2:1

	Node: node:2:2

	Node: node:2:3

	Link: link:2:1 (from node:2:1 to node:2:3)

Now let’s say that we applied some operations over these topologies that
results into aggregating together

	node:1:1 and node:2:3 (node:1)

	node:1:2 and node:2:2 (node:2)

	node:1:3 and node:2:1 (node:3)

At this point we can no longer use available links in new topology
because of the node ID change, so we must create new overlay links with
source and destination node set to new nodes IDs. It means that
link:1:1 from topology 1 will create new link link:1. Since
original source (node:1:1) is already aggregated under node:1,
it will become source node for link:1. Using same method the
destination will be node:2. And the final output will be three
links:

	link:1, from node:1 to node:2

	link:2, from node:3 to node:2

	link:3, from node:3 to node:1

[image: Overlay topology with computed links]
Overlay topology with computed links

In-Depth Look

The main logic behind Link Computation is executed in the LinkCalculator
operator. The required information is passed to LinkCalculator through
the LinkComputation section of the topology request. This section is
defined in the topology-link-computation.yang file. The main logic also
covers cases when some underlay nodes may not pass through other
topology operators.

Link Computation Model

There are three essential pieces of information for link computations.
All of them are provided within the LinkComputation section. These
pieces are:

	output model

	overlay topology with new nodes

	underlay topologies with original links

This whole section is augmented into network-topology:topology. By
placing this section out of correlations section, it allows us to send
link computation request separately from topology operations request.

Main Logic

Taking into consideration that some of the underlay nodes may not
transform into overlay nodes (e.g. they are filtered out), we created
two possible states for links:

	matched - a link is considered as matched when both original source
and destination node were transformed to overlay nodes

	waiting - a link is considered as waiting if original source,
destination or both nodes are missing from the overlay topology

All links in waiting the state are stored in waitingLinks list, already
matched links are stored in matchedLinks list and overlay nodes are
stored in the storedOverlayNodes list. All processing is based only on
information in these lists. Processing created, updated and removed
underlay items is slightly different and described in next sections
separately.

Processing Created Items

Created items can be either nodes or links, depending on the type of
listener from which they came. In the case of a link, it is immediately
added to waitingLinks and calculation for possible overlay link
creations (calculatePossibleLink) is started. The flow diagram for this
process is shown in the following picture:

[image: Flow diagram of processing created items]
Flow diagram of processing created items

Searching for the source and destination nodes in the
calculatePossibleLink method runs over each node in storedOverlayNodes
and the IDs of each supporting node is compared against IDs from the
underlay link’s source and destination nodes. If there are any nodes
missing, the link remains in the waiting state. If both the source and
destination nodes are found, the corresponding overlay nodes is recorded
as the new source and destination. The link is then removed from
waitingLinks and a new CalculatedLink is added to the matched links. At
the end, the new link (if it exists) is written into the datastore.

If the created item is an overlayNode, this is added to
storedOverlayNodes and we call calculatePossibleLink for every link in
waitingLinks.

Processing Updated Items

The difference from processing created items is that we have three
possible types of updated items: overlay nodes, waiting underlay links,
and matched underlay links.

	In the case of a change in a matched link, this must be recalculated
and based on the result it will either be matched with new source and
destination or will be returned to waiting links. If the link is
moved back to a waiting state, it must also be removed from the
datastore.

	In the case of change in a waiting link, it is passed to the
calculation process and based on the result will either remain in
waiting state or be promoted to the matched state.

	In the case of a change in an overlay node, storedOverlayNodes must
be updated properly and all links must be recalculated in case of
changes.

Processing Removed items

Same as for processing updated item. There can be three types of removed
items:

	In case of waiting link removal, the link is just removed from
waitingLinks

	In case of matched link removal, the link is removed from
matchingLinks and datastore

	In case of overlay node removal, the node must be removed form
storedOverlayNodes and all matching links must be recalculated

Wrapper, RPC Republishing, Writing Mechanism

Chapter Overview

During the process of aggregation and filtration, overlay items (so
called logical nodes) were created from underlay items (physical nodes).
In the topology manager, overlay items are put into a wrapper. A wrapper
is identified with unique ID and contains list of logical nodes.
Wrappers are used to deal with transitivity of underlay items - which
permits grouping of overlay items (into wrappers).

[image: Wrapper]
Wrapper

PN1, PN2, PN3 = physical nodes

LN1, LN2 = logical nodes

RPC Republishing

All RPCs registered to handle underlay items are re-registered under
their corresponding wrapper ID. RPCs of underlay items (belonging to an
overlay item) are gathered, and registered under ID of their wrapper.

RPC Call

When RPC is called on overlay item, this call is delegated to it’s
underlay items, this means that the RPC is called on all underlay items
of this overlay item.

Writing Mechanism

When a wrapper (containing overlay item(s) with it’s underlay item(s))
is ready to be written into data store, it has to be converted into DOM
format. After this translation is done, the result is written into
datastore. Physical nodes are stored as supporting-nodes. In order to
use resources responsibly, writing operation is divided into two steps.
First, a set of threads registers prepared operations (deletes and puts)
and one thread makes actual write operation in batch.

Topology Rendering Guide - Inventory Rendering

Chapter Overview

In the most recent OpenDaylight release, the opendaylight-inventory
model is marked as deprecated. To facilitate migration from it to the
network-topology model, there were requests to render (translate) data
from inventory model (whether augmented or not) to another model for
further processing. The Topology Processing Framework was extended to
provide this functionality by implementing several rendering-specific
classes. This chapter is a step-by-step guide on how to implement your
own topology rendering using our inventory rendering as an example.

Use case

For the purpose of this guide we are going to render the following
augmented fields from the OpenFlow model:

	from inventory node:
	manufacturer

	hardware

	software

	serial-number

	description

	ip-address

	from inventory node-connector:
	name

	hardware-address

	current-speed

	maximum-speed

We also want to preserve the node ID and termination-point ID from
opendaylight-topology-inventory model, which is network-topology part of
the inventory model.

Implementation

There are two ways to implement support for your specific topology
rendering:

	add a module to your project that depends on the Topology Processing
Framework

	add a module to the Topology Processing Framework itself

Regardless, a successful implementation must complete all of the
following steps.

Step1 - Target Model Creation

Because the network-topology node does not have fields to store all
desired data, it is necessary to create new model to render this extra
data in to. For this guide we created the inventory-rendering model. The
picture below shows how data will be rendered and stored.

[image: Rendering to the inventory-rendering model]
Rendering to the inventory-rendering model

Important

When implementing your version of the topology-rendering model in
the Topology Processing Framework, the source file of the model
(.yang) must be saved in /topoprocessing-api/src/main/yang folder so
corresponding structures can be generated during build and can be
accessed from every module through dependencies.

When the target model is created you have to add an identifier through
which you can set your new model as output model. To do that you have to
add another identity item to topology-correlation.yang file. For our
inventory-rendering model identity looks like this:

After that you will be able to set inventory-rendering-model as output
model in XML.

Step2 - Module and Feature Creation

Important

This and following steps are based on the model specific
approach in the Topology Processing
Framework. We highly recommend that you familiarize yourself with
this approach in advance.

To create a base module and add it as a feature to Karaf in the Topology
Processing Framework we made the changes in following
commit [https://git.opendaylight.org/gerrit/#/c/26223/]. Changes in
other projects will likely be similar.

	File
	Changes

	pom.xml
	add new module to topoprocessing

	features.xml
	add feature to topoprocessing

	features/pom.xml
	add dependencies needed by features

	topoprocessing-artifacts/pom.xml
	add artifact

	topoprocessing-config/pom.xml
	add configuration file

	81-topoprocessing-inventory-renderin
g-config.xml
	configuration file for new module

	topoprocessing-inventory-rendering/p
om.xml
	main pom for new module

	TopoProcessingProviderIR.java
	contains startup method which
register new model adapter

	TopoProcessingProviderIRModule.java
	generated class which contains
createInstance method. You should
call your startup method from here.

	TopoProcessingProviderIRModuleFactor
y.java
	generated class. You will probably
not need to edit this file

	log4j.xml
	configuration file for logger
topoprocessing-inventory-rendering-p
rovider-impl.yang

Step3 - Module Adapters Creation

There are seven mandatory interfaces or abstract classes that needs to
be implemented in each module. They are:

	TopoProcessingProvider - provides module registration

	ModelAdapter - provides model specific instances

	TopologyRequestListener - listens on changes in the configuration
datastore

	TopologyRequestHandler - processes configuration datastore changes

	UnderlayTopologyListener - listens for changes in the specific model

	LinkTransaltor and NodeTranslator - used by OverlayItemTranslator to
create NormalizedNodes from OverlayItems

The name convention we used was to add an abbreviation for the specific
model to the beginning of implementing class name (e.g. the
IRModelAdapter refers to class which implements ModelAdapter in module
Inventory Rendering). In the case of the provider class, we put the
abbreviation at the end.

Important

	In the next sections, we use the terms TopologyRequestListener,
TopologyRequestHandler, etc. without a prepended or appended
abbreviation because the steps apply regardless of which specific
model you are targeting.

	If you want to implement rendering from inventory to
network-topology, you can just copy-paste our module and
additional changes will be required only in the output part.

Provider part

This part is the starting point of the whole module. It is responsible
for creating and registering TopologyRequestListeners. It is necessary
to create three classes which will import:

	TopoProcessingProviderModule - is a generated class from
topoprocessing-inventory-rendering-provider-impl.yang (created in
previous step, file will appear after first build). Its method
createInstance() is called at the feature start and must be
modified to create an instance of TopoProcessingProvider and call its
startup(TopoProcessingProvider topoProvider) function.

	TopoProcessingProvider - in
startup(TopoProcessingProvider topoProvider) function provides
ModelAdapter registration to TopoProcessingProviderImpl.

	ModelAdapter - provides creation of corresponding module specific
classes.

Input part

This includes the creation of the classes responsible for input data
processing. In this case, we had to create five classes implementing:

	TopologyRequestListener and TopologyRequestHandler - when
notified about a change in the configuration datastore, verify if the
change contains a topology request (has correlations in it) and
creates UnderlayTopologyListeners if needed. The implementation of
these classes will differ according to the model in which are
correlations saved (network-topology or i2rs). In the case of using
network-topology, as the input model, you can use our classes
IRTopologyRequestListener and IRTopologyRequestHandler.

	UnderlayTopologyListener - registers underlay listeners according
to input model. In our case (listening in the inventory model), we
created listeners for the network-topology model and inventory model,
and set the NotificationInterConnector as the first operator and set
the IRRenderingOperator as the second operator (after
NotificationInterConnector). Same as for
TopologyRequestListener/Handler, if you are rendering from the
inventory model, you can use our class IRUnderlayTopologyListener.

	InventoryListener - a new implementation of this class is
required only for inventory input model. This is because the
InventoryListener from topoprocessing-impl requires pathIdentifier
which is absent in the case of rendering.

	TopologyOperator - replaces classic topoprocessing operator.
While the classic operator provides specific operations on topology,
the rendering operator just wraps each received UnderlayItem to
OverlayItem and sends them to write.

Important

For purposes of topology rendering from inventory to
network-topology, there are misused fields in UnderlayItem as
follows:

	item - contains node from network-topology part of inventory

	leafItem - contains node from inventory

In case of implementing UnderlayTopologyListener or
InventoryListener you have to carefully adjust UnderlayItem creation
to these terms.

Output part

The output part of topology rendering is responsible for translating
received overlay items to normalized nodes. In the case of inventory
rendering, this is where node information from inventory are combined
with node information from network-topology. This combined information
is stored in our inventory-rendering model normalized node and passed to
the writer.

The output part consists of two translators implementing the
NodeTranslator and LinkTranslator interfaces.

NodeTranslator implementation - The NodeTranslator interface has one
translate(OverlayItemWrapper wrapper) method. For our purposes,
there is one important thing in wrapper - the list of OverlayItems which
have one or more common UnderlayItems. Regardless of this list, in the
case of rendering it will always contains only one OverlayItem. This
item has list of UnderlayItems, but again in case of rendering there
will be only one UnderlayItem item in this list. In NodeTranslator, the
OverlayItem and corresponding UnderlayItem represent nodes from the
translating model.

The UnderlayItem has several attributes. How you will use these
attributes in your rendering is up to you, as you create this item in
your topology operator. For example, as mentioned above, in our
inventory rendering example is an inventory node normalized node stored
in the UnderlayItem leafNode attribute, and we also store node-id from
network-topology model in UnderlayItem itemId attribute. You can now use
these attributes to build a normalized node for your new model. How to
read and create normalized nodes is out of scope of this document.

LinkTranslator implementation - The LinkTranslator interface also
has one translate(OverlayItemWrapper wrapper) method. In our
inventory rendering this method returns null, because the inventory
model doesn’t have links. But if you also need links, this is the place
where you should translate it into a normalized node for your model. In
LinkTranslator, the OverlayItem and corresponding UnderlayItem represent
links from the translating model. As in NodeTranslator, there will be
only one OverlayItem and one UnderlayItem in the corresponding lists.

Testing

If you want to test topoprocessing with some manually created underlay
topologies (like in this guide), than you have to tell Topoprocessing
to listen for underlay topologies on Configuration datastore
instead of Operational.

You can do this in this config file

<topoprocessing_directory>/topoprocessing-config/src/main/resources/80-topoprocessing-config.xml.

Here you have to change

<datastore-type>OPERATIONAL</datastore-type>

to

<datastore-type>CONFIGURATION</datastore-type>.

Also you have to add dependency required to test “inventory” topologies.

In <topoprocessing_directory>/features/pom.xml

add <openflowplugin.version>latest_snapshot</openflowplugin.version>
to properties section

and add this dependency to dependencies section

<dependency>
 <groupId>org.opendaylight.openflowplugin</groupId>
 <artifactId>features-openflowplugin</artifactId>
 <version>${openflowplugin.version}</version>
 <classifier>features</classifier><type>xml</type>
</dependency>

latest_snapshot in <openflowplugin.version> replace with latest snapshot, which can be found here [https://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/org/opendaylight/openflowplugin/openflowplugin/].

And in <topoprocessing_directory>/features/src/main/resources/features.xml

add <repository>mvn:org.opendaylight.openflowplugin/features-openflowplugin/${openflowplugin.version}/xml/features</repository>
to repositories section.

Now after you rebuild project and start Karaf, you can install necessary features.

You can install all with one command:

feature:install odl-restconf-noauth odl-topoprocessing-inventory-rendering odl-openflowplugin-southbound odl-openflowplugin-nsf-model

Now you can send messages to REST from any REST client (e.g. Postman in
Chrome). Messages have to have following headers:

	Header
	Value

	Content-Type:
	application/xml

	Accept:
	application/xml

	username:
	admin

	password:
	admin

Firstly send topology request to
http://localhost:8181/restconf/config/network-topology:network-topology/topology/render:1
with method PUT. Example of simple rendering request:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology-id>render:1</topology-id>
 <correlations xmlns="urn:opendaylight:topology:correlation" >
 <output-model>inventory-rendering-model</output-model>
 <correlation>
 <correlation-id>1</correlation-id>
 <type>rendering-only</type>
 <correlation-item>node</correlation-item>
 <rendering>
 <underlay-topology>und-topo:1</underlay-topology>
 </rendering>
 </correlation>
 </correlations>
</topology>

This request says that we want create topology with name render:1 and
this topology should be stored in the inventory-rendering-model and it
should be created from topology flow:1 by node rendering.

Next we send the network-topology part of topology flow:1. So to the URL
http://localhost:8181/restconf/config/network-topology:network-topology/topology/und-topo:1
we PUT:

<topology xmlns="urn:TBD:params:xml:ns:yang:network-topology"
 xmlns:it="urn:opendaylight:model:topology:inventory"
 xmlns:i="urn:opendaylight:inventory">
 <topology-id>und-topo:1</topology-id>
 <node>
 <node-id>openflow:1</node-id>
 <it:inventory-node-ref>
 /i:nodes/i:node[i:id="openflow:1"]
 </it:inventory-node-ref>
 <termination-point>
 <tp-id>tp:1</tp-id>
 <it:inventory-node-connector-ref>
 /i:nodes/i:node[i:id="openflow:1"]/i:node-connector[i:id="openflow:1:1"]
 </it:inventory-node-connector-ref>
 </termination-point>
 </node>
</topology>

And the last input will be inventory part of topology. To the URL
http://localhost:8181/restconf/config/opendaylight-inventory:nodes we
PUT:

<nodes
 xmlns="urn:opendaylight:inventory">
 <node>
 <id>openflow:1</id>
 <node-connector>
 <id>openflow:1:1</id>
 <port-number
 xmlns="urn:opendaylight:flow:inventory">1
 </port-number>
 <current-speed
 xmlns="urn:opendaylight:flow:inventory">10000000
 </current-speed>
 <name
 xmlns="urn:opendaylight:flow:inventory">s1-eth1
 </name>
 <supported
 xmlns="urn:opendaylight:flow:inventory">
 </supported>
 <current-feature
 xmlns="urn:opendaylight:flow:inventory">copper ten-gb-fd
 </current-feature>
 <configuration
 xmlns="urn:opendaylight:flow:inventory">
 </configuration>
 <peer-features
 xmlns="urn:opendaylight:flow:inventory">
 </peer-features>
 <maximum-speed
 xmlns="urn:opendaylight:flow:inventory">0
 </maximum-speed>
 <advertised-features
 xmlns="urn:opendaylight:flow:inventory">
 </advertised-features>
 <hardware-address
 xmlns="urn:opendaylight:flow:inventory">0E:DC:8C:63:EC:D1
 </hardware-address>
 <state
 xmlns="urn:opendaylight:flow:inventory">
 <link-down>false</link-down>
 <blocked>false</blocked>
 <live>false</live>
 </state>
 <flow-capable-node-connector-statistics
 xmlns="urn:opendaylight:port:statistics">
 <receive-errors>0</receive-errors>
 <receive-frame-error>0</receive-frame-error>
 <receive-over-run-error>0</receive-over-run-error>
 <receive-crc-error>0</receive-crc-error>
 <bytes>
 <transmitted>595</transmitted>
 <received>378</received>
 </bytes>
 <receive-drops>0</receive-drops>
 <duration>
 <second>28</second>
 <nanosecond>410000000</nanosecond>
 </duration>
 <transmit-errors>0</transmit-errors>
 <collision-count>0</collision-count>
 <packets>
 <transmitted>7</transmitted>
 <received>5</received>
 </packets>
 <transmit-drops>0</transmit-drops>
 </flow-capable-node-connector-statistics>
 </node-connector>
 <node-connector>
 <id>openflow:1:LOCAL</id>
 <port-number
 xmlns="urn:opendaylight:flow:inventory">4294967294
 </port-number>
 <current-speed
 xmlns="urn:opendaylight:flow:inventory">0
 </current-speed>
 <name
 xmlns="urn:opendaylight:flow:inventory">s1
 </name>
 <supported
 xmlns="urn:opendaylight:flow:inventory">
 </supported>
 <current-feature
 xmlns="urn:opendaylight:flow:inventory">
 </current-feature>
 <configuration
 xmlns="urn:opendaylight:flow:inventory">
 </configuration>
 <peer-features
 xmlns="urn:opendaylight:flow:inventory">
 </peer-features>
 <maximum-speed
 xmlns="urn:opendaylight:flow:inventory">0
 </maximum-speed>
 <advertised-features
 xmlns="urn:opendaylight:flow:inventory">
 </advertised-features>
 <hardware-address
 xmlns="urn:opendaylight:flow:inventory">BA:63:87:0C:76:41
 </hardware-address>
 <state
 xmlns="urn:opendaylight:flow:inventory">
 <link-down>false</link-down>
 <blocked>false</blocked>
 <live>false</live>
 </state>
 <flow-capable-node-connector-statistics
 xmlns="urn:opendaylight:port:statistics">
 <receive-errors>0</receive-errors>
 <receive-frame-error>0</receive-frame-error>
 <receive-over-run-error>0</receive-over-run-error>
 <receive-crc-error>0</receive-crc-error>
 <bytes>
 <transmitted>576</transmitted>
 <received>468</received>
 </bytes>
 <receive-drops>0</receive-drops>
 <duration>
 <second>28</second>
 <nanosecond>426000000</nanosecond>
 </duration>
 <transmit-errors>0</transmit-errors>
 <collision-count>0</collision-count>
 <packets>
 <transmitted>6</transmitted>
 <received>6</received>
 </packets>
 <transmit-drops>0</transmit-drops>
 </flow-capable-node-connector-statistics>
 </node-connector>
 <serial-number
 xmlns="urn:opendaylight:flow:inventory">None
 </serial-number>
 <manufacturer
 xmlns="urn:opendaylight:flow:inventory">Nicira, Inc.
 </manufacturer>
 <hardware
 xmlns="urn:opendaylight:flow:inventory">Open vSwitch
 </hardware>
 <software
 xmlns="urn:opendaylight:flow:inventory">2.1.3
 </software>
 <description
 xmlns="urn:opendaylight:flow:inventory">None
 </description>
 <ip-address
 xmlns="urn:opendaylight:flow:inventory">10.20.30.40
 </ip-address>
 <meter-features
 xmlns="urn:opendaylight:meter:statistics">
 <max_bands>0</max_bands>
 <max_color>0</max_color>
 <max_meter>0</max_meter>
 </meter-features>
 <group-features
 xmlns="urn:opendaylight:group:statistics">
 <group-capabilities-supported
 xmlns:x="urn:opendaylight:group:types">x:chaining
 </group-capabilities-supported>
 <group-capabilities-supported
 xmlns:x="urn:opendaylight:group:types">x:select-weight
 </group-capabilities-supported>
 <group-capabilities-supported
 xmlns:x="urn:opendaylight:group:types">x:select-liveness
 </group-capabilities-supported>
 <max-groups>4294967040</max-groups>
 <actions>67082241</actions>
 <actions>0</actions>
 </group-features>
 </node>
</nodes>

After this, the expected result from a GET request to
http://127.0.0.1:8181/restconf/operational/network-topology:network-topology
is:

<network-topology
 xmlns="urn:TBD:params:xml:ns:yang:network-topology">
 <topology>
 <topology-id>render:1</topology-id>
 <node>
 <node-id>openflow:1</node-id>
 <node-augmentation
 xmlns="urn:opendaylight:topology:inventory:rendering">
 <ip-address>10.20.30.40</ip-address>
 <serial-number>None</serial-number>
 <manufacturer>Nicira, Inc.</manufacturer>
 <description>None</description>
 <hardware>Open vSwitch</hardware>
 <software>2.1.3</software>
 </node-augmentation>
 <termination-point>
 <tp-id>openflow:1:1</tp-id>
 <tp-augmentation
 xmlns="urn:opendaylight:topology:inventory:rendering">
 <hardware-address>0E:DC:8C:63:EC:D1</hardware-address>
 <current-speed>10000000</current-speed>
 <maximum-speed>0</maximum-speed>
 <name>s1-eth1</name>
 </tp-augmentation>
 </termination-point>
 <termination-point>
 <tp-id>openflow:1:LOCAL</tp-id>
 <tp-augmentation
 xmlns="urn:opendaylight:topology:inventory:rendering">
 <hardware-address>BA:63:87:0C:76:41</hardware-address>
 <current-speed>0</current-speed>
 <maximum-speed>0</maximum-speed>
 <name>s1</name>
 </tp-augmentation>
 </termination-point>
 </node>
 </topology>
</network-topology>

Use Cases

You can find use case examples on this wiki page [https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide:Use_Case_Tutorial].

Key APIs and Interfaces

The basic provider class is TopoProcessingProvider which provides
startup and shutdown methods. Otherwise, the framework communicates via
requests and outputs stored in the MD-SAL datastores.

API Reference Documentation

You can find API examples on this wiki
page [https://wiki.opendaylight.org/view/Topology_Processing_Framework:Developer_Guide:REST_API_Specification].

 TTP Model Developer Guide

TTP Model Developer Guide

Overview

Table Type Patterns are a specification developed by the Open
Networking Foundation [https://www.opennetworking.org/] to enable the
description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it
enables the to describe what features they do (and thus also what
features they do not) support. More details can be found in the full
specification listed on the OpenFlow specifications
page [https://www.opennetworking.org/sdn-resources/onf-specifications/openflow].

TTP Model Architecture

The TTP Model provides a YANG-modeled type for a TTP and allows them to
be associated with a master list of known TTPs, as well as active and
supported TTPs with nodes in the MD-SAL inventory model.

Key APIs and Interfaces

The key API provided by the TTP Model feature is the ability to store a
set of TTPs in the MD-SAL as well as associate zero or one active TTPs
and zero or more supported TTPs along with a given node in the MD-SAL
inventory model.

API Reference Documentation

RESTCONF

See the generated RESTCONF API documentation at:
http://localhost:8181/apidoc/explorer/index.html

Look for the onf-ttp module to expand and see the various RESTCONF APIs.

Java Bindings

As stated above there are 3 locations where a Table Type Pattern can be
placed into the MD-SAL Data Store. They correspond to 3 different REST
API URIs:

	restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

	restconf/config/opendaylight-inventory:nodes/node/{id}/ttp-inventory-node:active_ttp/

	restconf/config/opendaylight-inventory:nodes/node/{id}/ttp-inventory-node:supported_ttps/

Note

Typically, these URIs are running on the machine the controller is
on at port 8181. If you are on the same machine they can thus be
accessed at http://localhost:8181/<uri>

Using the TTP Model RESTCONF APIs

Setting REST HTTP Headers

Authentication

The REST API calls require authentication by default. The default method
is to use basic auth with a user name and password of ‘admin’.

Content-Type and Accept

RESTCONF supports both xml and json. This example focuses on JSON, but
xml can be used just as easily. When doing a PUT or POST be sure to
specify the appropriate Conetnt-Type header: either
application/json or application/xml.

When doing a GET be sure to specify the appropriate Accept header:
again, either application/json or application/xml.

Content

The contents of a PUT or POST should be a OpenDaylight Table Type
Pattern. An example of one is provided below. The example can also be
found at parser/sample-TTP-from-tests.ttp in the TTP git
repository [https://git.opendaylight.org/gerrit/gitweb?p=ttp.git;a=blob;f=parser/sample-TTP-from-tests.ttp;h=45130949b25c6f86b750959d27d04ec2208935fb;hb=HEAD].

Sample Table Type Pattern (json).

{
 "table-type-patterns": {
 "table-type-pattern": [
 {
 "security": {
 "doc": [
 "This TTP is not published for use by ONF. It is an example and for",
 "illustrative purposes only.",
 "If this TTP were published for use it would include",
 "guidance as to any security considerations in this doc member."
]
 },
 "NDM_metadata": {
 "authority": "org.opennetworking.fawg",
 "OF_protocol_version": "1.3.3",
 "version": "1.0.0",
 "type": "TTPv1",
 "doc": [
 "Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",
 "and an ACL table."
],
 "name": "L2-L3-ACLs"
 },
 "identifiers": [
 {
 "doc": [
 "The VLAN ID of a locally attached L2 subnet on a Router."
],
 "var": "<subnet_VID>"
 },
 {
 "doc": [
 "An OpenFlow group identifier (integer) identifying a group table entry",
 "of the type indicated by the variable name"
],
 "var": "<<group_entry_types/name>>"
 }
],
 "features": [
 {
 "doc": [
 "Flow entry notification Extension – notification of changes in flow entries"
],
 "feature": "ext187"
 },
 {
 "doc": [
 "Group notifications Extension – notification of changes in group or meter entries"
],
 "feature": "ext235"
 }
],
 "meter_table": {
 "meter_types": [
 {
 "name": "ControllerMeterType",
 "bands": [
 {
 "type": "DROP",
 "rate": "1000..10000",
 "burst": "50..200"
 }
]
 },
 {
 "name": "TrafficMeter",
 "bands": [
 {
 "type": "DSCP_REMARK",
 "rate": "10000..500000",
 "burst": "50..500"
 },
 {
 "type": "DROP",
 "rate": "10000..500000",
 "burst": "50..500"
 }
]
 }
],
 "built_in_meters": [
 {
 "name": "ControllerMeter",
 "meter_id": 1,
 "type": "ControllerMeterType",
 "bands": [
 {
 "rate": 2000,
 "burst": 75
 }
]
 },
 {
 "name": "AllArpMeter",
 "meter_id": 2,
 "type": "ControllerMeterType",
 "bands": [
 {
 "rate": 1000,
 "burst": 50
 }
]
 }
]
 },
 "table_map": [
 {
 "name": "ControlFrame",
 "number": 0
 },
 {
 "name": "IngressVLAN",
 "number": 10
 },
 {
 "name": "MacLearning",
 "number": 20
 },
 {
 "name": "ACL",
 "number": 30
 },
 {
 "name": "L2",
 "number": 40
 },
 {
 "name": "ProtoFilter",
 "number": 50
 },
 {
 "name": "IPv4",
 "number": 60
 },
 {
 "name": "IPv6",
 "number": 80
 }
],
 "parameters": [
 {
 "doc": [
 "documentation"
],
 "name": "Showing-curt-how-this-works",
 "type": "type1"
 }
],
 "flow_tables": [
 {
 "doc": [
 "Filters L2 control reserved destination addresses and",
 "may forward control packets to the controller.",
 "Directs all other packets to the Ingress VLAN table."
],
 "name": "ControlFrame",
 "flow_mod_types": [
 {
 "doc": [
 "This match/action pair allows for flow_mods that match on either",
 "ETH_TYPE or ETH_DST (or both) and send the packet to the",
 "controller, subject to metering."
],
 "name": "Frame-To-Controller",
 "match_set": [
 {
 "field": "ETH_TYPE",
 "match_type": "all_or_exact"
 },
 {
 "field": "ETH_DST",
 "match_type": "exact"
 }
],
 "instruction_set": [
 {
 "doc": [
 "This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"
],
 "instruction": "METER",
 "meter_name": "ControllerMeter"
 },
 {
 "instruction": "APPLY_ACTIONS",
 "actions": [
 {
 "action": "OUTPUT",
 "port": "CONTROLLER"
 }
]
 }
]
 }
],
 "built_in_flow_mods": [
 {
 "doc": [
 "Mandatory filtering of control frames with C-VLAN Bridge reserved DA."
],
 "name": "Control-Frame-Filter",
 "priority": "1",
 "match_set": [
 {
 "field": "ETH_DST",
 "mask": "0xfffffffffff0",
 "value": "0x0180C2000000"
 }
]
 },
 {
 "doc": [
 "Mandatory miss flow_mod, sends packets to IngressVLAN table."
],
 "name": "Non-Control-Frame",
 "priority": "0",
 "instruction_set": [
 {
 "instruction": "GOTO_TABLE",
 "table": "IngressVLAN"
 }
]
 }
]
 }
],
 "group_entry_types": [
 {
 "doc": [
 "Output to a port, removing VLAN tag if needed.",
 "Entry per port, plus entry per untagged VID per port."
],
 "name": "EgressPort",
 "group_type": "INDIRECT",
 "bucket_types": [
 {
 "name": "OutputTagged",
 "action_set": [
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 },
 {
 "name": "OutputUntagged",
 "action_set": [
 {
 "action": "POP_VLAN"
 },
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 },
 {
 "opt_tag": "VID-X",
 "name": "OutputVIDTranslate",
 "action_set": [
 {
 "action": "SET_FIELD",
 "field": "VLAN_VID",
 "value": "<local_vid>"
 },
 {
 "action": "OUTPUT",
 "port": "<port_no>"
 }
]
 }
]
 }
],
 "flow_paths": [
 {
 "doc": [
 "This object contains just a few examples of flow paths, it is not",
 "a comprehensive list of the flow paths required for this TTP. It is",
 "intended that the flow paths array could include either a list of",
 "required flow paths or a list of specific flow paths that are not",
 "required (whichever is more concise or more useful."
],
 "name": "L2-2",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Unicast",
 "EgressPort"
]
 },
 {
 "name": "L2-3",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Multicast",
 "L2Mcast",
 "[EgressPort]"
]
 },
 {
 "name": "L2-4",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACL-skip",
 "VID-flood",
 "VIDflood",
 "[EgressPort]"
]
 },
 {
 "name": "L2-5",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Drop"
]
 },
 {
 "name": "v4-1",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Router-MAC",
 "IPv4",
 "v4-Unicast",
 "NextHop",
 "EgressPort"
]
 },
 {
 "name": "v4-2",
 "path": [
 "Non-Control-Frame",
 "IV-pass",
 "Known-MAC",
 "ACLskip",
 "L2-Router-MAC",
 "IPv4",
 "v4-Unicast-ECMP",
 "L3ECMP",
 "NextHop",
 "EgressPort"
]
 }
]
 }
]
 }
}

Making a REST Call

In this example we’ll do a PUT to install the sample TTP from above into
OpenDaylight and then retrieve it both as json and as xml. We’ll use the
Postman - REST
Client [https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm]
for Chrome in the examples, but any method of accessing REST should
work.

First, we’ll fill in the basic information:

[image: Filling in URL, content, Content-Type and basic auth]
Filling in URL, content, Content-Type and basic auth

	Set the URL to
http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

	Set the action to PUT

	Click Headers and

	Set a header for Content-Type to application/json

	Make sure the content is set to raw and

	Copy the sample TTP from above into the content

	Click the Basic Auth tab and

	Set the username and password to admin

	Click Refresh headers

[image: Refreshing basic auth headers]
Refreshing basic auth headers

After clicking Refresh headers, we can see that a new header
(Authorization) has been created and this will allow us to
authenticate to make the REST call.

[image: PUTting a TTP]
PUTting a TTP

At this point, clicking send should result in a Status response of 200
OK indicating we’ve successfully PUT the TTP into OpenDaylight.

[image: Retrieving the TTP as json via a GET]
Retrieving the TTP as json via a GET

We can now retrieve the TTP by:

	Changing the action to GET

	Setting an Accept header to application/json and

	Pressing send

[image: Retrieving the TTP as xml via a GET]
Retrieving the TTP as xml via a GET

The same process can retrieve the content as xml by setting the
Accept header to application/xml.

 TTP CLI Tools Developer Guide

TTP CLI Tools Developer Guide

Overview

Table Type Patterns are a specification developed by the Open
Networking Foundation [https://www.opennetworking.org/] to enable the
description and negotiation of subsets of the OpenFlow protocol. This is
particularly useful for hardware switches that support OpenFlow as it
enables the to describe what features they do (and thus also what
features they do not) support. More details can be found in the full
specification listed on the OpenFlow specifications
page [https://www.opennetworking.org/sdn-resources/onf-specifications/openflow].

The TTP CLI Tools provide a way for people interested in TTPs to read
in, validate, output, and manipulate TTPs as a self-contained,
executable jar file.

TTP CLI Tools Architecture

The TTP CLI Tools use the TTP Model and the YANG Tools/RESTCONF codecs
to translate between the Data Transfer Objects (DTOs) and JSON/XML.

Command Line Options

This will cover the various options for the CLI Tools. For now, there
are no options and it merely outputs fixed data using the codecs.

 User Network Interface Manager Plug-in (Unimgr) Developer Guide

User Network Interface Manager Plug-in (Unimgr) Developer Guide

User Network Interface Manager Plug-in (Unimgr) is an experimental/proof of
concept (PoC) project formed to initiate the development of data models and
APIs facilitating the use by software applications and/or service orchestrators
of OpenDaylight to configure and provision connectivity services, in particular
Carrier Ethernet services as defined by Metro Ethernet Forum (MEF), in physical
or virtual network elements.

Functionality

Unimgr provides support for both service orchestration, via the Legato API, and
network resource provisioning, via the Presto API. These APIs, and the
interfaces they provide, are defined by YANG models developed within MEF in
collaboration with ONF and IETF. An application/user can interact with Unimgr
at ether layer. For the Boron release, the YANG models are as follows:

Legato YANG models

https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=legato-api/src/main/yang;hb=refs/heads/stable/boron

Presto YANG models

https://git.opendaylight.org/gerrit/gitweb?p=unimgr.git;a=tree;f=presto-api/src/main/yang;hb=refs/heads/stable/boron

Legato API Tree

module: mef-services

+--rw mef-services
 +--rw mef-service* [svc-id]
 +--rw evc
 | +--rw unis
 | | +--rw uni* [uni-id]
 | | +--rw evc-uni-ce-vlans
 | | | +--rw evc-uni-ce-vlan* [vid]
 | | | +--rw vid -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../../../uni-id]/ce-vlans/ce-vlan/vid
 | | +--rw ingress-bwp-flows-per-cos!
 | | | +--rw coupling-enabled? boolean
 | | | +--rw bwp-flow-per-cos* [cos-name]
 | | | +--rw cos-name -> /mef-global:mef-global/profiles/cos-names/cos-name/name
 | | | +--rw bw-profile -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../../../uni-id]/ingress-envelopes/envelope/env-id
 | | +--rw egress-bwp-flows-per-eec!
 | | | +--rw coupling-enabled? boolean
 | | | +--rw bwp-flow-per-eec* [eec-name]
 | | | +--rw eec-name -> /mef-global:mef-global/profiles/eec-names/eec-name/name
 | | | +--rw bw-profile -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../../../uni-id]/egress-envelopes/envelope/env-id
 | | +--rw status
 | | | +--ro oper-state-enabled? boolean
 | | | +--ro available-status? mef-types:svc-endpoint-availability-type
 | | +--rw uni-id -> /mef-interfaces:mef-interfaces/unis/uni/uni-id
 | | +--rw role mef-types:evc-uni-role-type
 | | +--rw admin-state-enabled? boolean
 | | +--rw color-id? mef-types:cos-color-identifier-type
 | | +--rw data-svc-frm-cos? -> /mef-global:mef-global/profiles/cos/cos-profile/id
 | | +--rw l2cp-svc-frm-cos? -> /mef-global:mef-global/profiles/l2cp-cos/l2cp-profile/id
 | | +--rw soam-svc-frm-cos? -> /mef-global:mef-global/profiles/cos/cos-profile/id
 | | +--rw data-svc-frm-eec? -> /mef-global:mef-global/profiles/eec/eec-profile/id
 | | +--rw l2cp-svc-frm-eec? -> /mef-global:mef-global/profiles/l2cp-eec/l2cp-profile/id
 | | +--rw soam-svc-frm-eec? -> /mef-global:mef-global/profiles/eec/eec-profile/id
 | | +--rw ingress-bw-profile-per-evc? -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../uni-id]/ingress-envelopes/envelope/env-id
 | | +--rw egress-bw-profile-per-evc? -> /mef-interfaces:mef-interfaces/unis/uni[mef-interfaces:uni-id = current()/../uni-id]/egress-envelopes/envelope/env-id
 | | +--rw src-mac-addr-limit-enabled? boolean
 | | +--rw src-mac-addr-limit? uint32
 | | +--rw src-mac-addr-limit-interval? yang:timeticks
 | | +--rw test-meg-enabled? boolean
 | | +--rw test-meg? mef-types:identifier45
 | | +--rw subscriber-meg-mip-enabled? boolean
 | | +--rw subscriber-meg-mip? mef-types:identifier45
 | +--rw status
 | | +--ro oper-state-enabled? boolean
 | | +--ro available-status? mef-types:virt-cx-availability-type
 | +--rw sls-inclusions-by-cos
 | | +--rw sls-inclusion-by-cos* [cos-name]
 | | +--rw cos-name -> /mef-global:mef-global/profiles/cos-names/cos-name/name
 | +--rw sls-uni-inclusions!
 | | +--rw sls-uni-inclusion-set* [pm-type pm-id uni-id1 uni-id2]
 | | +--rw pm-type -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj/pm-type
 | | +--rw pm-id -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj[mef-global:pm-type = current()/../pm-type]/pm-id
 | | +--rw uni-id1 -> ../../../unis/uni/uni-id
 | | +--rw uni-id2 -> ../../../unis/uni/uni-id
 | +--rw sls-uni-exclusions!
 | | +--rw sls-uni-exclusion-set* [pm-type pm-id uni-id1 uni-id2]
 | | +--rw pm-type -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj/pm-type
 | | +--rw pm-id -> /mef-global:mef-global/slss/sls[mef-global:sls-id = current()/../../../evc-performance-sls]/perf-objs/perf-obj[mef-global:pm-type = current()/../pm-type]/pm-id
 | | +--rw uni-id1 -> ../../../unis/uni/uni-id
 | | +--rw uni-id2 -> ../../../unis/uni/uni-id
 | +--rw evc-id mef-types:evc-id-type
 | +--ro evc-status? mef-types:evc-status-type
 | +--rw evc-type mef-types:evc-type
 | +--rw admin-state-enabled? boolean
 | +--rw elastic-enabled? boolean
 | +--rw elastic-service? mef-types:identifier45
 | +--rw max-uni-count? uint32
 | +--rw preserve-ce-vlan-id? boolean
 | +--rw cos-preserve-ce-vlan-id? boolean
 | +--rw evc-performance-sls? -> /mef-global:mef-global/slss/sls/sls-id
 | +--rw unicast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
 | +--rw multicast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
 | +--rw broadcast-svc-frm-delivery? mef-types:data-svc-frame-delivery-type
 | +--rw evc-meg-id? mef-types:identifier45
 | +--rw max-svc-frame-size? mef-types:max-svc-frame-size-type
 +--rw svc-id mef-types:retail-svc-id-type
 +--rw sp-id? -> /mef-global:mef-global/svc-providers/svc-provider/sp-id
 +--rw svc-type? mef-types:mef-service-type
 +--rw user-label? mef-types:identifier45
 +--rw svc-entity? mef-types:service-entity-type

module: mef-global

+--rw mef-global
 +--rw svc-providers!
 | +--rw svc-provider* [sp-id]
 | +--rw sp-id mef-types:svc-provider-type
 +--rw cens!
 | +--rw cen* [cen-id]
 | +--rw cen-id mef-types:cen-type
 | +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
 +--rw slss!
 | +--rw sls* [sls-id]
 | +--rw perf-objs
 | | +--rw pm-time-interval uint64
 | | +--rw pm-time-interval-increment uint64
 | | +--rw unavail-flr-threshold-pp mef-types:simple-percent
 | | +--rw consecutive-small-time-intervals uint64
 | | +--rw perf-obj* [pm-type pm-id]
 | | +--rw pm-type mef-types:performance-metric-type
 | | +--rw pm-id mef-types:identifier45
 | | +--rw cos-name -> /mef-global/profiles/cos-names/cos-name/name
 | | +--rw fd-pp mef-types:simple-percent
 | | +--rw fd-range-pp mef-types:simple-percent
 | | +--rw fd-perf-obj uint64
 | | +--rw fd-range-perf-obj uint64
 | | +--rw fd-mean-perf-obj uint64
 | | +--rw ifdv-pp mef-types:simple-percent
 | | +--rw ifdv-pair-interval mef-types:simple-percent
 | | +--rw ifdv-perf-obj uint64
 | | +--rw flr-perf-obj uint64
 | | +--rw avail-pp mef-types:simple-percent
 | | +--rw hli-perf-obj uint64
 | | +--rw chli-consecutive-small-time-intervals uint64
 | | +--rw chli-perf-obj uint64
 | | +--rw min-uni-pairs-avail uint64
 | | +--rw gp-avail-pp mef-types:simple-percent
 | +--rw sls-id mef-types:cen-type
 | +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
 +--rw subscribers!
 | +--rw subscriber* [sub-id]
 | +--rw sub-id mef-types:subscriber-type
 | +--rw sp-id? -> /mef-global/svc-providers/svc-provider/sp-id
 | +--rw cen-id? -> /mef-global/cens/cen/cen-id
 +--rw profiles!
 +--rw cos-names
 | +--rw cos-name* [name]
 | +--rw name mef-types:identifier45
 +--rw eec-names
 | +--rw eec-name* [name]
 | +--rw name mef-types:identifier45
 +--rw ingress-bwp-flows
 | +--rw bwp-flow* [bw-profile]
 | +--rw bw-profile mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 | +--rw cir? mef-types:bwp-cir-type
 | +--rw cir-max? mef-types:bwp-cir-type
 | +--rw cbs? mef-types:bwp-cbs-type
 | +--rw eir? mef-types:bwp-eir-type
 | +--rw eir-max? mef-types:bwp-eir-type
 | +--rw ebs? mef-types:bwp-ebs-type
 | +--rw coupling-enabled? boolean
 | +--rw color-mode? mef-types:bwp-color-mode-type
 | +--rw coupling-flag? mef-types:bwp-coupling-flag-type
 +--rw egress-bwp-flows
 | +--rw bwp-flow* [bw-profile]
 | +--rw bw-profile mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 | +--rw cir? mef-types:bwp-cir-type
 | +--rw cir-max? mef-types:bwp-cir-type
 | +--rw cbs? mef-types:bwp-cbs-type
 | +--rw eir? mef-types:bwp-eir-type
 | +--rw eir-max? mef-types:bwp-eir-type
 | +--rw ebs? mef-types:bwp-ebs-type
 | +--rw coupling-enabled? boolean
 | +--rw color-mode? mef-types:bwp-color-mode-type
 | +--rw coupling-flag? mef-types:bwp-coupling-flag-type
 +--rw l2cp-cos
 | +--rw l2cp-profile* [id]
 | +--rw l2cps
 | | +--rw l2cp* [dest-mac-addr peering-proto-name]
 | | +--rw dest-mac-addr yang:mac-address
 | | +--rw peering-proto-name mef-types:identifier45
 | | +--rw protocol? mef-types:l2cp-peering-protocol-type
 | | +--rw protocol-id? yang:hex-string
 | | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | | +--rw handling? mef-types:l2cp-handling-type
 | | +--rw subtype* yang:hex-string
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 +--rw l2cp-eec
 | +--rw l2cp-profile* [id]
 | +--rw l2cps
 | | +--rw l2cp* [dest-mac-addr peering-proto-name]
 | | +--rw dest-mac-addr yang:mac-address
 | | +--rw peering-proto-name mef-types:identifier45
 | | +--rw protocol? mef-types:l2cp-peering-protocol-type
 | | +--rw protocol-id? yang:hex-string
 | | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw handling? mef-types:l2cp-handling-type
 | | +--rw subtype* yang:hex-string
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 +--rw l2cp-peering
 | +--rw l2cp-profile* [id]
 | +--rw l2cps
 | | +--rw l2cp* [dest-mac-addr peering-proto-name]
 | | +--rw dest-mac-addr yang:mac-address
 | | +--rw peering-proto-name mef-types:identifier45
 | | +--rw protocol? mef-types:l2cp-peering-protocol-type
 | | +--rw protocol-id? yang:hex-string
 | | +--rw subtype* yang:hex-string
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 +--rw elmi
 | +--rw elmi-profile* [id]
 | +--rw id mef-types:identifier45
 | +--rw user-label? mef-types:identifier45
 | +--rw polling-counter? mef-types:elmi-polling-counter-type
 | +--rw status-error-threshold? mef-types:elmi-status-error-threshold-type
 | +--rw polling-timer? mef-types:elmi-polling-timer-type
 | +--rw polling-verification-timer? mef-types:elmi-polling-verification-timer-type
 +--rw eec
 | +--rw eec-profile* [id]
 | +--rw id mef-types:identifier45
 | +--rw (eec-id)?
 | +--:(pcp)
 | | +--rw eec-pcp!
 | | +--rw default-pcp-eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw default-pcp-color? mef-types:cos-color-type
 | | +--rw pcp* [pcp-value]
 | | +--rw pcp-value mef-types:ieee8021p-priority-type
 | | +--rw discard-value? boolean
 | | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw color? mef-types:cos-color-type
 | +--:(dscp)
 | +--rw eec-dscp!
 | +--rw default-ipv4-eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | +--rw default-ipv4-color? mef-types:cos-color-type
 | +--rw default-ipv6-eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | +--rw default-ipv6-color? mef-types:cos-color-type
 | +--rw ipv4-dscp* [dscp-value]
 | | +--rw dscp-value inet:dscp
 | | +--rw discard-value? boolean
 | | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | | +--rw color? mef-types:cos-color-type
 | +--rw ipv6-dscp* [dscp-value]
 | +--rw dscp-value inet:dscp
 | +--rw discard-value? boolean
 | +--rw eec-name? -> /mef-global/profiles/eec-names/eec-name/name
 | +--rw color? mef-types:cos-color-type
 +--rw cos
 +--rw cos-profile* [id]
 +--rw id mef-types:identifier45
 +--rw (cos-id)?
 +--:(evc)
 | +--rw cos-evc!
 | +--rw default-evc-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw default-evc-color? mef-types:cos-color-type
 +--:(pcp)
 | +--rw cos-pcp!
 | +--rw default-pcp-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw default-pcp-color? mef-types:cos-color-type
 | +--rw pcp* [pcp-value]
 | +--rw pcp-value mef-types:ieee8021p-priority-type
 | +--rw discard-value? boolean
 | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw color? mef-types:cos-color-type
 +--:(dscp)
 +--rw cos-dscp!
 +--rw default-ipv4-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 +--rw default-ipv4-color? mef-types:cos-color-type
 +--rw default-ipv6-cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 +--rw default-ipv6-color? mef-types:cos-color-type
 +--rw ipv4-dscp* [dscp-value]
 | +--rw dscp-value inet:dscp
 | +--rw discard-value? boolean
 | +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 | +--rw color? mef-types:cos-color-type
 +--rw ipv6-dscp* [dscp-value]
 +--rw dscp-value inet:dscp
 +--rw discard-value? boolean
 +--rw cos-name? -> /mef-global/profiles/cos-names/cos-name/name
 +--rw color? mef-types:cos-color-type

Presto API Tree

module: onf-core-network-module

+--rw forwarding-constructs
 +--rw forwarding-construct* [uuid]
 +--rw uuid string
 +--rw layerProtocolName? onf-cnt:LayerProtocolName
 +--rw lowerLevelFc* -> /forwarding-constructs/forwarding-construct/uuid
 +--rw fcRoute* [uuid]
 | +--rw uuid string
 | +--rw fc* -> /forwarding-constructs/forwarding-construct/uuid
 +--rw fcPort* [topology node tp]
 | +--rw topology nt:topology-ref
 | +--rw node nt:node-ref
 | +--rw tp nt:tp-ref
 | +--rw role? onf-cnt:PortRole
 | +--rw fcPortDirection? onf-cnt:PortDirection
 +--rw fcSpec
 | +--rw uuid? string
 | +--rw fcPortSpec* [uuid]
 | | +--rw uuid string
 | | +--rw ingressFcPortSet* [topology node tp]
 | | | +--rw topology nt:topology-ref
 | | | +--rw node nt:node-ref
 | | | +--rw tp nt:tp-ref
 | | +--rw egressFcPortSet* [topology node tp]
 | | | +--rw topology nt:topology-ref
 | | | +--rw node nt:node-ref
 | | | +--rw tp nt:tp-ref
 | | +--rw role? string
 | +--rw nrp:nrp-ce-fcspec-attrs
 | +--rw nrp:connectionType? nrp-types:NRP_ConnectionType
 | +--rw nrp:unicastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
 | +--rw nrp:multicastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
 | +--rw nrp:broadcastFrameDelivery? nrp-types:NRP_ServiceFrameDelivery
 | +--rw nrp:vcMaxServiceFrame? nrp-types:NRP_PositiveInteger
 | +--rw nrp:vcId? nrp-types:NRP_PositiveInteger
 +--rw forwardingDirection? onf-cnt:ForwardingDirection

augment /nt:network-topology/nt:topology/nt:node/nt:termination-point:

+--rw ltp-attrs
 +--rw lpList* [uuid]
 | +--rw uuid string
 | +--rw layerProtocolName? onf-cnt:LayerProtocolName
 | +--rw lpSpec
 | | +--rw adapterSpec
 | | | +--rw nrp:nrp-conn-adapt-spec-attrs
 | | | | +--rw nrp:sourceMacAddressLimit
 | | | | | +--rw nrp:enabled? boolean
 | | | | | +--rw nrp:limit? NRP_NaturalNumber
 | | | | | +--rw nrp:timeInterval? NRP_NaturalNumber
 | | | | +--rw nrp:CeExternalInterface
 | | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
 | | | | | +--rw nrp:syncMode* [linkId]
 | | | | | | +--rw nrp:linkId string
 | | | | | | +--rw nrp:syncModeEnabled? boolean
 | | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
 | | | | | +--rw nrp:portConvsIdToAggLinkMap
 | | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
 | | | | | | +--rw nrp:linkId? NRP_NaturalNumber
 | | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:linkOamEnabled? boolean
 | | | | | +--rw nrp:tokenShareEnabled? boolean
 | | | | | +--rw nrp:serviceProviderUniId? string
 | | | | +--rw nrp:coloridentifier
 | | | | | +--rw (identifier)?
 | | | | | +--:(sap-color-id)
 | | | | | | +--rw nrp:serviceAccessPointColorId
 | | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | | +--:(pcp-color-id)
 | | | | | | +--rw nrp:pcpColorId
 | | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | | +--rw nrp:pcpValue* nrp-types:NRP_NaturalNumber
 | | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | | +--:(dei-color-id)
 | | | | | | +--rw nrp:deiColorId
 | | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | | +--rw nrp:deiValue* nrp-types:NRP_NaturalNumber
 | | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | | +--:(desp-color-id)
 | | | | | +--rw nrp:despColorId
 | | | | | +--rw nrp:ipVersion? nrp-types:NRP_IpVersion
 | | | | | +--rw nrp:dscpValue* nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--rw nrp:ingressBwpFlow
 | | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:egressBwpFlow
 | | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:l2cpAddressSet? nrp-types:NRP_L2cpAddressSet
 | | | | +--rw nrp:l2cpPeering* [linkId]
 | | | | +--rw nrp:destinationMacAddress? string
 | | | | +--rw nrp:protocolType? NRP_ProtocolFrameType
 | | | | +--rw nrp:linkId string
 | | | | +--rw nrp:protocolId? string
 | | | +--rw nrp:nrp-ivc-endpoint-conn-adapt-spec-attrs
 | | | | +--rw nrp:ivcEndPointId? string
 | | | | +--rw nrp:testMegEnabled? boolean
 | | | | +--rw nrp:ivcEndPointRole? nrp-types:NRP_EndPointRole
 | | | | +--rw nrp:ivcEndPointMap* [vlanId]
 | | | | | +--rw nrp:vlanId nrp-types:NRP_PositiveInteger
 | | | | | +--rw (endpoint-map-form)?
 | | | | | +--:(map-form-e)
 | | | | | | +--rw nrp:enni-svid* [vid]
 | | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | | | +--:(map-form-t)
 | | | | | | +--rw nrp:root-svid? nrp-types:NRP_PositiveInteger
 | | | | | | +--rw nrp:leaf-svid? nrp-types:NRP_PositiveInteger
 | | | | | +--:(map-form-v)
 | | | | | | +--rw nrp:vuni-vid? nrp-types:NRP_PositiveInteger
 | | | | | | +--rw nrp:enni-cevid* [vid]
 | | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | | | +--:(map-form-u)
 | | | | | +--rw nrp:cvid* [vid]
 | | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:subscriberMegMipEnabled? boolean
 | | | +--rw nrp:nrp-evc-endpoint-conn-adapt-spec-attrs
 | | | +--rw nrp:sourceMacAddressLimit
 | | | | +--rw nrp:enabled? boolean
 | | | | +--rw nrp:limit? NRP_NaturalNumber
 | | | | +--rw nrp:timeInterval? NRP_NaturalNumber
 | | | +--rw nrp:CeExternalInterface
 | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
 | | | | +--rw nrp:syncMode* [linkId]
 | | | | | +--rw nrp:linkId string
 | | | | | +--rw nrp:syncModeEnabled? boolean
 | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
 | | | | +--rw nrp:portConvsIdToAggLinkMap
 | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
 | | | | | +--rw nrp:linkId? NRP_NaturalNumber
 | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:linkOamEnabled? boolean
 | | | | +--rw nrp:tokenShareEnabled? boolean
 | | | | +--rw nrp:serviceProviderUniId? string
 | | | +--rw nrp:coloridentifier
 | | | | +--rw (identifier)?
 | | | | +--:(sap-color-id)
 | | | | | +--rw nrp:serviceAccessPointColorId
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--:(pcp-color-id)
 | | | | | +--rw nrp:pcpColorId
 | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | +--rw nrp:pcpValue* nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--:(dei-color-id)
 | | | | | +--rw nrp:deiColorId
 | | | | | +--rw nrp:vlanTag? nrp-types:NRP_VlanTag
 | | | | | +--rw nrp:deiValue* nrp-types:NRP_NaturalNumber
 | | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | | +--:(desp-color-id)
 | | | | +--rw nrp:despColorId
 | | | | +--rw nrp:ipVersion? nrp-types:NRP_IpVersion
 | | | | +--rw nrp:dscpValue* nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:color? nrp-types:NRP_FrameColor
 | | | +--rw nrp:ingressBwpFlow
 | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:egressBwpFlow
 | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:l2cpAddressSet? nrp-types:NRP_L2cpAddressSet
 | | | +--rw nrp:l2cpPeering* [linkId]
 | | | | +--rw nrp:destinationMacAddress? string
 | | | | +--rw nrp:protocolType? NRP_ProtocolFrameType
 | | | | +--rw nrp:linkId string
 | | | | +--rw nrp:protocolId? string
 | | | +--rw nrp:evcEndPointId? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:testMegEnabled? boolean
 | | | +--rw nrp:evcEndPointRole? nrp-types:NRP_EvcEndPointRole
 | | | +--rw nrp:evcEndPointMap* [vid]
 | | | | +--rw nrp:vid nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:subscriberMegMipEbabled? boolean
 | | +--rw terminationSpec
 | | | +--rw nrp:nrp-termination-spec-attrs
 | | | | +--rw nrp:physicalLayer? nrp-types:NRP_PhysicalLayer
 | | | | +--rw nrp:syncMode* [linkId]
 | | | | | +--rw nrp:linkId string
 | | | | | +--rw nrp:syncModeEnabled? boolean
 | | | | +--rw nrp:numberOfLinks? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:resiliency? nrp-types:NRP_InterfaceResiliency
 | | | | +--rw nrp:portConvsIdToAggLinkMap
 | | | | | +--rw nrp:conversationId? NRP_NaturalNumber
 | | | | | +--rw nrp:linkId? NRP_NaturalNumber
 | | | | +--rw nrp:maxFrameSize? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:linkOamEnabled? boolean
 | | | | +--rw nrp:tokenShareEnabled? boolean
 | | | | +--rw nrp:serviceProviderUniId? string
 | | | +--rw nrp:nrp-uni-termination-attrs
 | | | +--rw nrp:defaultCeVlanId? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:uniMegEnabled? boolean
 | | | +--rw nrp:elmiEnabled? boolean
 | | | +--rw nrp:serviceprovideruniprofile? string
 | | | +--rw nrp:operatoruniprofile? string
 | | | +--rw nrp:ingressBwpUni
 | | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:egressBwpUni
 | | | +--rw nrp:bwpFlowIndex? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:cir? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:cirMax? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:cbs? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:eir? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:eirMax? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:ebs? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:couplingFlag? nrp-types:NRP_NaturalNumber
 | | | +--rw nrp:colorMode? nrp-types:NRP_ColorMode
 | | | +--rw nrp:rank? nrp-types:NRP_PositiveInteger
 | | | +--rw nrp:tokenRequestOffset? nrp-types:NRP_NaturalNumber
 | | +--rw adapterPropertySpecList* [uuid]
 | | | +--rw uuid string
 | | +--rw providerViewSpec
 | | +--rw serverSpecList* [uuid]
 | | +--rw uuid string
 | +--rw configuredClientCapacity? string
 | +--rw lpDirection? onf-cnt:TerminationDirection
 | +--rw terminationState? string
 +--rw ltpSpec
 +--rw ltpDirection? onf-cnt:TerminationDirection

 Unified Secure Channel

Unified Secure Channel

Overview

The Unified Secure Channel (USC) feature provides REST API, manager, and
plugin for unified secure channels. The REST API provides a northbound
api. The manager monitors, maintains, and provides channel related
services. The plugin handles the lifecycle of channels.

USC Channel Architecture

	USC Agent
	The USC Agent provides proxy and agent functionality on top of all
standard protocols supported by the device. It initiates call-home
with the controller, maintains live connections with with the
controller, acts as a demuxer/muxer for packets with the USC
header, and authenticates the controller.

	USC Plugin
	The USC Plugin is responsible for communication between the
controller and the USC agent . It responds to call-home with the
controller, maintains live connections with the devices, acts as a
muxer/demuxer for packets with the USC header, and provides
support for TLS/DTLS.

	USC Manager
	The USC Manager handles configurations, high availability,
security, monitoring, and clustering support for USC.

	USC UI
	The USC UI is responsible for displaying a graphical user
interface representing the state of USC in the OpenDaylight DLUX
UI.

USC Channel APIs and Interfaces

This section describes the APIs for interacting with the unified secure
channels.

USC Channel Topology API

The USC project maintains a topology that is YANG-based in MD-SAL. These
models are available via RESTCONF.

	Name: view-channel

	URL:
http://${ipaddress}:8181/restconf/operations/usc-channel:view-channel

	Description: Views the current state of the USC environment.

API Reference Documentation

Go to
http://${ipaddress}:8181/apidoc/explorer/index.html,
sign in, and expand the usc-channel panel. From there, users can execute
various API calls to test their USC deployment.

 Usecplugin-AAA Developer Guide

Usecplugin-AAA Developer Guide

Overview

Usecplugin-AAA provides security related information for the AAA
northbound interface.

Usecplugin-AAA Architecture

AAA plugin creates log messages about successful and failed login
attempts to OpenDaylight. Usecplugin-AAA continuously reads this log
file and checks for either successful and failed attempt information.
Whenever Usecpluin-AAA identifies a new attempt entry in the log file it
is stored in YANG Data Store and its own log file.

Usecplugin-AAA is implemented with the help of a few java classes.

	UsecpluginAAAProvider

	Provider class for Usecplugin-AAA feature implementation.

	UsecpluginAAANotifImpl

	Logs notification information which can be seen by log:display at
the Karaf terminal

	UsecpluginAAARPCImpl

	Implements Usecplugin RPCs

	UsecpluginAAAParsingLog

	Parses OpenDaylight log information for identifying login attempts.

	UsecpluginAAAPublishNotif

	Publishes failed login attempt notification.

	UsecpluginAAAStore

	Creates login information at the YANG Data Store.

Key APIs and Interfaces

	RPC APIs

	Login Attempt from IP

	Returns Time and Type of Attempts (Success or Failure)

	Login Attempt at Time

	Returns Attempter IP Address and Type of Attempts (Success or
Failure)

	Notification APIs

	On Invalid Login Attempt

	Notification generated on Invalid Login Attempt

	YANG Data Store APIs

	Get Login Attempts

	Returns Source IP address of Attempter with Time of Attempts and
Type of Attempts (Success or Failure)

 Usecplugin-OpenFlow Developer Guide

Usecplugin-OpenFlow Developer Guide

Overview

Usecplugin-OpenFlow provides security related information for the
OpenFlow southbound interface.

Usecplugin-OpenFlow Architecture

Usecplugin-OpenFlow listens on OpenFlow southbound interface for
Packet_In messages. The application parses the message for header
information. Usecplugin-OpenFlow has PacketHandler class that implements
the PacketProcessing interface to override the OnPacketReceived
notification by which the application is notified of Packet_In
messages.

Usecplugin-OpenFlow is implemented with the help of a few java classes.

	UsecpluginProvider

	Provider class for Usecplugin-OpenFlow feature implementation.

	PacketHandler

	Receives Packet_In messages coming to the controller and process
them appropriately

	PacketParsing

	Decodes Packet_In messages for packet header information (L2, L3 &
L4 information)

	InventoryUtility

	Decodes Packet_In messages for OpenFlow Switch and Port information

	UsecpluginNotifImpl

	Logs notification information which can be seen by log:display at
the Karaf terminal

	UsecpluginRPCImpl

	Implements Usecplugin RPCs

	UsecpluginStore

	Stores attack information into YANG Data Store and log file.

Key APIs and Interfaces

	RPC APIs

	Attacks from DPID

	Number of OpenFlow Packet_In Attacks from Switch with DeviceID

	Attacks from Host

	Number of OpenFlow Packet_In Attacks from SrcIP Address

	Attacks to Server

	Number of OpenFlow Packet_In Attacks to DstIP Address

	Attacks at Time of Day

	Number of OpenFlow Packet_In Attacks at a Particular Time with a
variable Window Time

	Notification APIs

	On Low Water Mark Breached

	Notification generated on breaching Low Water Mark

 Virtual Tenant Network (VTN)

Virtual Tenant Network (VTN)

OpenDaylight Virtual Tenant Network (VTN) Overview

OpenDaylight Virtual Tenant Network (VTN) is an application that
provides multi-tenant virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating
expenses are needed because the network is configured as a silo for each
department and system. Therefore various network appliances must be
installed for each tenant and those boxes cannot be shared with others.
It is a heavy work to design, implement and operate the entire complex
network.

The uniqueness of VTN is a logical abstraction plane. This enables the
complete separation of logical plane from physical plane. Users can
design and deploy any desired network without knowing the physical
network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of
conventional L2/L3 network. Once the network is designed on VTN, it will
automatically be mapped into underlying physical network, and then
configured on the individual switch leverage SDN control protocol. The
definition of logical plane makes it possible not only to hide the
complexity of the underlying network but also to better manage network
resources. It achieves reducing reconfiguration time of network services
and minimizing network configuration errors. OpenDaylight Virtual Tenant
Network (VTN) is an application that provides multi-tenant virtual
network on an SDN controller. It provides API for creating a common
virtual network irrespective of the physical network.

[image: VTN Architecture]
VTN Architecture

It is implemented as two major components

	VTN Manager

	VTN Coordinator

VTN Manager

An OpenDaylight Plugin that interacts with other modules to implement
the components of the VTN model. It also provides a REST interface to
configure VTN components in OpenDaylight. VTN Manager is implemented as
one plugin to the OpenDaylight. This provides a REST interface to
create/update/delete VTN components. The user command in VTN Coordinator
is translated as REST API to VTN Manager by the OpenDaylight Driver
component. In addition to the above mentioned role, it also provides an
implementation to the OpenStack L2 Network Functions API.

Function Outline

The table identifies the functions and the interface used by VTN
Components:

	Component
	Interface
	Purpose

	VTN Manager
	RESTful API
	Configure VTN
Virtualization model
components in
OpenDaylight

	VTN Manager
	Neutron API
implementation
	Handle Networks API from
OpenStack (Neutron
Interface)

	VTN Coordinator
	RESTful API
	(1) Uses the RESTful
interface of VTN
Manager and configures
VTN Virtualization
model components in
OpenDaylight.
(2) Handles multiple
OpenDaylight
orchestration.
(3) Provides API to
read the physical
network details. See
samples [https://wiki.OpenDaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:L2_Network_Example_Using_VTN_Virtualization]
for usage.

Feature Overview

There are three features

	odl-vtn-manager provides VTN Manager’s JAVA API.

	odl-vtn-manager-rest provides VTN Manager’s REST API.

	odl-vtn-manager-neutron provides the integration with Neutron
interface.

REST Conf documentation for VTN Manager, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

For VTN Java API documentation, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/apidocs/index.html

Once the Karaf distribution is up, install dlux and apidocs.

feature:install odl-dlux-all odl-mdsal-apidocs

Logging In

To Log in to DLUX, after installing the application:

	Open a browser and enter the login URL as
http://<OpenDaylight-IP>:8181/index.html

Note

Replace “<OpenDaylight-IP>” with the IP address of OpenDaylight
based on your environment.

	Login to the application with user ID and password credentials as
admin.

Note

admin is the only default user available for DLUX in this release.

	In the right hand side frame, click “Yang UI”.

YANG documentation for VTN Manager, please refer to:
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.vtn/boron/manager.model/apidocs/index.html

VTN Coordinator

The VTN Coordinator is an external application that provides a REST
interface for an user to use OpenDaylight VTN Virtualization. It
interacts with the VTN Manager plugin to implement the user
configuration. It is also capable of multiple OpenDaylight
orchestration. It realizes VTN provisioning in OpenDaylight instances.
In the OpenDaylight architecture VTN Coordinator is part of the network
application, orchestration and services layer. VTN Coordinator will use
the REST interface exposed by the VTN Manger to realize the virtual
network using OpenDaylight. It uses OpenDaylight APIs (REST) to
construct the virtual network in OpenDaylight instances. It provides
REST APIs for northbound VTN applications and supports virtual networks
spanning across multiple OpenDaylight by coordinating across
OpenDaylight.

VTN Coordinator Components:

	Transaction Coordinator

	Unified Provider Physical Layer (UPPL)

	Unified Provider Logical LAyer (UPLL)

	OpenDaylight Controller Diver (ODC Driver)

OpenDaylight Virtual Tenant Network (VTN) API Overview

The VTN API module is a sub component of the VTN Coordinator and
provides the northbound REST API interface for VTN applications. It
consists of two subcomponents:

	Web Server

	VTN service Java API Library

[image: VTN-Coordinator_api-architechture]
VTN-Coordinator_api-architechture

Web Server

The Web Server module handles the REST APIs received from the VTN
applications. It translates the REST APIs to the appropriate Java APIs.

The main functions of this module are:

	Starts via the startup script catalina.sh.

	VTN Application sends HTTP request to Web server in XML or JSON
format.

	Creates a session and acquire a read/write lock.

	Invokes the VTN Service Java API Library corresponding to the
specified URI.

	Returns the response to the VTN Application.

WebServer Class Details

The list below shows the classes available for Web Server module and
their descriptions:

	Init Manager

	It is a singleton class for executing the acquisition of
configuration information from properties file, log initialization,
initialization of VTN Service Java API Library. Executed by init()
of VtnServiceWebAPIServlet.

	Configuration Manager

	Maintains the configuration information acquired from properties
file.

	VtnServiceCommonUtil

	Utility class

	VtnServiceWebUtil

	Utility class

	VtnServiceWebAPIServlet

	Receives HTTP request from VTN Application and calls the method of
corresponding VtnServiceWebAPIHandler. herits class HttpServlet, and
overrides doGet(), doPut(), doDelete(), doPost().

	VtnServiceWebAPIHandler

	Creates JsonObject(com.google.gson) from HTTP request, and calls
method of corresponding VtnServiceWebAPIController.

	VtnServiceWebAPIController

	Creates RestResource() class and calls UPLL API/UPPL API through
Java API. the time of calling UPLL API/UPPL API, performs the
creation/deletion of session, acquisition/release of configuration
mode, acquisition/release of read lock by TC API through Java API.

	Data Converter

	Converts HTTP request to JsonObject and JsonXML to JSON.

VTN Service Java API Library

It provides the Java API library to communicate with the lower layer
modules in the VTN Coordinator. The main functions of this library are:

	Creates an IPC client session to the lower layer.

	Converts the request to IPC framework format.

	Invokes the lower layer API (i.e. UPPL API, UPLL API, TC API).

	Returns the response from the lower layer to the web server

	VTN Service Java API Library Class Details

Feature Overview

VTN Coordinator doesn’t have Karaf features.

For VTN Coordinator REST API, please refer to:
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:VTN_Coordinator:RestApi

Usage Examples

	L2 Network using Single
Controller [https://wiki.OpenDaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_configure_L2_Network_with_Single_Controller]

 YANG Tools Developer Guide

YANG Tools Developer Guide

Overview

YANG Tools is set of libraries and tooling providing support for use
YANG [https://tools.ietf.org/html/rfc6020] for Java (or other
JVM-based language) projects and applications.

YANG Tools provides following features in OpenDaylight:

	parsing of YANG sources and semantic inference of relationship across
YANG models as defined in
RFC6020 [https://tools.ietf.org/html/rfc6020]

	representation of YANG-modeled data in Java
	Normalized Node representation - DOM-like tree model, which
uses conceptual meta-model more tailored to YANG and OpenDaylight
use-cases than a standard XML DOM model allows for.

	serialization / deserialization of YANG-modeled data driven by YANG
models
	XML - as defined in
RFC6020 [https://tools.ietf.org/html/rfc6020]

	JSON - as defined in
draft-lhotka-netmod-yang-json-01 [https://tools.ietf.org/html/rfc6020]

	support for third-party generators processing YANG models.

Architecture

YANG Tools project consists of following logical subsystems:

	Commons - Set of general purpose code, which is not specific to
YANG, but is also useful outside YANG Tools implementation.

	YANG Model and Parser - YANG semantic model and lexical and
semantic parser of YANG models, which creates in-memory
cross-referenced represenation of YANG models, which is used by other
components to determine their behaviour based on the model.

	YANG Data - Definition of Normalized Node APIs and Data Tree
APIs, reference implementation of these APIs and implementation of
XML and JSON codecs for Normalized Nodes.

	YANG Maven Plugin - Maven plugin which integrates YANG parser
into Maven build lifecycle and provides code-generation framework for
components, which wants to generate code or other artefacts based on
YANG model.

Concepts

Project defines base concepts and helper classes which are
project-agnostic and could be used outside of YANG Tools project scope.

Components

	yang-common

	yang-data-api

	yang-data-codec-gson

	yang-data-codec-xml

	yang-data-impl

	yang-data-jaxen

	yang-data-transform

	yang-data-util

	yang-maven-plugin

	yang-maven-plugin-it

	yang-maven-plugin-spi

	yang-model-api

	yang-model-export

	yang-model-util

	yang-parser-api

	yang-parser-impl

YANG Model API

Class diagram of yang model API

[image: ../_images/yang-model-api.png]
YANG Model API

YANG Parser

Yang Statement Parser works on the idea of statement concepts as defined
in RFC6020, section 6.3. We come up here with basic ModelStatement and
StatementDefinition, following RFC6020 idea of having sequence of
statements, where every statement contains keyword and zero or one
argument. ModelStatement is extended by DeclaredStatement (as it comes
from source, e.g. YANG source) and EffectiveStatement, which contains
other substatements and tends to represent result of semantic processing
of other statements (uses, augment for YANG). IdentifierNamespace
represents common superclass for YANG model namespaces.

Input of the Yang Statement Parser is a collection of
StatementStreamSource objects. StatementStreamSource interface is used
for inference of effective model and is required to emit its statements
using supplied StatementWriter. Each source (e.g. YANG source) has to be
processed in three steps in order to emit different statements for each
step. This package provides support for various namespaces used across
statement parser in order to map relations during declaration phase
process.

Currently, there are two implementations of StatementStreamSource in
Yangtools:

	YangStatementSourceImpl - intended for yang sources

	YinStatementSourceImpl - intended for yin sources

YANG Data API

Class diagram of yang data API

[image: ../_images/yang-data-api.png]
YANG Data API

YANG Data Codecs

Codecs which enable serialization of NormalizedNodes into YANG-modeled
data in XML or JSON format and deserialization of YANG-modeled data in
XML or JSON format into NormalizedNodes.

YANG Maven Plugin

Maven plugin which integrates YANG parser into Maven build lifecycle and
provides code-generation framework for components, which wants to
generate code or other artefacts based on YANG model.

How to / Tutorials

Working with YANG Model

First thing you need to do if you want to work with YANG models is to
instantiate a SchemaContext object. This object type describes one or
more parsed YANG modules.

In order to create it you need to utilize YANG statement parser which
takes one or more StatementStreamSource objects as input and then
produces the SchemaContext object.

StatementStreamSource object contains the source file information. It
has two implementations, one for YANG sources - YangStatementSourceImpl,
and one for YIN sources - YinStatementSourceImpl.

Here is an example of creating StatementStreamSource objects for YANG
files, providing them to the YANG statement parser and building the
SchemaContext:

StatementStreamSource yangModuleSource == new YangStatementSourceImpl("/example.yang", false);
StatementStreamSource yangModuleSource2 == new YangStatementSourceImpl("/example2.yang", false);

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_REACTOR.newBuild();
reactor.addSources(yangModuleSource, yangModuleSource2);

SchemaContext schemaContext == reactor.buildEffective();

First, StatementStreamSource objects with two constructor arguments
should be instantiated: path to the yang source file (which is a regular
String object) and a boolean which determines if the path is absolute or
relative.

Next comes the initiation of new yang parsing cycle - which is
represented by CrossSourceStatementReactor.BuildAction object. You can
get it by calling method newBuild() on CrossSourceStatementReactor
object (RFC6020_REACTOR) in YangInferencePipeline class.

Then you should feed yang sources to it by calling method addSources()
that takes one or more StatementStreamSource objects as arguments.

Finally you call the method buildEffective() on the reactor object which
returns EffectiveSchemaContext (that is a concrete implementation of
SchemaContext). Now you are ready to work with contents of the added
yang sources.

Let us explain how to work with models contained in the newly created
SchemaContext. If you want to get all the modules in the schemaContext,
you have to call method getModules() which returns a Set of modules. If
you want to get all the data definitions in schemaContext, you need to
call method getDataDefinitions, etc.

Set<Module> modules == schemaContext.getModules();
Set<DataSchemaNodes> dataSchemaNodes == schemaContext.getDataDefinitions();

Usually you want to access specific modules. Getting a concrete module
from SchemaContext is a matter of calling one of these methods:

	findModuleByName(),

	findModuleByNamespace(),

	findModuleByNamespaceAndRevision().

In the first case, you need to provide module name as it is defined in
the yang source file and module revision date if it specified in the
yang source file (if it is not defined, you can just pass a null value).
In order to provide the revision date in proper format, you can use a
utility class named SimpleDateFormatUtil.

Module exampleModule == schemaContext.findModuleByName("example-module", null);
// or
Date revisionDate == SimpleDateFormatUtil.getRevisionFormat().parse("2015-09-02");
Module exampleModule == schemaContext.findModuleByName("example-module", revisionDate);

In the second case, you have to provide module namespace in form of an
URI object.

Module exampleModule == schema.findModuleByNamespace(new URI("opendaylight.org/example-module"));

In the third case, you provide both module namespace and revision date
as arguments.

Once you have a Module object, you can access its contents as they are
defined in YANG Model API. One way to do this is to use method like
getIdentities() or getRpcs() which will give you a Set of objects.
Otherwise you can access a DataSchemaNode directly via the method
getDataChildByName() which takes a QName object as its only argument.
Here are a few examples.

Set<AugmentationSchema> augmentationSchemas == exampleModule.getAugmentations();
Set<ModuleImport> moduleImports == exampleModule.getImports();

ChoiceSchemaNode choiceSchemaNode == (ChoiceSchemaNode) exampleModule.getDataChildByName(QName.create(exampleModule.getQNameModule(), "example-choice"));

ContainerSchemaNode containerSchemaNode == (ContainerSchemaNode) exampleModule.getDataChildByName(QName.create(exampleModule.getQNameModule(), "example-container"));

The YANG statement parser can work in three modes:

	default mode

	mode with active resolution of if-feature statements

	mode with active semantic version processing

The default mode is active when you initialize the parsing cycle as
usual by calling the method newBuild() without passing any arguments to
it. The second and third mode can be activated by invoking the
newBuild() with a special argument. You can either activate just one of
them or both by passing proper arguments. Let us explain how these modes
work.

Mode with active resolution of if-features makes yang statements
containing an if-feature statement conditional based on the supported
features. These features are provided in the form of a QName-based
java.util.function.Predicate object. In the example below, only two
features are supported: example-feature-1 and example-feature-2. The
Predicate which contains this information is passed to the method
newBuild() and the mode is activated.

Predicate<QName> isFeatureSupported == qName -> {
 Set<QName> supportedFeatures == new HashSet<>();
 supportedFeatures.add(QName.create("example-namespace", "2016-08-31", "example-feature-1"));
 supportedFeatures.add(QName.create("example-namespace", "2016-08-31", "example-feature-2"));
 return supportedFeatures.contains(qName);
}

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_REACTOR.newBuild(isFeatureSupported);

In case when no features should be supported, you should provide a
Predicate<QName> object whose test() method just returns false.

Predicate<QName> isFeatureSupported == qName -> false;

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_REACTOR.newBuild(isFeatureSupported);

When this mode is not activated, all features in the processed YANG
sources are supported.

Mode with active semantic version processing changes the way how YANG
import statements work - each module import is processed based on the
specified semantic version statement and the revision-date statement is
ignored. In order to activate this mode, you have to provide
StatementParserMode.SEMVER_MODE enum constant as argument to the method
newBuild().

CrossSourceStatementReactor.BuildAction reactor == YangInferencePipeline.RFC6020_REACTOR.newBuild(StatementParserMode.SEMVER_MODE);

Before you use a semantic version statement in a YANG module, you need
to define an extension for it so that the YANG statement parser can
recognize it.

In the example above, you see a YANG module which defines semantic
version as an extension. This extension can be imported to other modules
in which we want to utilize the semantic versioning concept.

Below is a simple example of the semantic versioning usage. With
semantic version processing mode being active, the foo module imports
the bar module based on its semantic version. Notice how both modules
import the module with the semantic-version extension.

Every semantic version must have the following form: x.y.z. The x
corresponds to a major version, the y corresponds to a minor version and
the z corresponds to a patch version. If no semantic version is
specified in a module or an import statement, then the default one is
used - 0.0.0.

A major version number of 0 indicates that the model is still in
development and is subject to change.

Following a release of major version 1, all modules will increment major
version number when backwards incompatible changes to the model are
made.

The minor version is changed when features are added to the model that
do not impact current clients use of the model.

The patch version is incremented when non-feature changes (such as
bugfixes or clarifications of human-readable descriptions that do not
impact model functionality) are made that maintain backwards
compatibility.

When importing a module with activated semantic version processing mode,
only the module with the newest (highest) compatible semantic version is
imported. Two semantic versions are compatible when all of the following
conditions are met:

	the major version in the import statement and major version in the
imported module are equal. For instance, 1.5.3 is compatible with
1.5.3, 1.5.4, 1.7.2, etc., but it is not compatible with 0.5.2 or
2.4.8, etc.

	the combination of minor version and patch version in the import
statement is not higher than the one in the imported module. For
instance, 1.5.2 is compatible with 1.5.2, 1.5.4, 1.6.8 etc. In fact,
1.5.2 is also compatible with versions like 1.5.1, 1.4.9 or 1.3.7 as
they have equal major version. However, they will not be imported
because their minor and patch version are lower (older).

If the import statement does not specify a semantic version, then the
default one is chosen - 0.0.0. Thus, the module is imported only if it
has a semantic version compatible with the default one, for example
0.0.0, 0.1.3, 0.3.5 and so on.

Working with YANG Data

If you want to work with YANG Data you are going to need NormalizedNode
objects that are specified in the YANG Data API. NormalizedNode is an
interface at the top of the YANG Data hierarchy. It is extended through
sub-interfaces which define the behaviour of specific NormalizedNode
types like AnyXmlNode, ChoiceNode, LeafNode, ContainerNode, etc.
Concrete implemenations of these interfaces are defined in
yang-data-impl module. Once you have one or more NormalizedNode
instances, you can perform CRUD operations on YANG data tree which is an
in-memory database designed to store normalized nodes in a tree-like
structure.

In some cases it is clear which NormalizedNode type belongs to which
yang statement (e.g. AnyXmlNode, ChoiceNode, LeafNode). However, there
are some normalized nodes which are named differently from their yang
counterparts. They are listed below:

	LeafSetNode - leaf-list

	OrderedLeafSetNode - leaf-list that is ordered-by user

	LeafSetEntryNode - concrete entry in a leaf-list

	MapNode - keyed list

	OrderedMapNode - keyed list that is ordered-by user

	MapEntryNode - concrete entry in a keyed list

	UnkeyedListNode - unkeyed list

	UnkeyedListEntryNode - concrete entry in an unkeyed list

In order to create a concrete NormalizedNode object you can use the
utility class Builders or ImmutableNodes. These classes can be found in
yang-data-impl module and they provide methods for building each type of
normalized node. Here is a simple example of building a normalized node:

\\ example 1
ContainerNode containerNode == Builders.containerBuilder().withNodeIdentifier(new YangInstanceIdentifier.NodeIdentifier(QName.create(moduleQName, "example-container")).build();

\\ example 2
ContainerNode containerNode2 == Builders.containerBuilder(containerSchemaNode).build();

Both examples produce the same result. NodeIdentifier is one of the four
types of YangInstanceIdentifier (these types are described in the
javadoc of YangInstanceIdentifier). The purpose of
YangInstanceIdentifier is to uniquely identify a particular node in the
data tree. In the first example, you have to add NodeIdentifier before
building the resulting node. In the second example it is also added
using the provided ContainerSchemaNode object.

ImmutableNodes class offers similar builder methods and also adds an
overloaded method called fromInstanceId() which allows you to create a
NormalizedNode object based on YangInstanceIdentifier and SchemaContext.
Below is an example which shows the use of this method.

YangInstanceIdentifier.NodeIdentifier contId == new YangInstanceIdentifier.NodeIdentifier(QName.create(moduleQName, "example-container");

NormalizedNode<?, ?> contNode == ImmutableNodes.fromInstanceId(schemaContext, YangInstanceIdentifier.create(contId));

Let us show a more complex example of creating a NormalizedNode. First,
consider the following YANG module:

In the following example, two normalized nodes based on the module above
are written to and read from the data tree.

TipProducingDataTree inMemoryDataTree == InMemoryDataTreeFactory.getInstance().create(TreeType.OPERATIONAL);
inMemoryDataTree.setSchemaContext(schemaContext);

// first data tree modification
MapEntryNode parentOrderedListEntryNode == Builders.mapEntryBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifierWithPredicates(
parentOrderedListQName, parentKeyLeafQName, "pkval1"))
.withChild(Builders.leafBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentOrdinaryLeafQName))
.withValue("plfval1").build()).build();

OrderedMapNode parentOrderedListNode == Builders.orderedMapBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentOrderedListQName))
.withChild(parentOrderedListEntryNode).build();

ContainerNode parentContainerNode == Builders.containerBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(parentContainerQName))
.withChild(Builders.containerBuilder().withNodeIdentifier(
new NodeIdentifier(childContainerQName)).withChild(parentOrderedListNode).build()).build();

YangInstanceIdentifier path1 == YangInstanceIdentifier.of(parentContainerQName);

DataTreeModification treeModification == inMemoryDataTree.takeSnapshot().newModification();
treeModification.write(path1, parentContainerNode);

// second data tree modification
MapEntryNode childOrderedListEntryNode == Builders.mapEntryBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifierWithPredicates(
childOrderedListQName, childKeyLeafQName, "chkval1"))
.withChild(Builders.leafBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(childOrdinaryLeafQName))
.withValue("chlfval1").build()).build();

OrderedMapNode childOrderedListNode == Builders.orderedMapBuilder().withNodeIdentifier(
new YangInstanceIdentifier.NodeIdentifier(childOrderedListQName))
.withChild(childOrderedListEntryNode).build();

ImmutableMap.Builder<QName, Object> builder == ImmutableMap.builder();
ImmutableMap<QName, Object> keys == builder.put(parentKeyLeafQName, "pkval1").build();

YangInstanceIdentifier path2 == YangInstanceIdentifier.of(parentContainerQName).node(childContainerQName)
.node(parentOrderedListQName).node(new NodeIdentifierWithPredicates(parentOrderedListQName, keys)).node(childOrderedListQName);

treeModification.write(path2, childOrderedListNode);
treeModification.ready();
inMemoryDataTree.validate(treeModification);
inMemoryDataTree.commit(inMemoryDataTree.prepare(treeModification));

DataTreeSnapshot snapshotAfterCommits == inMemoryDataTree.takeSnapshot();
Optional<NormalizedNode<?, ?>> readNode == snapshotAfterCommits.readNode(path1);
Optional<NormalizedNode<?, ?>> readNode2 == snapshotAfterCommits.readNode(path2);

First comes the creation of in-memory data tree instance. The schema
context (containing the model mentioned above) of this tree is set.
After that, two normalized nodes are built. The first one consists of a
parent container, a child container and a parent ordered list which
contains a key leaf and an ordinary leaf. The second normalized node is
a child ordered list that also contains a key leaf and an ordinary leaf.

In order to add a child node to a node, method withChild() is used. It
takes a NormalizedNode as argument. When creating a list entry,
YangInstanceIdentifier.NodeIdentifierWithPredicates should be used as
its identifier. Its arguments are the QName of the list, QName of the
list key and the value of the key. Method withValue() specifies a value
for the ordinary leaf in the list.

Before writing a node to the data tree, a path (YangInstanceIdentifier)
which determines its place in the data tree needs to be defined. The
path of the first normalized node starts at the parent container. The
path of the second normalized node points to the child ordered list
contained in the parent ordered list entry specified by the key value
“pkval1”.

Write operation is performed with both normalized nodes mentioned
earlier. It consist of several steps. The first step is to instantiate a
DataTreeModification object based on a DataTreeSnapshot.
DataTreeSnapshot gives you the current state of the data tree. Then
comes the write operation which writes a normalized node at the provided
path in the data tree. After doing both write operations, method ready()
has to be called, marking the modification as ready for application to
the data tree. No further operations within the modification are
allowed. The modification is then validated - checked whether it can be
applied to the data tree. Finally we commit it to the data tree.

Now you can access the written nodes. In order to do this, you have to
create a new DataTreeSnapshot instance and call the method readNode()
with path argument pointing to a particular node in the tree.

Serialization / deserialization of YANG Data

If you want to deserialize YANG-modeled data which have the form of an
XML document, you can use the XML parser found in the module
yang-data-codec-xml. The parser walks through the XML document
containing YANG-modeled data based on the provided SchemaContext and
emits node events into a NormalizedNodeStreamWriter. The parser
disallows multiple instances of the same element except for leaf-list
and list entries. The parser also expects that the YANG-modeled data in
the XML source are wrapped in a root element. Otherwise it will not work
correctly.

Here is an example of using the XML parser.

InputStream resourceAsStream == ExampleClass.class.getResourceAsStream("/example-module.yang");

XMLInputFactory factory == XMLInputFactory.newInstance();
XMLStreamReader reader == factory.createXMLStreamReader(resourceAsStream);

NormalizedNodeResult result == new NormalizedNodeResult();
NormalizedNodeStreamWriter streamWriter == ImmutableNormalizedNodeStreamWriter.from(result);

XmlParserStream xmlParser == XmlParserStream.create(streamWriter, schemaContext);
xmlParser.parse(reader);

NormalizedNode<?, ?> transformedInput == result.getResult();

The XML parser utilizes the javax.xml.stream.XMLStreamReader for parsing
an XML document. First, you should create an instance of this reader
using XMLInputFactory and then load an XML document (in the form of
InputStream object) into it.

In order to emit node events while parsing the data you need to
instantiate a NormalizedNodeStreamWriter. This writer is actually an
interface and therefore you need to use a concrete implementation of it.
In this example it is the ImmutableNormalizedNodeStreamWriter, which
constructs immutable instances of NormalizedNodes.

There are two ways how to create an instance of this writer using the
static overloaded method from(). One version of this method takes a
NormalizedNodeResult as argument. This object type is a result holder in
which the resulting NormalizedNode will be stored. The other version
takes a NormalizedNodeContainerBuilder as argument. All created nodes
will be written to this builder.

Next step is to create an instance of the XML parser. The parser itself
is represented by a class named XmlParserStream. You can use one of two
versions of the static overloaded method create() to construct this
object. One version accepts a NormalizedNodeStreamWriter and a
SchemaContext as arguments, the other version takes the same arguments
plus a SchemaNode. Node events are emitted to the writer. The
SchemaContext is used to check if the YANG data in the XML source comply
with the provided YANG model(s). The last argument, a SchemaNode object,
describes the node that is the parent of nodes defined in the XML data.
If you do not provide this argument, the parser sets the SchemaContext
as the parent node.

The parser is now ready to walk through the XML. Parsing is initiated by
calling the method parse() on the XmlParserStream object with
XMLStreamReader as its argument.

Finally you can access the result of parsing - a tree of NormalizedNodes
containg the data as they are defined in the parsed XML document - by
calling the method getResult() on the NormalizedNodeResult object.

Introducing schema source repositories

Writing YANG driven generators

Introducing specific extension support for YANG parser

Diagnostics

 YANG-PUSH Developer Guide

YANG-PUSH Developer Guide

Overview

The YANG PUBSUB project allows subscriptions to be placed on targeted
subtrees of YANG datastores residing on remote devices. Changes in YANG
objects within the remote subtree can be pushed to an OpenDaylight
controller as specified without a requiring the controller to make a
continuous set of fetch requests.

YANG-PUSH capabilities available

This module contains the base code which embodies the intent of
YANG-PUSH requirements for subscription as defined in
{i2rs-pub-sub-requirements}
[https://datatracker.ietf.org/doc/draft-ietf-i2rs-pub-sub-requirements/].
The mechanism for delivering on these YANG-PUSH requirements over
Netconf transport is defined in {netconf-yang-push} [netconf-yang-push:
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-00].

Note that in the current release, not all capabilities of
draft-ietf-netconf-yang-push are realized. Currently only implemented is
create-subscription RPC support from
ietf-datastore-push@2015-10-15.yang; and this will be for periodic
subscriptions only. There of course is intent to provide much additional
functionality in future OpenDaylight releases.

Future YANG-PUSH capabilities

Over time, the intent is to flesh out more robust capabilities which
will allow OpenDaylight applications to subscribe to YANG-PUSH compliant
devices. Capabilities for future releases will include:

Support for subscription change/delete: modify-subscription rpc
support for all mountpoint devices or particular mountpoint device
delete-subscription rpc support for all mountpoint devices or
particular mountpoint device

Support for static subscriptions: This will enable the receipt of
subscription updates pushed from publishing devices where no signaling
from the controller has been used to establish the subscriptions.

Support for additional transports: NETCONF is not the only transport of
interest to OpenDaylight or the subscribed devices. Over time this code
will support Restconf and HTTP/2 transport requirements defined in
{netconf-restconf-yang-push}
[https://tools.ietf.org/html/draft-voit-netconf-restconf-yang-push-01]

YANG-PUSH Architecture

The code architecture of Yang push consists of two main elements

YANGPUSH Provider YANGPUSH Listener

YANGPUSH Provider receives create-subscription requests from
applications and then establishes/registers the corresponding listener
which will receive information pushed by a publisher. In addition,
YANGPUSH Provider also invokes an augmented OpenDaylight
create-subscription RPC which enables applications to register for
notification as per rfc5277. This augmentation adds periodic time period
(duration) and subscription-id values to the existing RPC parameters.
The Java package supporting this capability is
“org.opendaylight.yangpush.impl”. Below class supports the YANGPUSH
Provider capability:

(1) YangpushDomProvider The Binding Independent version. It uses a
neutral data Document Object Model format for data and API calls, which
is independent of any generated Java language bindings from the YANG
model.

The YANGPUSH Listener accepts update notifications from a device after
they have been de-encapsulated from the NETCONF transport. The YANGPUSH
Listener then passes these updates to MD-SAL. This function is
implemented via the YangpushDOMNotificationListener class within the
“org.opendaylight.yangpush.listner” Java package.

Key APIs and Interfaces

YangpushDomProvider

Central to this is onSessionInitiated which acquires the Document Object
Model format based versions of MD-SAL services, including the MountPoint
service and RPCs. Via these acquired services, invoke
registerDataChangeListener over in YangpushDOMNotificationListener.

YangpushDOMNotificationListener

This API handles instances of a received Push Updates which are inbound
to the listener and places these in MD-SAL. Key classes in include:

onPushUpdate Converts and validates the encoding of the pushed
subscription update. If the subscription exists and is active, calls
updateDataStoreForPushUpdate so that the information can be put in
MD-SAL. Finally logs the pushed subscription update as well as some
additional context information.

updateDataStoreForPushUpdate Used to put the published information into
MD-SAL. This pushed information will also include elements such as the
subscription-id, the identity of the publisher, the time of the update,
the incoming encoding type, and the pushed YANG subtree information.

YangpushDOMNotificationListener Starts the listener tracking a new
Subscription ID from a particular publisher.

API Reference Documentation

Javadocs are generated while creating mvn:site and they are located in
target/ directory in each module.

 Gerrit Guide

Gerrit Guide

How to push to Gerrit

It is highly recommended to use ssh to push to Gerrit to push code to Gerrit.
In the event that you cannot use ssh such as corporate firewall blocking you
then falling back to pushing via https should work.

Using ssh to push to Gerrit

TODO

Using https to push to Gerrit

Gerrit does not allow you to use your regular account credentials when pushing
via https. Instead it requires you to first generate a http password via the
Web U and use that as the password when pushing via https.

[image: _images/gerrit-https-password-setup.png]
Setting up an https password to push using https instead of ssh.

To do this:

	navigate to https://git.opendaylight.org/gerrit/#/settings/http-password
(Steps 1, 2 and 3 in the image above.)

	click the Generate Password button.

Gerrit will then generate a random password which you will need to use as your
password when using git to push code to Gerrit via https.

Signing Gerrit Commits

	Generate your GPG key.

The following instructions work on a Mac, but the general approach
should be the same on other OSes.

brew install gpg2 # If you don't have homebrew, get that here: http://brew.sh/
gpg2 --gen-key
pick 1 for "RSA and RSA"
enter 4096 to creat a 4096-bit key
enter an expiration time, I picked 2y for 2 years
enter y to accept the expiration time
pick O or Q to accept your name/email/comment
enter a pass phrase twice. it seems like backspace doesn't work, so type carefully
gpg2 --fingerprint
you'll get something like this:
spectre:~ ckd$ gpg2 --fingerprint
/Users/ckd/.gnupg/pubring.gpg

pub 4096R/F566C9B1 2015-04-06 [expires: 2017-04-05]
Key fingerprint = 7C37 02AC D651 1FA7 9209 48D3 5DD5 0C4B F566 C9B1
uid [ultimate] Colin Dixon <colin at colindixon.com>
sub 4096R/DC1497E1 2015-04-06 [expires: 2017-04-05]
you're looking for the part after 4096R, which is your key ID
gpg2 --send-keys $KEY_ID
in the above example, the $KEY_ID would be F566C9B1
you should see output like this:
gpg: sending key F566C9B1 to hkp server keys.gnupg.net

If you’re trying to participate in an OpenDaylight keysigning, then
send the output of gpg2 --fingerprint $KEY_ID to
keysigning@opendaylight.org

gpg2 --fingerprint $KEY_ID
in the above example, the $KEY_ID would be F566C9B1
in my case, the output was:
pub 4096R/F566C9B1 2015-04-06 [expires: 2017-04-05]
Key fingerprint = 7C37 02AC D651 1FA7 9209 48D3 5DD5 0C4B F566 C9B1
uid [ultimate] Colin Dixon <colin at colindixon.com>
sub 4096R/DC1497E1 2015-04-06 [expires: 2017-04-05]

	Install gpg, instead of or addition to gpg2. It appears as though
gpg2 has annoying things that it does when asking for your
passphrase, which I haven’t debugged yet.

Note

you can tell git to use gpg by doing:
git config --global gpg.program gpg2
but that then will seem to struggle asking for your
passphrase unless you have your gpg-agent set up right.

	Add you GPG to Gerrit

	Run the following at the CLI:

gpg --export -a $FINGER_PRINT
e.g., gpg --export -a F566C9B1
in my case the output looked like:
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2
#
mQINBFUisGABEAC/DkcjNUhxQkRLdfbfdlq9NlfDusWri0cXLVz4YN1cTUTF5HiW
...
gJT+FwDvCGgaE+JGlmXgjv0WSd4f9cNXkgYqfb6mpji0F3TF2HXXiVPqbwJ1V3I2
NA+l+/koCW0aMReK
=A/ql
-----END PGP PUBLIC KEY BLOCK-----

	Browse to https://git.opendaylight.org/gerrit/#/settings/gpg-keys

	Click Add Key...

	Copy the output from the above command, paste it into the box,
and click Add

	Set up your git to sign commits and push signatures

git config commit.gpgsign true
git config push.gpgsign true
git config user.signingkey $FINGER_PRINT
e.g., git config user.signingkey F566C9B1

Note

you can do this instead with git commit -S
You can use git commit -S and git push --signed
on the CLI instead of configuring it in config if you
want to control which commits use your signature.

	Commit and push a change

	change a file

	git commit -asm "test commit"

Note

this should result in git asking you for your passphrase

	git review

Note

this should result in git asking you for your passphrase

Note

annoyingly, the presence of a gpgp signature or pushing
of a gpg signature isn’t recognized as a “change” by
Gerrit, so if you forget to do either, you need to change
something about the commit to get Gerrit to accept the
patch again. Slightly tweaking the commit message is a
good way.

Note

this assumes you have git review set up and push.gpgsign
set to true. Otherwise:

git push --signed gerrit HEAD:refs/for/master

Note

this assumes you have your gerrit remote set up, if
not it’s something like:
ssh://ckd@git.opendaylight.org:29418/<repo>.git
where repo is something like docs or controller

	Verify that your commit is signed by going to the change in Gerrit
and checking for a green check (instead of a blue ?) next to your
name.

Setting up gpg-agent on a Mac

	Install gpg-agent and pinentry-mac using brew:

brew install gpg-agent pinentry-mac

	Edit your ~/.gnupg/gpg.conf contain the line:

use-agent

	Edit your ~/.gnupg/gpg-agent.conf to something like:

use-standard-socket
enable-ssh-support
default-cache-ttl 600
max-cache-ttl 7200
pinentry-program /usr/local/bin/pinentry-mac

	Edit your .bash_profile or equivalent file to contain the
following:

[-f ~/.gpg-agent-info] && source ~/.gpg-agent-info
if [-S "${GPG_AGENT_INFO%%:*}"]; then
 export GPG_AGENT_INFO
else
 eval $(gpg-agent --daemon --write-env-file ~/.gpg-agent-info)
fi

	Kill any stray gpg-agent daemons running:

sudo killall gpg-agent

	Restart your terminal (or log in and out) to reload the your
.bash_profile or equivalent file

	The next time a git operation makes a call to gpg, it should use
your gpg-agent to run a GUI window to ask for your passphrase and
give you an option to save your passphrase in the keychain.

[image: _images/pinentry-mac.png]

 Infrastructure Guide

Infrastructure Guide

This guide provides details into OpenDaylight Infrastructure and services.

Contents:

	Jenkins
	New Project Quick Start

	Jenkins Master

	Build Minions

	Creating Jenkins Jobs

	Getting Jenkins Job Builder

	Installing Jenkins Job Builder

	Virtual Environments

	Installing JJB using pip

	Installing JJB Manually

	Jenkins Job Templates

	Maven Properties

	Jenkins Sandbox

	Release Workflow
	Workflow

	Release Job

 Jenkins

Jenkins

The Release Engineering Project [https://wiki.opendaylight.org/view/RelEng:Main] consolidates the Jenkins jobs from
project-specific VMs to a single Jenkins server. Each OpenDaylight project
has a tab for their jobs on the jenkins-master [https://jenkins.opendaylight.org/releng]. The system utilizes
Jenkins Job Builder [http://ci.openstack.org/jenkins-job-builder/] for the creation and management of the
Jenkins jobs.

Sections:

	New Project Quick Start

	Jenkins Master

	Build Minions
	Adding New Components to the Minions

	Pool: ODLRPC

	Pool: ODLPUB - HOT (Heat Orchestration Templates)

	Creating Jenkins Jobs

	Getting Jenkins Job Builder

	Installing Jenkins Job Builder

	Virtual Environments

	Installing JJB using pip

	Installing JJB Manually

	Jenkins Job Templates

	Maven Properties

	Jenkins Sandbox
	Notes Regarding the Sandbox

	Configuration

	Manual Method

	Testing Jobs

	Pushing Jobs

	Running Jobs

New Project Quick Start

This section attempts to provide details on how to get going as a new project
quickly with minimal steps. The rest of the guide should be read and understood
by those who need to create and contribute new job types that is not already
covered by the existing job templates provided by OpenDaylight’s JJB repo.

As a new project you will be mainly interested in getting your jobs to appear
in the jenkins-master [https://jenkins.opendaylight.org/releng] silo and this can be achieved by simply creating a
<project>.yaml in the releng/builder project’s jjb directory.

git clone --recursive https://git.opendaylight.org/gerrit/releng/builder
cd builder
mkdir jjb/<new-project>

Where <new-project> should be the same name as your project’s git repo in
Gerrit. If your project is called “aaa” then create a new jjb/aaa directory.

Next we will create <new-project>.yaml as follows:

- project:
 name: <NEW_PROJECT>-carbon
 jobs:
 - '{project-name}-clm-{stream}'
 - '{project-name}-integration-{stream}'
 - '{project-name}-merge-{stream}'
 - '{project-name}-verify-{stream}-{maven}-{jdks}'

 project: '<NEW_PROJECT>'
 project-name: '<NEW_PROJECT>'
 stream: carbon
 branch: 'master'
 jdk: openjdk8
 jdks:
 - openjdk8
 maven:
 - mvn33:
 mvn-version: 'mvn33'
 mvn-settings: '<NEW_PROJECT>-settings'
 mvn-goals: 'clean install -Dmaven.repo.local=/tmp/r -Dorg.ops4j.pax.url.mvn.localRepository=/tmp/r'
 mvn-opts: '-Xmx1024m -XX:MaxPermSize=256m'
 dependencies: 'odlparent-merge-{stream},yangtools-merge-{stream},controller-merge-{stream}'
 email-upstream: '[<NEW_PROJECT>] [odlparent] [yangtools] [controller]'
 archive-artifacts: ''

- project:
 name: <NEW_PROJECT>-sonar
 jobs:
 - '{project-name}-sonar'

 project: '<NEW_PROJECT>'
 project-name: '<NEW_PROJECT>'
 branch: 'master'
 mvn-settings: '<NEW_PROJECT>-settings'
 mvn-goals: 'clean install -Dmaven.repo.local=/tmp/r -Dorg.ops4j.pax.url.mvn.localRepository=/tmp/r'
 mvn-opts: '-Xmx1024m -XX:MaxPermSize=256m'

Replace all instances of <new-project> with the name of your project. This will
create the jobs with the default job types we recommend for Java projects. If
your project is participating in the simultanious-release and ultimately will
be included in the final distribution, it is required to add the following job
types into the job list for the release you are participating.

- '{project-name}-distribution-check-{stream}'
- '{project-name}-validate-autorelease-{stream}'

If you’d like to explore the additional tweaking options available
please refer to the Jenkins Job Templates section.

Finally we need to push these files to Gerrit for review by the releng/builder
team to push your jobs to Jenkins.

git add jjb/<new-project>
git commit -sm "Add <new-project> jobs to Jenkins"
git review

This will push the jobs to Gerrit and your jobs will appear in Jenkins once the
releng/builder team has reviewed and merged your patch.

Jenkins Master

The jenkins-master [https://jenkins.opendaylight.org/releng] is the home for all project’s Jenkins jobs. All
maintenance and configuration of these jobs must be done via JJB through the
releng-builder-repo [https://git.opendaylight.org/gerrit/gitweb?p=releng%2Fbuilder.git;a=summary]. Project contributors can no longer edit the Jenkins jobs
directly on the server.

Build Minions

The Jenkins jobs are run on build minions (executors) which are created on an
as-needed basis. If no idle build minions are available a new VM is brought
up. This process can take up to 2 minutes. Once the build minion has finished a
job, it will be destroyed.

Our Jenkins master supports many types of dynamic build minions. If you are
creating custom jobs then you will need to have an idea of what type of minions
are available. The following are the current minion types and descriptions.
Minion Template Names are needed for jobs that take advantage of multiple
minions as they must be specifically called out by template name instead of
label.

Adding New Components to the Minions

If your project needs something added to one of the minions, you can help us
get things added faster by doing one of the following:

	Submit a patch to RelEng/Builder for the appropriate jenkins-scripts
definition which configure software during minion boot up.

	Submit a patch to RelEng/Builder for the packer/provision scripts that
configures software during minion instance imaging.

	Submit a patch to RelEng/Builder for the Packer’s templates in
the packer/templates directory that configures a new instance definition
along with changes in packer/provision.

Going the first route will be faster in the short term as we can inspect the
changes and make test modifications in the sandbox to verify that it works.

Note

The first route may add additional setup time considering this is run every
time the minion is booted.

The second and third routes, however, is better for the community as a whole as
it will allow others to utilize our Packer setups to replicate our systems more
closely. It is, however, more time consuming as an image snapshot needs to be
created based on the updated Packer definitions before it can be attached to the
Jenkins configuration on sandbox for validation testing.

In either case, the changes must be validated in the sandbox with tests to
make sure that we don’t break current jobs and that the new software features
are operating as intended. Once this is done the changes will be merged and
the updates applied to the RelEng Jenkins production silo. Any changes to
files under releng/builder/packer will be validated and images would be built
triggered by verify-packer and merge-packer jobs.

Please note that the combination of a Packer definitions from vars, templates
and the provision scripts is what defines a given minion. For instance, a minion
may be defined as centos7-java-builder which is a combination of Packer OS image
definitions from vars/centos.json, Packer template definitions from
templates/java-buidler.json and spinup scripts from provision/java-builder.sh.
This combination provides the full definition of the realized minion.

Jenkins starts a minion using the latest image which is built and linked into the
Jenkins configuration. Once the base instance is online Jenkins checks out the
RelEng/Builder repo on it and executes two scripts. The first is
provision/baseline.sh, which is a baseline for all of the minions.

The second is the specialized script, which handles any system updates,
new software installs or extra environment tweaks that don’t make sense in a
snapshot. Examples could include installing new package or setting up a virtual
environment. Its imperative to ensure modifications to these spinup scripts have
considered time taken to install the packages, as this could increase the build
time for every job which runs on the image. After all of these scripts have
executed Jenkins will finally attach the minion as an actual minion and start
handling jobs on it.

Pool: ODLRPC

 	Jenkins Labels
 centos7-java-builder-2c-4g,
 centos7-java-builder-2c-8g, centos7-java-builder-4c-8g,
 centos7-java-builder-8c-8g, centos7-java-builder-4c-16g
 	Minion Template names
 centos7-java-builder-2c-4g,
 centos7-java-builder-2c-4g, centos7-java-builder-2c-8g,
 centos7-java-builder-4c-8g, centos7-java-builder-8c-8g,
 centos7-java-builder-4c-16g
 	Packer Template

 releng/builder/packer/templates/java-builder.json
 	Spinup Script

 releng/builder/jenkins-scripts/builder.sh

 	
 CentOS 7 build minion configured with OpenJDK 1.7 (Java7) and OpenJDK
 1.8 (Java8) along with all the other components and libraries needed
 for building any current OpenDaylight project. This is the label that
 is used for all basic verify, merge and daily builds for
 projects.

 	Jenkins Labels
 centos7-robot-2c-2g
 	Minion Template names
 centos7-robot-2c-2g
 	Packer Template

 releng/builder/packer/templates/robot.json
 	Spinup Script
 releng/builder/jenkins-scripts/robot.sh

 	
 CentOS 7 minion configured with OpenJDK 1.7 (Java7), OpenJDK
 1.8 (Java8) and all the current packages used by the integration
 project for doing robot driven jobs. If you are executing robot
 framework jobs then your job should be using this as the minion that
 you are tied to. This image does not contain the needed libraries for
 building components of OpenDaylight, only for executing robot tests.

 	Jenkins Labels
 ubuntu1404-mininet-2c-2g
 	Minion Template names
 ubuntu1404-mininet-2c-2g
 	Packer Template

 releng/builder/packer/teamplates/mininet.json
 	Spinup Script
 releng/builder/jenkins-scripts/mininet-ubuntu.sh

 	
 Basic Ubuntu 14.04 (Trusty) system with ovs 2.0.2 and mininet 2.1.0

 	Jenkins Labels
 ubuntu1404-mininet-ovs-23-2c-2g
 	Minion Template names
 ubuntu1404-mininet-ovs-23-2c-2g
 	Packer Template
 releng/builder/packer/templates/mininet-ovs-2.3.json
 	Spinup Script
 releng/builder/jenkins-scripts/mininet-ubuntu.sh

 	
 Ubuntu 16.04 (Xenial) system with ovs 2.5 and mininet 2.2.1

 	Jenkins Labels
 centos7-devstack-2c-4g
 	Minion Template names
 centos7-devstack-2c-4g
 	Packer Template
 releng/builder/packer/templates/devstack.json
 	Spinup Script
 releng/builder/jenkins-scripts/devstack.sh

 	
 CentOS 7 system purpose built for doing OpenStack testing using
 DevStack. This minion is primarily targeted at the needs of the OVSDB
 project. It has OpenJDK 1.7 (aka Java7) and OpenJDK 1.8 (Java8) and
 other basic DevStack related bits installed.

 	Jenkins Labels
 centos7-docker-2c-4g
 	Minion Template names
 centos7-docker-2c-4g
 	Packer Template
 releng/builder/packer/templates/docker.json
 	Spinup Script
 releng/builder/jenkins-scripts/docker.sh

 	
 CentOS 7 system configured with OpenJDK 1.7 (aka Java7),
 OpenJDK 1.8 (Java8) and Docker. This system was originally custom
 built for the test needs of the OVSDB project but other projects have
 expressed interest in using it.

 	Jenkins Labels
 ubuntu1404-gbp-2c-2g
 	Minion Template names
 ubuntu1404-gbp-2c-2g
 	Packer Template
 releng/builder/packer/templates/gbp.json
 	Spinup Script
 releng/builder/jenkins-scripts/ubuntu-docker-ovs.sh

 	
 Ubuntu 14.04 (Trusty) node with latest OVS and docker installed. Used by Group Based Policy.

 	Jenkins Labels
 ubuntu1604-gbp-2c-4g
 	Minion Template names
 ubuntu1604-gbp-2c-4g
 	Packer Template
 releng/builder/packer/templates/gbp.json
 	Spinup Script
 releng/builder/jenkins-scripts/ubuntu-docker-ovs.sh

 	
 Ubuntu 16.04 (Xenial) node with latest OVS and docker installed. Used by Group Based Policy.

Pool: ODLPUB - HOT (Heat Orchestration Templates)

HOT integration enables to spin up integration labs servers for CSIT jobs
using heat, rathar than using jclouds (deprecated). Image names are updated
on the project specific job templates using the variable
{odl,docker,openstack,tools}_system_image followed by image name in the
format <platform> - <template> - <date-stamp>.

CentOS 7 - docker - 20161031-0802

Following are the list of published images available to be used with Jenkins jobs.

	CentOS 6.6

	CentOS 7 (cloudimg 1510)

	CentOS 7 - devstack - 20170117-0003

	CentOS 7 - devstack - 20170120-1710

	CentOS 7 - devstack - 20170210-1356

	CentOS 7 - devstack - 20170221-1719

	CentOS 7 - devstack - 20170606-0344

	CentOS 7 - devstack - 20170609-0220

	CentOS 7 - devstack - 20170808-0528

	CentOS 7 - devstack - newton - 20170117-0005

	CentOS 7 - devstack-mitaka - 20170130-0523

	CentOS 7 - devstack-mitaka - 20170314-2255

	CentOS 7 - devstack-newton - 20170130-0426

	CentOS 7 - devstack-newton - 20170314-2256

	CentOS 7 - devstack-newton - 20170606-0427

	CentOS 7 - devstack-newton - 20170707-0359

	CentOS 7 - devstack-newton - 20170808-0528

	CentOS 7 - devstack-ocata - 20170606-0821

	CentOS 7 - devstack-ocata - 20170609-0221

	CentOS 7 - devstack-ocata - 20170808-0528

	CentOS 7 - docker - 20170117-0003

	CentOS 7 - docker - 20170120-1434

	CentOS 7 - docker - 20170607-0203

	CentOS 7 - docker - 20170609-0220

	CentOS 7 - docker - 20170808-0528

	CentOS 7 - java-builder - 20170117-0004

	CentOS 7 - java-builder - 20170126-0058

	CentOS 7 - java-builder - 20170309-2355

	CentOS 7 - java-builder - 20170311-0517

	CentOS 7 - java-builder - 20170606-0427

	CentOS 7 - java-builder - 20170607-1706

	CentOS 7 - java-builder - 20170609-0259

	CentOS 7 - java-builder - 20170707-0359

	CentOS 7 - java-builder - 20170807-1102

	CentOS 7 - java-builder - 20170807-2145

	CentOS 7 - robot - 20170117-0004

	CentOS 7 - robot - 20170210-1803

	CentOS 7 - robot - 20170328-0206

	CentOS 7 - robot - 20170526-2050

	CentOS 7 - robot - 20170606-0345

	CentOS 7 - robot - 20170609-0220

	CentOS 7 - robot - 20170808-0529

	Fedora 23 (20151030 cloud)

	Ubuntu 14.04 - devstack - 20170117-0004

	Ubuntu 14.04 - docker - 20170117-0003

	Ubuntu 14.04 - gbp - 20170117-0042

	Ubuntu 14.04 - gbp - 20170210-0536

	Ubuntu 14.04 - gbp - 20170706-1254

	Ubuntu 14.04 - gbp - 20170808-0524

	Ubuntu 14.04 - mininet - 20170117-0003

	Ubuntu 14.04 - mininet - 20170130-0425

	Ubuntu 14.04 - mininet - 20170207-2055

	Ubuntu 14.04 - mininet - 20170210-0439

	Ubuntu 14.04 - mininet - 20170606-0534

	Ubuntu 14.04 - mininet - 20170609-0220

	Ubuntu 14.04 - mininet - 20170611-0950

	Ubuntu 14.04 - mininet - 20170808-0158

	Ubuntu 14.04 - mininet-ovs-2.3 - 20170117-0004

	Ubuntu 14.04 - mininet-ovs-2.5 - 20170117-0004

	Ubuntu 14.04 - mininet-ovs-23 - 20170130-0415

	Ubuntu 14.04 - mininet-ovs-23 - 20170130-0425

	Ubuntu 14.04 - mininet-ovs-23 - 20170210-0414

	Ubuntu 14.04 - mininet-ovs-25 - 20170130-0414

	Ubuntu 14.04 - mininet-ovs-25 - 20170130-0425

	Ubuntu 14.04 - mininet-ovs-25 - 20170210-0300

	Ubuntu 14.04 LTS Trusty Tahr (cloudimg)

	Ubuntu 16.04 - gbp - 20170308-0321

	Ubuntu 16.04 - mininet-ovs-25 - 20170308-0230

	Ubuntu 16.04 - mininet-ovs-25 - 20170516-0740

	Ubuntu 16.04 - mininet-ovs-25 - 20170606-0534

	Ubuntu 16.04 - mininet-ovs-25 - 20170609-0221

	Ubuntu 16.04 - mininet-ovs-25 - 20170703-2150

	Ubuntu 16.04 - mininet-ovs-25 - 20170808-0158

	Ubuntu 16.04 LTS (2016-05-03 cloudimg)

Creating Jenkins Jobs

Jenkins Job Builder takes simple descriptions of Jenkins jobs in YAML format
and uses them to configure Jenkins.

	Jenkins Job Builder (JJB) documentation [http://ci.openstack.org/jenkins-job-builder/]

	RelEng/Builder Gerrit [https://git.opendaylight.org/gerrit/#/admin/projects/releng/builder]

	RelEng/Builder Git repository [https://git.opendaylight.org/gerrit/gitweb?p=releng%2Fbuilder.git;a=summary]

Getting Jenkins Job Builder

OpenDaylight uses Jenkins Job Builder to translate our in-repo YAML job
configuration into job descriptions suitable for consumption by Jenkins.
When testing new Jenkins Jobs in the Jenkins Sandbox, you’ll
need to use the jenkins-jobs executable to translate a set of jobs into
their XML descriptions and upload them to the sandbox Jenkins server.

We document installing jenkins-jobs
below.

Installing Jenkins Job Builder

We recommend using pip to assist with JJB
installs, but we
also document installing from a git repository manually.
For both, we recommend using Python Virtual Environments
to isolate JJB and its dependencies.

The builder/jjb/requirements.txt [https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt] file contains the currently
recommended JJB version. Because JJB is fairly unstable, it may be necessary
to debug things by installing different versions. This is documented for both
pip-assisted and manual installs.

Virtual Environments

For both pip-assisted and manual JJB
installs, we recommend using Python Virtual Environments [https://virtualenv.readthedocs.org/en/latest/]
to manage JJB and its
Python dependencies. The python-virtualenvwrapper [https://virtualenvwrapper.readthedocs.org/en/latest/] tool can help you do so.

Documentation is available for installing python-virtualenvwrapper [https://virtualenvwrapper.readthedocs.org/en/latest/]. On Linux
systems with pip (typical), they amount to:

sudo pip install virtualenvwrapper

A virtual environment is simply a directory that you install Python programs
into and then append to the front of your path, causing those copies to be
found before any system-wide versions.

Create a new virtual environment for JJB.

Virtaulenvwrapper uses this dir for virtual environments
$ echo $WORKON_HOME
/home/daniel/.virtualenvs
Make a new virtual environment
$ mkvirtualenv jjb
A new venv dir was created
(jjb)$ ls -rc $WORKON_HOME | tail -n 1
jjb
The new venv was added to the front of this shell's path
(jjb)$ echo $PATH
/home/daniel/.virtualenvs/jjb/bin:<my normal path>
Software installed to venv, like pip, is found before system-wide copies
(jjb)$ command -v pip
/home/daniel/.virtualenvs/jjb/bin/pip

With your virtual environment active, you should install JJB. Your install will
be isolated to that virtual environment’s directory and only visible when the
virtual environment is active.

You can easily leave and return to your venv. Make sure you activate it before
each use of JJB.

(jjb)$ deactivate
$ command -v jenkins-jobs
No jenkins-jobs executable found
$ workon jjb
(jjb)$ command -v jenkins-jobs
$WORKON_HOME/jjb/bin/jenkins-jobs

Installing JJB using pip

The recommended way to install JJB is via pip.

First, clone the latest version of the releng-builder-repo [https://git.opendaylight.org/gerrit/gitweb?p=releng%2Fbuilder.git;a=summary].

$ git clone --recursive https://git.opendaylight.org/gerrit/p/releng/builder.git

Before actually installing JJB and its dependencies, make sure you’ve created
and activated a virtual environment for JJB.

$ mkvirtualenv jjb

The recommended version of JJB to install is the version specified in the
builder/jjb/requirements.txt [https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt] file.

From the root of the releng/builder repo
(jjb)$ pip install -r jjb/requirements.txt

To validate that JJB was successfully installed you can run this command:

(jjb)$ jenkins-jobs --version

TODO: Explain that only the currently merged jjb/requirements.txt is supported,
other options described below are for troubleshooting only.

To change the version of JJB specified by builder/jjb/requirements.txt [https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=blob;f=jjb/requirements.txt]
to install from the latest commit to the master branch of JJB’s git repository:

$ cat jjb/requirements.txt
-e git+https://git.openstack.org/openstack-infra/jenkins-job-builder#egg=jenkins-job-builder

To install from a tag, like 1.4.0:

$ cat jjb/requirements.txt
-e git+https://git.openstack.org/openstack-infra/jenkins-job-builder@1.4.0#egg=jenkins-job-builder

Installing JJB Manually

This section documents installing JJB from its manually cloned repository.

Note that installing via pip is typically simpler.

Checkout the version of JJB’s source you’d like to build.

For example, using master:

$ git clone https://git.openstack.org/openstack-infra/jenkins-job-builder

Using a tag, like 1.4.0:

$ git clone https://git.openstack.org/openstack-infra/jenkins-job-builder
$ cd jenkins-job-builder
$ git checkout tags/1.4.0

Before actually installing JJB and its dependencies, make sure you’ve created
and activated a virtual environment for JJB.

$ mkvirtualenv jjb

You can then use JJB’s requirements.txt [https://github.com/openstack-infra/jenkins-job-builder/blob/master/requirements.txt] file to
install its
dependencies. Note that we’re not using sudo to install as root, since we want
to make use of the venv we’ve configured for our current user.

In the cloned JJB repo, with the desired version of the code checked out
(jjb)$ pip install -r requirements.txt

Then install JJB from the repo with:

(jjb)$ pip install .

To validate that JJB was successfully installed you can run this command:

(jjb)$ jenkins-jobs --version

Jenkins Job Templates

The OpenDaylight RelEng/Builder [https://wiki.opendaylight.org/view/RelEng/Builder] project provides
jjb-templates [https://git.opendaylight.org/gerrit/gitweb?p=releng/builder.git;a=tree;f=jjb] that can be used to define basic jobs.

The Gerrit Trigger listed in the jobs are keywords that can be used to
trigger the job to run manually by simply leaving a comment in Gerrit for the
patch you wish to trigger against.

All jobs have a default build-timeout value of 360 minutes (6 hrs) but can be
overrided via the opendaylight-infra-wrappers’ build-timeout property.

TODO: Group jobs into categories: every-patch, after-merge, on-demand, etc.
TODO: Reiterate that “remerge” triggers all every-patch jobs at once,
because when only a subset of jobs is triggered, Gerrit forgets valid -1 from jobs outside the subset.
TODO: Document that only drafts and commit-message-only edits do not trigger every-patch jobs.
TODO: Document test-{project}-{feature} and test-{project}-all.

 	Job Template
{project}-distribution-check-{stream}
 	Gerrit Trigger
recheck

 	
 This job runs the PROJECT-distribution-check-BRANCH job which is
 building also integration/distribution project in order to run SingleFeatureTest.
 It also performs various other checks in order to prevent the change to break autorelease.

 	Job Template
{project}-integration-{stream}
 	

 	
 The Integration Job Template creates a job which runs when a project that your
 project depends on is successfully built. This job type is basically the same
 as a verify job except that it triggers from other Jenkins jobs instead of via
 Gerrit review updates. The dependencies that triger integration jobs are listed
 in your project.cfg file under the DEPENDENCIES variable.

 If no dependencies are listed then this job type is disabled by default.

 	Job Template
{project}-merge-{stream}
 	Gerrit Trigger
remerge

 	
 This job will trigger once a Gerrit patch is merged into the repo.
 It will build HEAD of the current project branch and also run the Maven goals
 source:jar and javadoc:jar.
 Artifacts are uploaded to OpenDaylight's
 Nexus on completion.

 A distribution-merge-{stream} job is triggered to add the new artifacts to the
 integration distribution.

 Running the "remerge" trigger is possible before a Change is merged,
 it would still build the actual HEAD. This job does not alter Gerrit votes.

 	Job Template
{project}-sonar
 	Gerrit Trigger
run-sonar

 	
 This job runs Sonar analysis and reports the results to
 OpenDaylight's Sonar
 dashboard.

 The Sonar Job Template creates a job which will run against the
 master branch, or if BRANCHES are specified in the CFG file it will
 create a job for the First branch listed.

 Note

 Running the "run-sonar" trigger will cause Jenkins to remove
 its existing vote if it's already -1'd or +1'd a comment. You
 will need to re-run your verify job (recheck) after running
 this to get Jenkins to re-vote.

 	Job Template
{project}-validate-autorelease-{stream}
 	Gerrit Trigger
recheck

 	
 This job runs the PROJECT-validate-autorelease-BRANCH job which is
 used as a quick sanity test to ensure that a patch does not depend on
 features that do not exist in the current release.

 	Job Template
{project}-verify-{stream}-{maven}-{jdks}
 	Gerrit Trigger
recheck

 	
 The Verify job template creates a Gerrit Trigger job that will
 trigger when a new patch is submitted to Gerrit.
 The job only builds the project code (including unit and integration tests).

 	Job Template
{project}-verify-node-{stream}
 	Gerrit Trigger
recheck

 	
 This job template can be used by a project that is NodeJS based. It
 simply installs a python virtualenv and uses that to install nodeenv
 which is then used to install another virtualenv for nodejs. It then
 calls npm install and npm test to run the unit tests.
 When using this template you need to provide a {nodedir} and
 {nodever} containing the directory relative to the project root
 containing the nodejs package.json and version of node you wish to
 run tests with.

 	Job Template
{project}-verify-python-{stream} | {project}-verify-tox-{stream}
 	Gerrit Trigger
recheck

 	
 This job template can be used by a project that uses Tox to build. It
 simply installs a Python virtualenv and uses tox to run the tests
 defined in the project's tox.ini file. If the tox.ini is anywhere
 other than the project's repo root, the path to its directory
 relative to the project's repo root should be passed as {toxdir}.

 The 2 template names verify-python

 Release Workflow

Release Workflow

This page documents the workflow for releasing for projects that are not built
and released via the Autorelease project.

Sections:

	Workflow

	Release Job

Workflow

OpenDaylight uses Nexus as it’s artifact repository for releasing artifacts to
the world. The workflow involves using Nexus to produce a staging repository
which can be tested and reviewed before being approved to copy to the final
destination opendaylight.release repo. The workflow in general is as follows:

	Project create release tag and push to Gerrit

	Project will contact helpdesk@opendaylight.org with project name and build
tag to produce a release candidate / staging repo

	Helpdesk will run a build and notify project of staging repo location

	Project tests staging repo and notifies Helpdesk with go ahead to release

	Helpdesk clicks Release repo button in Nexus

	(optional) Helpdesk runs Jenkins job to push update-site.zip to p2repos
sites repo

Step 6 is only necessary for Eclipse projects that need to additionally deploy
an update site to a webserver.

Release Job

There is a JJB template release job which should be used for a project if the
project needs to produce a staging repo for release. The supported Job types
are listed below, use the one relevant to your project.

Maven|Java {name}-release-java – this job type will produce a staging repo
in Nexus for Maven projects.

P2 Publisher {name}-publish-p2repo – this job type is useful for projects
that produce a p2 repo that needs to be published to a special URL.

 Integration Testing Guide

Integration Testing Guide

The Integration Testing Guide provides details on how to contribute test code
to OpenDaylight.

Contents:

External resources:

	System Test Guide [http://docs.opendaylight.org/en/stable-boron/submodules/integration/test/docs/system-test-guide.html].

	Infrastructure Guide [http://docs.opendaylight.org/en/latest/submodules/releng/builder/docs/jenkins.html].

	Running System Tests [https://wiki.opendaylight.org/view/Integration/Test/Running_System_Tests].

	Test Code Guidelines [https://wiki.opendaylight.org/view/Integration/Test/Test_Code_Guidelines].

	Test Case Expectations [https://wiki.opendaylight.org/view/Integration/Test/Test_Case_Expectations].

	Boron Test Requirements [https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Boron_Traditional_Release_Project_Integration_Requirements].

	Robot API docs [http://docs.opendaylight.org/en/latest/_static/integration/robot/index.html].

 Documentation Guide

Documentation Guide

This guide provides details on how to contribute to the OpenDaylight
documentation. OpenDaylight currently uses reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] for
documentation and Sphinx [http://www.sphinx-doc.org/en/stable/] to build it as it is widely-used to provide
both HTML and pdf documentation that can be easily versioned alongside
the code. It also offers similar syntax to Markdown which is familiar
to large numbers of people.

Contents

	Style Guide
	Formatting Preferences

	Key terms

	Common writing style mistakes

	reStructuredText-based Documentation
	Directory Structure

	Documentation Layout and Style

	Troubleshooting

	Project Documentation Requirements
	Submitting Documentation Outlines (M3)

	Expected Output From Documentation Project

	Boron Project Documentation Requirements

Style Guide

This section serves two purposes:

	A guide for those writing documentation to follow.

	A guide for those reviewing documentation.

That being said, assuming that the content is usable, the bias should
be toward merging it rather than blocking on relatively minor edits.

Formatting Preferences

In general, the documentation team has focused on trying to make sure
that the instructions are comprehensible, but not being overly pedantic
about these things. Along those lines, while we would prefer the
following, generally they aren’t a reason to -1 in and of themselves:

	No trailing whitespace

	Line wrapping at something reasonable, i.e., 72–100 characters

Key terms

	Functionality: something useful a project provides abstractly

	Feature: a Karaf feature that somebody could install

	Project: a project within OpenDaylight, projects ship features to
provide functionality

	OpenDaylight: this refers to the software we release, use this in
place of OpenDaylight controller, the OpenDaylight controller, not
ODL, not ODC
	Since there is a controller project within OpenDaylight, using
other terms is hard.

Common writing style mistakes

	In per-project user documentation, you should never say git clone,
but should assume people have downloaded and installed the controller
per the getting started guide and start with feautre:install
<something>

	Avoid statements which are true about part of OpenDaylight, but not
generally true.
	For example: “OpenDaylight is a NETCONF controller.” It is, but
that is not all it is.

	In general, developer documentation should target external developers
to your project so should talk about what APIs you have and how they
could use them. It should not document how to contribute to your
project.

Grammar Preferences

	Avoid contractions: use cannot instead of can’t, it is instead of
it’s, and the like.

Things to get right with spacing and capitalization

Note that all of these apply when using them in text. If they are used
as part of URL, class name, or something similar, use the actual
capitalization and spacing.

	ACL: not Acl or acl

	API: not api

	ARP: not Arp or arp

	datastore: not data store, Data Store, or DataStore (unless it’s a
class/object name)

	IPsec, not IPSEC or ipsec

	IPv4 or IPv6: not Ipv4, Ipv6, ipv4, ipv6, IPV4, or IPV6

	Karaf: not karaf

	Linux: not LINUX or linux

	NETCONF: not Netconf or netconf

	Neutron: not neutron

	OSGi: not osgi or OSGI

	Open vSwitch: not OpenvSwitch, OpenVSwitch, or Open V Switch, etc.

	OpenDaylight: not Opendaylight, Open Daylight, or OpenDayLight, etc.
	also avoid abbreviations like ODL and ODC

	OpenFlow: not Openflow, Open Flow, openflow, etc.

	OpenStack: not Open Stack or Openstack

	QoS: not Qos, QOS, or qos

	RESTCONF: not Restconf or restconf

	RPC not Rpc or rpc

	URL not Url or url

	VM: not Vm or vm

	YANG: not Yang or yang

reStructuredText-based Documentation

When using reStructuredText, we try to follow the python documentation
style guide. See: https://docs.python.org/devguide/documenting.html

The best reference for reStrucutedText syntax seems to be the Sphinx
Primer on reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html].

To build and review the reStructuredText documentation locally you must
have installed locally:

	python

	python-tox

Which both should be available in most distribution’s package managers.

Then simply run tox and open the html produced via your favorite web
browser as follows:

git clone https://git.opendaylight.org/gerrit/docs
cd docs
git submodule update --init
tox -edocs
firefox docs/_build/html/index.html

Note

Make sure to run tox -edocs and not just tox. See Make
sure you run tox -edocs

Directory Structure

The directory structure for the reStructuredText documentation is
rooted in the docs directory inside the docs git
repository.

Below that there are guides hosted directly in the docs git
repository and there are guides hosted in remote git repositories.
Usually those are for project-specific information.

For example here is the directory layout on June, 28th 2016:

$ tree -L 2
.
├── Makefile
├── conf.py
├── documentation.rst
├── getting-started-guide
│ ├── api.rst
│ ├── concepts_and_tools.rst
│ ├── experimental_features.rst
│ ├── index.rst
│ ├── installing_opendaylight.rst
│ ├── introduction.rst
│ ├── karaf_features.rst
│ ├── other_features.rst
│ ├── overview.rst
│ └── who_should_use.rst
├── index.rst
├── make.bat
├── opendaylight-with-openstack
│ ├── images
│ ├── index.rst
│ ├── openstack-with-gbp.rst
│ ├── openstack-with-ovsdb.rst
│ └── openstack-with-vtn.rst
└── submodules
 └── releng
 └── builder

The getting-started-guide and opendaylight-with-openstack
directories correspond to two guides hosted in the docs repository,
while the submodules/releng/builder directory houses documentation
for the RelEng/Builder [https://wiki.opendaylight.org/view/RelEng/Builder] project.

Inside each guide there is usually an index.rst file which then
includes other files using a toctree directive. For example:

.. toctree::
 :maxdepth: 1

 getting-started-guide/index
 opendaylight-with-openstack/index
 submodules/releng/builder/docs/index

This creates a table of contents on that page where each heading of the
table of contents is the root of the files that are included.

Note

When including rst files using toctree omit the .rst at
the end of the file name.

Adding a submodule

If you want to import a project underneath the documentation project so
that the docs can be kept in the separate repo, you can do it using the
git submodule add command as follows:

git submodule add -b master ../integration/packaging docs/submodules/integration/packaging
git commit -s

Note

Most projects will not want to use -b master, but instead
use the branch ., which will make track whatever branch
of the documentation project you happen to be on.

Unfortunately, -b . doesn’t work, so you have to manually
edit the .gitmodules file to add branch = . and then
commit it. Something like:

<edit the .gitmodules file>
git add .gitmodules
git commit --amend

When you’re done you should have a git commit something like:

$ git show
commit 7943ce2cb41cd9d36ce93ee9003510ce3edd7fa9
Author: Daniel Farrell <dfarrell@redhat.com>
Date: Fri Dec 23 14:45:44 2016 -0500

 Add Int/Pack to git submodules for RTD generation

 Change-Id: I64cd36ca044b8303cb7fc465b2d91470819a9fe6
 Signed-off-by: Daniel Farrell <dfarrell@redhat.com>

diff --git a/.gitmodules b/.gitmodules
index 91201bf6..b56e11c8 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -38,3 +38,7 @@
 path = docs/submodules/ovsdb
 url = ../ovsdb
 branch = .
+[submodule "docs/submodules/integration/packaging"]
+ path = docs/submodules/integration/packaging
+ url = ../integration/packaging
+ branch = master
diff --git a/docs/submodules/integration/packaging b/docs/submodules/integration/packaging
new file mode 160000
index 00000000..fd5a8185
--- /dev/null
+++ b/docs/submodules/integration/packaging
@@ -0,0 +1 @@
+Subproject commit fd5a81853e71d45945471d0f91bbdac1a1444386

As usual, you can push it to Gerrit with git review.

Important

It’s critical that the Gerrit patch be merged before the
git commit hash of the submodule changes. Otherwise,
Gerrit won’t be able to automatically keep it up-to-date
for you.

Documentation Layout and Style

As mentioned previously we try to follow the python documentation style
guide which defines a few types of sections:

with overline, for parts
* with overline, for chapters
=, for sections
-, for subsections
^, for subsubsections
", for paragraphs

We try to follow the following structure based on that recommendation:

docs/index.rst -> entry point
docs/____-guide/index.rst -> part
docs/____-guide/<chapter>.rst -> chapter

In the ____-guide/index.rst we use the # with overline at the very top
of the file to determine that it is a part and then within each chapter
file we start the document with a section using * with overline to
denote that it’s the chapter heading and then everything in the rest of
the chapter should use:

=, for sections
-, for subsections
^, for subsubsections
", for paragraphs

Referencing Sections

It’s pretty common to want to reference another location in the
OpenDaylight documentation and it’s pretty easy to do with
reStructuredText. This is a quick primer, more information is in the
Sphinx section on Cross-referencing arbitrary locations [http://www.sphinx-doc.org/en/stable/markup/inline.html#ref-role].

Within a single document, you can reference another section simply by:

This is a reference to `The title of a section`_

Assuming that somewhere else in the same file there a is a section
title something like:

The title of a section
^^^^^^^^^^^^^^^^^^^^^^

It’s typically better to use :ref: syntax and labels to provide
links as they work across files and are resilient to sections being
renamed. First, you need to create a label something like:

.. _a-label:

The title of a section
^^^^^^^^^^^^^^^^^^^^^^

Note

The underscore (_) before the label is required.

Then you can reference the section anywhere by simply doing:

This is a reference to :ref:`a-label`

or:

This is a reference to :ref:`a section I really liked <a-label>`

Note

When using :ref:-style links, you don’t need a trailing
underscore (_).

Because the labels have to be unique, it usually makes sense to prefix
the labels with the project name to help share the label space, e.g.,
sfc-user-guide instead of just user-guide.

Troubleshooting

Nested formatting doesn’t work

As stated in the reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] guide, inline markup for bold,
italic, and fixed-width can’t be nested. Further, it can’t be mixed
with hyperlinks, so you can’t have bold text link somewhere.

This is tracked in a Docutils FAQ question [http://docutils.sourceforge.net/FAQ.html#is-nested-inline-markup-possible],
but there is no clear current plan to fix this.

Make sure you’ve cloned submodules

If you see an error like this:

./build-integration-robot-libdoc.sh: line 6: cd: submodules/integration/test/csit/libraries: No such file or directory
Resource file '*.robot' does not exist.

It means that you haven’t pulled down the git submodule for the
integration/test project. The fastest way to do that is:

git submodule update --init

In some cases, you might wind up with submodules which are somehow
out-of-sync and in that case, the easiest way to fix it is delete the
submodules directory and then re-clone the submodules:

rm -rf docs/submodules/
git submodule update --init

Warning

This will delete any local changes or information you made
in the submodules. This should only be the case if you
manually edited files in that directory.

Make sure you run tox -edocs

If you see an error like:

ERROR: docs: could not install deps [-rrequirements.txt]; v = InvocationError('/Users/ckd/git-reps/docs/.tox/docs/bin/pip install -rrequirements.txt (see /Users/ckd/git-reps/docs/.tox/docs/log/docs-1.log)', 1)
ERROR: docs-linkcheck: could not install deps [-rrequirements.txt]; v = InvocationError('/Users/ckd/git-reps/docs/.tox/docs-linkcheck/bin/pip install -rrequirements.txt (see /Users/ckd/git-reps/docs/.tox/docs-linkcheck/log/docs-linkcheck-1.log)', 1)

It usually means you ran tox and not tox -edocs, which will result
in running jobs inside submodules which aren’t supported by the
environment defined by the requirements.txt file in the documentation
tox setup. Just run tox -edocs and it should be fine.

Clear your tox directory and try again

Sometimes, tox will not detect when your requirements.txt file has
changed and so will try to run things without the correct dependencies.
This usually manifests as No module named X errors or
an ExtensionError and can be fixed by deleting the .tox
directory and building again:

rm -rf .tox
tox -edocs

Builds on Read the Docs

It appears as though the Read the Docs builds don’t automatically clear
the file structure between builds and clones. The result is that you
may have to clean up the state of old runs of the build script.

As an example, this patch:
https://git.opendaylight.org/gerrit/41679

Finally fixed the fact that our builds for failing because they were
taking too long by removing directories of generated javadoc that were
present from previous runs.

Project Documentation Requirements

Submitting Documentation Outlines (M3)

	Determine the features your project will have and which ones will be
‘’user-facing’‘.

	In general, a feature is user-facing if it creates functionality that a
user would direction interact with.

	For example, odl-openflowplugin-flow-services-ui is likely
user-facing since it installs user-facing OpenFlow features, while
odl-openflowplugin-flow-services is not because it provides only
developer-facing features.

	Determine pieces of documentation you need provide based on the features
your project will have and which ones will be user-facing.

	The kinds of required documentation can be found below in the
Requirements for projects section.

	Note that you might need to create multiple different documents for the
same kind of documentation. For example, the controller project will
likely want to have a developer section for the config subsystem as well
as a for the MD-SAL.

	Clone the docs repo: git clone https://git.opendaylight.org/gerrit/docs

	For each piece of documentation find the corresponding template in the docs repo.

	For user documentation: docs.git/docs/templates/template-user-guide.rst

	For developer documentation: ddocs/templates/template-developer-guide.rst

	For installation documentation (if any): docs/templates/template-install-guide.rst

Note

You can find the rendered templates here:

	<Feature> User Guide

	<Feature> Developer Guide

	<Feature> Installation Guide

	Copy the template into the appropriate directory for your project.

	For user documentation: docs.git/docs/user-guide/${feature-name}-user-guide.rst

	For developer documentation: docs.git/docs/developer-guide/${feature-name}-developer-guide.rst

	For installation documentation (if any): docs.git/docs/getting-started-guide/project-specific-guides/${project-name}.rst

Note

These naming conventions aren’t set in stone, but do help. If you
think there’s a better name, use it and we’ll give feedback on the
gerrit patch.

	Edit the template to fill in the outline of what you will provide using the
suggestions in the template. If you feel like a section isn’t needed, feel
free to omit it.

	Link the template into the appropriate core rst file

	For user documentation: docs.git/docs/user-guide/index.rst

	For developer documentation: docs.git/docs/developer-guide/index.rst

	For installation documentation (if any): docs.git/docs/getting-started-guide/project-specific-guides/index.rst

	In each file, it should be pretty clear what line you need to add. In
general if you have an rst file project-name.rst, you include it by
adding a new line project-name without the .rst at the end.

	Make sure the documentation project still builds.

	Run tox -edocs from the root of the cloned docs repo.
	After that, you should be able to find the HTML version of the
docs at docs.git/docs/_build/html/index.html.

	See reStructuredText-based Documentation for more details about building the docs.

	The reStructuredText Troubleshooting
section provides common errors and solutions.

	If you still have problems e-mail the documentation group at
documentation@lists.opendaylight.org

	Commit and submit the patch

	Commit using:

git add --all && git commit -sm "Documentation outline for ${project-shortname}"

	Submit using:

git review

See the Git-review Workflow [https://wiki.opendaylight.org/view/Git-review_Workflow]
page if you don’t have git-review installed.

	Wait for the patch to be merged or to get feedback

	If you get feedback, make the requested changes and resubmit the patch.

	When you resubmit the patch, it’s helpful if you also post a +0 reply to
the gerrit saying what patch set you just submitted and what you fixed in
the patch set.

	The documentation team will also be creating (or asking projects to
create) small groups of 2-4 projects that will peer review each other’s
documentation. Patches which have seen a few cycles of peer review will be
prioritized for review and merge by the documentation team.

Expected Output From Documentation Project

The expected output is (at least) 3 PDFs and equivalent web-based documentation:

	User/Operator Guide

	Developer Guide

	Installation Guide

These guides will consist of “front matter” produced by the documentation group
and the per-project/per-feature documentation provided by the projects. Note
that this is intended to be who is responsible for the documentation and should
not be interpreted as preventing people not normally in the documentation group
from helping with “front matter” nor preventing people from the documentation
group from helping with per-project/per-feature documentation.

Boron Project Documentation Requirements

Kinds of Documentation

These are the expected kinds of documentation and target audiences for each kind.

	User/Operator: for people looking to use the feature w/o writing code
	Should include an overview of the project/feature

	Should include description of availbe configuration options and what they do

	Developer: for people looking to use the feature in code w/o modifying it
	Should include API documentation, e.g., enunciate for REST, Javadoc for
Java, ??? for RESTCONF/models

	Contributor: for people looking to extend or modify the feature’s source
code

	Installation: for people looking for instructions to install the feature
after they have downloaded the ODL release
	For most projects, this will be just a list of top-level features and
options
	As an example, l2switch-switch as the top-level feature with the -rest
and -ui options

	We’d also like them to note if the options should be checkboxes (i.e.,
they can each be turned on/off independently) or a drop down (i.e., at
most one can be selected)

	What other top-level features in the release are incompatible with each
feature

	This will likely be presented as a table in the documentation and the
data will likely also be consumed by automated installers/configurators/downloaders

	For some projects, there is extra installation instructions (for external
components) and/or configuration
	In that case, there will be a (sub)section in the documentation
describing this process.

	HowTo/Tutorial: walk throughs and examples that are not general-purpose
documentation
	Generally, these should be done as a (sub)section of either user/operator
or developer documentation.

	If they are especially long or complex, they may belong on their own

	Release Notes:
	Release notes are required as part of each project’s release review. They
must also be translated into reStructuredText for inclusion in the formal
documentation.

Requirements for projects

Projects MUST do the following

	Provide reStructuredText documentation including
	Developer documentation for every feature
	Most projects will want to logically nest the documentation for
individual features under a single project-wide chapter or section

	This can be provided as a single .rst file or multiple .rst files if
the features fall into different groups

	This should start with ~300 word overview of the project and include
references to any automatically-generated API documentation as well as
more general developer information (see
Kinds of Documentation).

	User/Operator documentation for every every user-facing feature (if any)
	‘’Note: This should be per-feature, not per-project. User’s shouldn’t have to know which project a feature came from.’‘

	Intimately related features, e.g., l2switch-switch, l2switch-switch-rest, and l2switch-switch-ui, can be documented as one noting the differences

	This can be provided as a single .rst file or multiple .rst files if the features fall into different groups

	Installation documentation
	Most projects will simply provide a list of user-facing features and
options. See Kinds of Documentation above.

	Release Notes (both on the wiki and reStructuredText) as part of the release review.

	This documentation will be contributed to the docs repo (or possibly imported from the project’s own repo with tooling that is under development)
	Projects MAY be ENCOURGAGED to instead provide this from their own repository if the tooling is developed

	Projects choosing to meet the requirement this way MUST provide a patch to docs repo to import the project’s documentation

	Projects MUST cooperate with the documentation group on edits and enhancements to documentation
	Note that the documentation team will also be creating (or asking projects to create) small groups of 2-4 projects that will peer review each other’s documentation. Patches which have seen a few cycles of peer review will be prioritized for review and merge by the documentation team.

Timeline for Deliverables from Projects

	M3: Documentation Started
	Identified the kinds of documentation that will be provided and for what
features
	Release Notes are not required until release reviews at RC2

	Created the appropriate .rst files in the docs repository (or their own
repository if the tooling is available)

	Have an outline for the expected documentation in those .rst files
including the relevant (sub)sections and a sentence or two explaining what
will go there
	Obviusly, providing actual documentation in the (sub)sections is
encouraged and meets this requirement

	Milestone readout should include
	the list of kinds of documentation

	the list of corresponding .rst files and their location, e.g., repo and
path

	the list of commits creating those .rst files

	the current word counts of those .rst files

	M4: Documentation Continues
	The readout at M4 should include the word counts of all .rst files with
links to commits

	The goal is to have draft documentation complete so that the documentation
group can comment on it.

	M5: Documentation Complete
	All (sub)sections in all .rst files have complete, readable, usable content.

	Ideally, there should have been some interaction with the documentation
group about any suggested edits and enhancements

	RC2: Release notes
	Projects must provide release notes as .rst pushed to integration (or
locally in the project’s repository if the tooling is developed)

 <Feature> User Guide

<Feature> User Guide

Refer to this template to identify the required sections and information
that you should provide for a User Guide. The user guide should contain
configuration, administration, management, using, and troubleshooting
sections for the feature.

Overview

Provide an overview of the feature and the use case. Also include the
audience who will use the feature. For example, audience can be the
network administrator, cloud administrator, network engineer, system
administrators, and so on.

<Feature> Architecture

Provide information about feature components and how they work together.
Also include information about how the feature integrates with
OpenDaylight. An architecture diagram could help.

Note

Please do not include detailed internals that somebody
using the feature wouldn’t care about. For example, the fact
that there are four layers of APIs between a user command and
a message being sent to a device is probably not useful to
know unless they have some way to influence how those layers
work and a reason to do so.

Configuring <feature>

Describe how to configure the feature or the project after installation.
Configuration information could include day-one activities for a project
such as configuring users, configuring clients/servers and so on.

Administering or Managing <feature>

Include related command reference or operations that you could perform
using the feature. For example viewing network statistics, monitoring
the network, generating reports, and so on.

For example:

To configure L2switch components perform the following steps.

	Step 1:

	Step 2:

	Step 3:

Tutorials

optional

If there is only one tutorial, you skip the “Tutorials” section and
instead just lead with the single tutorial’s name. If you do, also
increase the header level by one, i.e., replace the carets (^^^) with
dashes (- - -) and the dashes with equals signs (===).

<Tutorial Name>

Ensure that the title starts with a gerund. For example using,
monitoring, creating, and so on.

Overview

An overview of the use case.

Prerequisites

Provide any prerequisite information, assumed knowledge, or environment
required to execute the use case.

Target Environment

Include any topology requirement for the use case. Ideally, provide
visual (abstract) layout of network diagrams and any other useful visual
aides.

Instructions

Use case could be a set of configuration procedures. Including
screenshots to help demonstrate what is happening is especially useful.
Ensure that you specify them separately. For example:

Setting up the VM

To set up a VM perform the following steps.

	Step 1

	Step 2

	Step 3

Installing the feature

To install the feature perform the following steps.

	Step 1

	Step 2

	Step 3

Configuring the environment

To configure the system perform the following steps.

	Step 1

	Step 2

	Step 3

 <Feature> Developer Guide

<Feature> Developer Guide

Overview

Provide an overview of the feature, what it logical functionality it
provides and why you might use it as a developer. To be clear the target
audience for this guide is a developer who will be using the feature
to build something separate, but not somebody who will be developing
code for this feature itself.

Note

More so than with user guides, the guide may cover more than
one feature. If that is the case, be sure to list all of the
features this covers.

<Feature> Architecture

Provide information about feature components and how they work together.
Also include information about how the feature integrates with
OpenDaylight. An architecture diagram could help. This may be the same
as the diagram used in the user guide, but it should likely be less
abstract and provide more information that would be applicable to a
developer.

Key APIs and Interfaces

Document the key things a user would want to use. For some features,
there will only be one logical grouping of APIs. For others there may be
more than one grouping.

Assuming the API is MD-SAL- and YANG-based, the APIs will be available
both via RESTCONF and via Java APIs. Giving a few examples using each is
likely a good idea.

API Group 1

Provide a description of what the API does and some examples of how to
use it.

API Group 2

Provide a description of what the API does and some examples of how to
use it.

API Reference Documentation

Provide links to JavaDoc, REST API documentation, etc.

 <Feature> Installation Guide

<Feature> Installation Guide

Note

Only use this template if installation is more complicated
than simply installing a feature in the Karaf distribution.
Otherwise simply provide the names of all user-facing
features in your M3 readout.

This is a template for installing a feature or a project developed in
the ODL project. The feature could be interfaces, protocol plug-ins,
or applications.

Overview

Add overview of the feature. Include Architecture diagram and the
positioning of this feature in overall controller architecture.
Highlighting the feature in a different color within the overall
architecture must help. Include information to describe if the project
is within ODL installation package or to be installed separately.

Pre Requisites for Installing <Feature>

	Hardware Requirements

	Software Requirements

Preparing for Installation

Include any pre configuration, database, or other software downloads
required to install <feature>.

Installing <Feature>

Include if you have separate procedures for Windows and Linux

Verifying your Installation

Describe how to verify the installation.

Troubleshooting

optional

Text goes here.

Post Installation Configuration

Post Installation Configuration section must include some basic
(must-do) procedures if any, to get started.

Mandatory instructions to get started with the product.

	Logging in

	Getting Started

	Integration points with controller

Upgrading From a Previous Release

Text goes here.

Uninstalling <Feature>

Text goes here.

 OpenDaylight Release Process Guide

OpenDaylight Release Process Guide

Overview

This guide provides details on various processes related to OpenDaylight’s
release process and attempts to document the steps used by OpenDaylight Release
Engineers to perform release operations.

Processes

	Autorelease

	Project lifecycle

	Namespaces

	Branch Cutting

	Simultaneous Release

 Autorelease

Autorelease

The Release Engineering - Autorelease project [https://wiki.opendaylight.org/view/RelEng/Autorelease]
is targeted at building the artifacts that are used in the release candidates
and final full release.

	Open Gerrit Patches [https://git.opendaylight.org/gerrit/#/q/project:releng/autorelease+status:open]

	Jenkins Jobs [https://jenkins.opendaylight.org/releng/view/autorelease/]

Cloning Autorelease

To clone all the autorelease repo including it’s submodules simply run the
clone command with the ‘’‘–recursive’‘’ parameter.

git clone --recursive https://git.opendaylight.org/gerrit/releng/autorelease

If you forgot to add the –recursive parameter to your git clone you can pull
the submodules after with the following commands.

git submodule init
git submodule update

Creating Autorelease - Release and RC build

An autorelease release build comes from the autorelease-release-<branch> job
which can be found on the autorelease tab in the releng master:

	https://jenkins.opendaylight.org/releng/view/autorelease/

For example to create a Boron release candidate build launch a build from the
autorelease-release-boron job by clicking the ‘’‘Build with Parameters’‘’
button on the left hand menu:

	https://jenkins.opendaylight.org/releng/view/autorelease/job/autorelease-release-boron/

Note

The only field that needs to be filled in is the ‘’‘RELEASE_TAG’‘’, leave all
other fields to their default setting. Set this to Boron, Boron-RC0,
Boron-RC1, etc... depending on the build you’d like to create.

Adding Autorelease staging repo to settings.xml

If you are building or testing this release in such a way that requires pulling
some of the artifacts from the Nexus repo you may need to modify your
settings.xml to include the staging repo URL as this URL is not part of ODL
Nexus’ public or snapshot groups. If you’ve already cloned the recommended
settings.xml for building ODL you will need to add an additional profile and
activate it by adding these sections to the “<profiles>” and
“<activeProfiles>” sections (please adjust accordingly).

Note

	This is an example and you need to “Add” these example sections to your
settings.xml do not delete your existing sections.

	The URLs in the <repository> and <pluginRepository> sections will also
need to be updated with the staging repo you want to test.

<profiles>
 <profile>
 <id>opendaylight-staging</id>
 <repositories>
 <repository>
 <id>opendaylight-staging</id>
 <name>opendaylight-staging</name>
 <url>https://nexus.opendaylight.org/content/repositories/automatedweeklyreleases-1062</url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>opendaylight-staging</id>
 <name>opendaylight-staging</name>
 <url>https://nexus.opendaylight.org/content/repositories/automatedweeklyreleases-1062</url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
</profiles>

<activeProfiles>
 <activeProfile>opendaylight-staging</activeProfile>
</activeProfiles>

 Project lifecycle

Project lifecycle

This page documents the current rules to follow when adding and removing
a particular project to Simultaneous Release (SR).

List of states

The state names are short negative phrases describing what is missing to
progress to the following state.

	non-existent
The project is not recognized by Technical Steering Committee (TSC) to be
part of OpenDaylight (ODL).

	non-participating
The project is recognized byt TSC to be an ODL project, but the project has
not confirmed participation in SR for given release cycle.

	non-building
The recognized project is willing to participate, but its current codebase is
not passing its own merge job, or the project artifacts are otherwise
unavailable in Nexus.

	not-in-autorelease
Project merge job passes, but the project is not added to
autorelease (git submodule, maven module, validate-autorelease job passes).

	repo-not-in-integration
Project is added do autorelease, but integration/distribution:features-index
is not listing all its public feature repositories.

	distribution-check-not-passing
Project is in autorelease, but its distribution-check job
is either not running, or it is failing for any reason.

	feature-not-in-integration
Feature repositories are referenced, distribution-check job is passing,
but some user-facing features are absent from integration/distribution:features-test

	feature-is-experimental
All user-facing features are in features-test, but at least one of the corresponding
functional CSIT jobs does not meet integration/test requirements.

	ready

Note

A project may change its state in both directions, this list is to make sure
a project is not left in an invalid state, for example distribution referencing
feature repositories, but without passing distribution-check job.

 Namespaces

Namespaces

Project namespaces in OpenDaylight are used to ensure projects do not have name
collisions in code and packages. OpenDaylight enforces namespaces in Nexus
using the following patterns:

	^/org.opendaylight.PROJECT/.*

	^/org/opendaylight/PROJECT/.*

Where PROJECT is the name of an OpenDaylight project.

In cases where a project has a sub-project we recommend adding an additional
level to the path for example org.opendaylight.integration.test however no
strong enforcement is currently enforced and some projects do this already
internally.

This restriction applies to all site repositories in Nexus as well in the event
that a project wishes to push a static web site into their allocated site path.

Maven / Java

Maven has a built in namespace routing using <groupId> field in pom files.
For example:

<project>
 <groupId>org.opendaylight.odlparent</groupId>
 <artifactId>odlparent-lite</artifactId>
 <version>1.8.0-SNAPSHOT</version>
</project>

Python

Python projects typically publish to artifacts to PyPi and use their shortname
for modules rather than a full path like Java projects do.

setup.py:

setup(
 name='spectrometer',
)

The structure of a Python project typically determines it’s package routing. So
a project package spectrometer.reporttool might have a layout like this inside
their project root.

./ # This is the root of the repository
./setup.py
./spectrometer
./spectrometer/__init__.py
./spectrometer/reporttool
./spectrometer/reporttool/__init__.py

 Branch Cutting

Branch Cutting

This page documents the current branch cutting tasks that are needed
to be performed at various milestones and which team has the necessary
permissions in order to perform the necessary task in Parentheses.

M5 Offset 2

JJB

	Export ${NEXT_RELEASE} and ${CURR_RELEASE} with new and current release names.
(releng/builder committers)

export NEXT_RELEASE="Nitrogen"
export CURR_RELEASE="Carbon"

	Change JJB yaml files from stream:carbon branch pointer from master -> stable/${CURR_RELEASE,,}
and create new stream: ${NEXT_RELEASE,,} branch pointer to branch master. This
requires handling two different file formats interspersed with in autorelease projects.
(releng/builder committers)

stream:
 - Nitrogen:
 branch: master
 - Carbon:
 branch: stable/carbon

- project:
 name: aaa-carbon
 jobs:
 - '{project-name}-verify-{stream}-{maven}-{jdks}'
 stream: nitrogen
 branch: master

	The above manual process of updating individual files is automated with the script.
(releng/builder committers)

cd builder/scripts/branch_cut
./branch_cutter.sh -n $NEXT_RELEASE -c $CURR_RELEASE

	Review and submit the changes to releng/builder project. (releng/builder committers)

Autorelease

	Block submit permissions for registered users and elevate RE’s committer rights on gerrit.
(Helpdesk)

[image: ../_images/gerrit-update-committer-rights.png]

Note

Enable Exclusive checkbox override any existing persmissions.

	Setup releng/autorelease repository.
(Release Engineering Team)

git review -s
git submodule foreach 'git review -s'
git checkout master
git submodule foreach 'git checkout master'
git pull --rebase
git submodule foreach 'git pull --rebase'

	Create stable/${CURR_RELEASE} branches based on HEAD master.
(Release Engineering Team)

git submodule foreach 'git checkout -b stable/${CURR_RELEASE,,} origin/master'
git push gerrit stable/${CURR_RELEASE,,}
git submodule foreach 'git push gerrit stable/${CURR_RELEASE,,}'

	Enable create reference permissions on gerrit for RE’s to submit .gitreview patches.
(Helpdesk)

[image: ../_images/gerrit-update-create-reference.png]

Note

Enable Exclusive checkbox override any existing persmissions.

	Contribute .gitreview updates to stable/${CURR_RELEASE,,}.
(Release Engineering Team)

git submodule foreach sed -i -e "s#defaultbranch=master#defaultbranch=stable/${CURR_RELEASE,,}#" .gitreview
git submodule foreach git commit -asm "Update .gitreview to stable/${CURR_RELEASE,,}"
git submodule foreach 'git review -t ${CURR_RELEASE,,}-branch-cut'
sed -i -e "s#defaultbranch=master#defaultbranch=stable/${CURR_RELEASE,,}#" .gitreview
git add .gitreview
git commit -s -v -m "Update .gitreview to stable/${CURR_RELEASE,,}"
git review -t ${CURR_RELEASE,,}-branch-cut

	Merge all .gitreview patches submitted in the above step. (Release Engineering Team)

	Remove create reference permissions set on gerrit for RE’s. (Helpdesk)

	Version bump master by x.(y+1).z. (Release Engineering Team)

git checkout master
git submodule foreach 'git checkout master'
pip install lftools
lftools version bump ${CURR_RELEASE}

	Exclude version bump changes to release notes. (Release Engineering Team)

git checkout pom.xml scripts/

	Push version bump master changes to gerrit. (Release Engineering Team)

git submodule foreach 'git commit -asm "Bump versions by x.(y+1).z for next dev cycle"'
git submodule foreach 'git review -t nitrogen-br-cut'

	Merge all version bump patches in the order of dependencies. (Release Engineering Team)

	Re-enable submit permissions for registered users and disable elevated RE committer rights on gerrit. (Helpdesk)

	Notify release list on branch cutting work completion. (Release Engineering Team)

 Simultaneous Release

Simultaneous Release

This page explains how the OpenDaylight release process works once the TSC has
approved a release.

Preparations

After release candidate is built gpg sign artifacts using odlsign-bulk script in
releng/builder/scripts.

cd scripts/
./odlsign-bulk STAGING_REPO_ID # eg. autorelease-1367

Releasing OpenDaylight

	Block submit permissions for registered users and elevate RE’s committer rights on gerrit.

[image: ../_images/gerrit-update-committer-rights.png]

Note

Enable Exclusive checkbox

	Export ${RELEASE} and ${BUILDNUM} with current release name and build number.

export RELEASE=Beryllium-SR4
export BRANCH=${RELEASE//-*}
export BUILDNUM=55

	Nexus: click release for staging repo (Helpdesk)

	Send email to Helpdesk with binary URL to update website (Helpdesk)

	Send email to TSC and Release mailing lists announcing release binaries location (Release Engineering Team)

	Clone autorelease repository. (Release Engineering Team)

git clone --recursive https://git.opendaylight.org/gerrit/releng/autorelease

	Checkout autorelease and switch to release branch eg stable/carbon (Release Engineering Team)

git checkout -b stable/${BRANCH,,} origin/stable/${BRANCH,,}
git submodule update --init
git submodule foreach git checkout -b stable/${BRANCH,,} origin/stable/${BRANCH,,}

	Make sure your git repo is setup to push (use git-review)

git review -s
git submodule foreach 'git review -s'

	Download patches (*.bundle files and taglist.log.gz) from log server.

mkdir /tmp/patches && cd /tmp/patches
wget https://logs.opendaylight.org/releng/jenkins092/autorelease-release-${BRANCH,,}/${BUILDNUM}/archives/all-bundles.tar.gz
gunzip all-bundles.tar.gz
wget https://logs.opendaylight.org/releng/jenkins092/autorelease-release-${BRANCH,,}/${BUILDNUM}/archives/patches/taglist.log.gz
gunzip taglist.log.gz

	Run the following commands for every project in the release, to apply patches to each project directory.

pip install lftools
lftools version patch ${RELEASE}
git review -y -t ${RELEASE}
git push gerrit release/${RELEASE,,}

	Merge all patches on gerrit in the order generated by merge-order.log

	Tag autorelease too

git checkout `cat /tmp/patches/taglist.log | grep autorelease | awk '{print $2}'`
git submodule foreach git checkout release/${RELEASE,,}
git commit -asSm "Release ${RELEASE}"
git tag -asm "OpenDaylight ${RELEASE} release" release/${RELEASE,,}
git push gerrit release/${RELEASE,,}

	Re-enable submit permissions for registered users and disable elevated RE committer rights on gerrit.

	Release notes is auto generated by job autorelease-generate-release-notes-${BRANCH,,}
triggered at the end of every autorelease build. The release notes file (release_notes.rst) is
available under archives.

Alternatively, release notes can also be manually generated with the script.
(Release Engineering Team)

git checkout stable/${BRANCH,,}
cd scripts/release_notes_management/ && ./build.sh

The output file (release_notes.rst) generated by the build script is available under autorelease/scripts/release_notes_management/projects/.

	Send email to release/tsc/dev notifying tagging and version bump complete (Release Engineering Team)

 Spectrometer Documentation

Spectrometer Documentation

Contents:

	Quick Start Guide
	Setup spectrometer-server

	Setup spectrometer-web

	Testing the setup

	User Guide
	Spectrometer API Server

	Spectrometer Web Server

	Spectrometer Report Tool

	Project Info Specification

	Documentation Guide

	Developer Guide
	Style Guide

	Spectrometer Server

	Spectrometer Web

	Troubleshooting

	Rest API
	Gerrit API

	Git API

 Quick Start Guide

Quick Start Guide

The Spectrometer project consists of two sub-projects, the `server` and
`web`.

Server side is Python driven and provides the API to collect Git and Gerrit
statistics for various OpenDaylight projects.

The web project is NodeJS/React based and provides the visualization by using
the APIs provided by the server side.

In order to run the application, you need to install both `server` and
`web` sub-projects.

This Quick Started Guide assumes you have Python3 and NodeJS 4.3
installed. To install NodeJS using NVM, see Web > Installation section below.

The Spectrometer project collects data from repositories located locally in
your system.

Setup spectrometer-server

Installing spectrometer from pypi is simple and will get you the latest version
that is released. Then create a config.py file in /etc/spectrometer/config.py
(Example file can be found here [https://git.opendaylight.org/gerrit/gitweb?p=spectrometer.git;a=blob_plain;f=server/example-config/config.py;hb=HEAD])

pip install spectrometer
sudo mkdir /etc/spectrometer
sudo vi /etc/spectrometer/config.py
spectrometer server start

Verify that spectrometer-server is running by going to
http://localhost:5000. You should see a Hello World page.

Setup spectrometer-web

Spectrometer Web is still in development so you will need to install it from
Git at the time being as there is no package for it yet.

git clone https://git.opendaylight.org/gerrit/spectrometer.git
cd spectrometer/web
npm install
npm start

Goto http://localhost:8000

Testing the setup

By default the OpenDaylight project repositories will be mirrored every
5 minutes (300s), so if this is the first time starting you may have to
wait until all repos are mirrored before you can exercise some of the
apis.

Once the repos are mirrored you can try a few basic examples to make sure
things are working properly:

Examples:

http://127.0.0.1:5000/gerrit/branches?project=controller
http://127.0.0.1:5000/gerrit/projects
http://127.0.0.1:5000/git/commits?project=integration/packaging

The full Rest APIs are documented here:
https://opendaylight-spectrometer.readthedocs.io/en/latest/restapi.html

 User Guide

User Guide

Spectrometer consists of 3 components:

	Spectrometer API Server (backend)

	Spectrometer Web Server (frontend)

	Spectrometer Report Tool

This guide will describe the uses of the 3 systems.

Spectrometer API Server

Production Deployment

When running in production the recommended way is to deploy with gunicorn.

gunicorn -b 0.0.0.0:5000 'spectrometer:run_app()'

If deploying behind a proxy under a sub-directory additional configuration is
necessary for gunicorn application to operate correctly.

example-nginx:

location /api {
 proxy_pass http://127.0.0.1:5000;
 proxy_redirect http://127.0.0.1:5000/api/ http://$host/api/;

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header SCRIPT_NAME /api;
}

Logging

Spectrometer logs to /var/log/spectrometer by default but that directory must
be writeable by the spectrometer user.

sudo chown spectrometer /var/log/spectrometer

It is possible to override the default log directory by configuring the LOG_DIR
parameter in config.py.

LOG_DIR = '/path/to/log/directory'

Spectrometer Web Server

TODO

Spectrometer Report Tool

The Spectrometer Report Tool can be used to generate reports between 2
reference points in time. Reference points are git commit hashs, branches, or
tags. A project like OpenDaylight that tags projects with the same tag name for
every release can use this tool to Generate release reports.

spectrometer reporttool full <ref1> <ref2>
spectrometer reporttool --server-url=https://spectrometer.opendaylight.org/api full release/beryllium-sr2 release/beryllium-sr1

 Project Info Specification

Project Info Specification

Spectrometer supports a PROJECT_INFO.yaml file placed in the root of a project
repo. This file is used by spectrometer to parse meta information about the
project including things like project description, project contact, committers
irc, mailing lists, release names, etc...

This file is used by Spectrometer to determine project meta information
Please refer to the spec file located here:
https://opendaylight-spectrometer.readthedocs.io/en/latest/project-info-spec.html

name: spectrometer
display-name: Spectrometer
creation-date: 2015-11-19
termination-date: n/a
description: |
 This is an example summary description of project

 After leaving a blank line in the description we can provide a longer
 more detailed description of the project.

 The details can be as many lines as necessary.
primary-contact: Firstname Lastname <first.last@example.com>
project-lead: Firstname Lastname <first.last@example.com>
categories:
 - application
 - community
 - documentation
 - extensions
 - kernel
 - library
 - protocols
 - services
committers:
 - Firstname Lastname <first.last@example.com>
 - Another Committer <another.committer@example.com>
When Committers who have made significant contributions to OpenDaylight
become inactive and thus no longer committers. This key can be used to
acknowledge their huge contributions by appointing them to Committer
Emeritus status.
committers-emeritus:
 - Firstname Lastname <first.last@example.com>
contributors:
 - Firstname Lastname <first.last@example.com>
 - Another Contributor <another.contributor@example.com>
wiki: https://wiki.example.org/project
irc: irc://irc.freenode.net/opendaylight-spectrometer
mailing-lists:
 - email: spectrometer-dev@lists.opendaylight.org
 archives: http://lists.opendaylight.org/pipermail/spectrometer-dev/
 - email: spectrometer-users@lists.opendaylight.org
 archives: http://lists.opendaylight.org/pipermail/spectrometer-users/
ci-server: https://jenkins.opendaylight.org
issue-tracker: https://bugs.opendaylight.org
static-analysis: https://sonar.opendaylight.org
repository: https://git.opendaylight.org/gerrit/#/admin/projects/spectrometer
meetings: |
 Free from text field for providing meeting information.
 It can be multiple lines long as necessary.
releases:
 - helium
 - lithium
 - beryllium
 - boron

Required fields:

	name

	creation_date

	description

	primary_contact

	project_lead

 Documentation Guide

Documentation Guide

This guide provides details on how to contribute to the documetantion of
Spectrometer. The style guide we follow for documentation is the python
documentation style guide. See:

https://docs.python.org/devguide/documenting.html

To build and review the documentation locally you can simply run tox and open
the html via your favourite web browser.

tox -edocs
firefox .tox/docs/tmp/html/index.html

 Developer Guide

Developer Guide

This doc provides details for developers who want to hack on spectrometer. If
you have not done so already please refer to the Quick Start Guide.

	Style Guide

	Spectrometer Server
	Installing in Dev Mode

	Testing Code

	Spectrometer Web
	Installation

	Run spectrometer-web

	UI Technology Stack

	Run spectrometer-web in Production

	Run Test

	Roadmap

	Troubleshooting
	Adding new repository

Style Guide

We follow the Python PEP8 style guide. See:
https://www.python.org/dev/peps/pep-0008/

For documentation we follow the Python Documentation Guide. See:
https://docs.python.org/devguide/documenting.html

Spectrometer Server

Installing in Dev Mode

In development we want to install spectrometer so that we can modify the code
and use it as if in production with changes taking effect immediately. We can
achieve this using pip’s editable install mode.

cd server # From spectrometer repo root
pip install -e .
spectrometer server -c example-config/config.py start

Testing Code

We use tox to manage and run our unit tests. Simply run tox in the server
directory to initiate the tests. If you don’t have tox installed typically it
is packaged as python-tox in most distros.

cd server/ # From spectrometer repo root
tox

Spectrometer Web

Installation

To install NodeJS in your system, use the Node Version Manager (NVM), which
allows to co-exist multiple NodeJS versions in the same system.

If you already have NodeJS older versions (<= 0.12), it is strongly recommended to completely remove them and reinstall using NVM.

For Linux systems, you can do the following to remove NodeJS:

which node # Note down the path
sudo rm -r /path/bin/node /path/bin/npm /path/include/node /path/lib/node_modules ~/.npm

Install NVM, NodeJS 4.3.x and NPM:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.0/install.sh | bash
nvm install 4.3.1 # By default this installs npm 2.14.x
npm install npm -g # This will upgrade npm to 3.7.x

Run spectrometer-web

cd web # From the root of the git repo
npm install
npm start

Goto `http://localhost:8000`

The web project is configured to hot-reload when any changes are made to the
code. Most of the time the web browser should auto refresh, if not simply
refresh the page.

UI Technology Stack

	NodeJS 4.3 - Bootstrapping and Universal (isomorphic) Javascript execution

	ExpressJS - Web-server-side bootstrap for UI

	ReactJS 0.14 - View Layer

	Redux - Data and State management (Flux pattern)

	Webpack - Build tool

	Babel - Asset compilation, ES6 Transpiler

	FormidableLabs VictoryChart - D3-based React components

	Redux Dev Tools - Tool that allows to track state management

Run spectrometer-web in Production

Production build does not have Devtools and hot reloading middleware. It also
minifies scripts and css.

For Production build, execute the following commands:

npm run build
npm run start-prod

Run Test

Unit Tests are executed using Mocha and Chai assert libraries.

npm test

Roadmap

	Dynamic loading of repositories as opposed to loading via config.json

Troubleshooting

Adding new repository

In order to add a new repository to collect statistics, you must make the following changes:

	Create a soft link in ~/odl-spectrometer to the new repository

	Edit the server/spectrometer/etc/repositories.yaml and specify the key and path to ~/odl-spectrometer/$repo

	Edit the web/src/config.json add the project name in the list (this makes it appear in the dropdown)

	Reload the web page

	If reload web page does not work, restart python `python spectrometer-server` and web `npm start`)

 Rest API

Rest API

Gerrit API

	
spectrometer.api.gerrit.branches()

	Returns a list of branches in a given repository by querying Gerrit.

GET /gerrit/branches?param=<value>

	Parameters:	project (str) – Project to query branches from. (required)

JSON:

{
 "branches": [
 {
 "ref": "refs/heads/stable/beryllium",
 "revision": "8f72284f3808328604bdff7f91a6999094f7c6d7"
 },
 ...
]
}

	
spectrometer.api.gerrit.merged_changes()

	Returns a list of merged changes in a given repository by querying Gerrit.

GET /gerrit/changes?param=<value>

	Parameters:	
	project (str) – Project to query changes from. (required)

	branch (str) – Branch to pull changes from. (default: master)

JSON:

{
 "changes": [
 {
 "_number": 37706,
 "branch": "master",
 "change_id": "I4168e023b77bfddbb6f72057e849925ba2dffa17",
 "created": "2016-04-18 02:42:33.000000000",
 "deletions": 0,
 "hashtags": [],
 "id": "spectrometer~master~I4168e023b77bfddbb6f72057e849925ba2dffa17",
 "insertions": 119,
 "owner": {
 "_account_id": 2759
 },
 "project": "spectrometer",
 "status": "MERGED",
 "subject": "Add API to return commits since ref",
 "submittable": false,
 "topic": "git-api",
 "updated": "2016-04-19 09:03:03.000000000"
 },
 ...
]
}

	
spectrometer.api.gerrit.projects()

	Returns a list of projects by querying Gerrit.

GET /gerrit/projects

JSON:

{
 "projects": [
 "groupbasedpolicy",
 "spectrometer",
 "releng/autorelease",
 "snmp4sdn",
 "ovsdb",
 "nemo",
 ...
]
}

	
spectrometer.api.gerrit.tags()

	Returns a list of tags in a given repository by querying Gerrit.

GET /gerrit/tags?param=<value>

	Parameters:	project (str) – Project to query tags from. (required)

JSON:

{
 "tags": [
 {
 "message": "OpenDaylight Beryllium-SR1 release",
 "object": "f76cc0a12dc8f06dae3cedc31d06add72df8de5d",
 "ref": "refs/tags/release/beryllium-sr1",
 "revision": "8b92d614ee48b4fc5ba11c3f38c92dfa14d43655",
 "tagger": {
 "date": "2016-03-23 13:34:09.000000000",
 "email": "thanh.ha@linuxfoundation.org",
 "name": "Thanh Ha",
 "tz": -240
 }
 },
 ...
]
}

Git API

	
spectrometer.api.git.branches()

	Returns a list of branches in a given repository.

GET /git/branches?param=<value>

	Parameters:	project (str) – Project to query commits from. (required)

JSON:

{
 "branches": [
 "master",
 "stable/beryllium",
 "stable/helium",
 "stable/lithium",
 ...
]
}

	
spectrometer.api.git.commits()

	Returns a list of commit messages in a repository.

GET /git/commits?param=<value>

	Parameters:	
	project (str) – Project to query commits from. (required)

	branch (str) – Branch to pull commits from. (default: master)

JSON:

{
 "commits": [
 {
 "author": "Thanh Ha",
 "author_email": "thanh.ha@linuxfoundation.org",
 "author_tz_offset": 14400,
 "authored_date": 1460316386,
 "committed_date": 1460392605,
 "committer": "Thanh Ha",
 "committer_email": "thanh.ha@linuxfoundation.org",
 "committer_tz_offset": 14400,
 "hash": "1e409af62fd99413c5be86c5b43ad602a8cebc1e",
 "lines": {
 "deletions": 55,
 "files": 7,
 "insertions": 103,
 "lines": 158
 },
 "message": "Refactor Gerrit API into a Flask Blueprint..."
 },
 ...
]
}

Note

	date:	The date represented in seconds since epoch

	tz_offset:	The seconds offset west of UTC.

	
spectrometer.api.git.commits_since_ref()

	Returns a list of commits in branch until common parent of ref.

Searches Git for a common_parent between ref1 and ref2 and returns
a the commit log of all the commits until the common parent excluding
the common_parent commit itself.

GET /git/commits_since_ref?param=<value>

	Parameters:	
	project (str) – Project to query commits from. (required)

	ref1 (str) – Reference to get commit information from. (required)

	ref2 (str) – Reference to start at until ref1. (required)

JSON:

{
 "commits": [
 {
 "author": "Thanh Ha",
 "author_email": "thanh.ha@linuxfoundation.org",
 "author_tz_offset": 14400,
 "authored_date": 1460316386,
 "committed_date": 1460392605,
 "committer": "Thanh Ha",
 "committer_email": "thanh.ha@linuxfoundation.org",
 "committer_tz_offset": 14400,
 "hash": "1e409af62fd99413c5be86c5b43ad602a8cebc1e",
 "lines": {
 "deletions": 55,
 "files": 7,
 "insertions": 103,
 "lines": 158
 },
 "message": "Refactor Gerrit API into a Flask Blueprint..."
 },
 ...
]
}

	
spectrometer.api.git.project_info()

	Provides meta information on project.

Refer to the specfile located here:
https://opendaylight-spectrometer.readthedocs.io/en/latest/project-info-spec.html

 Java API Documentation

Java API Documentation

	odlparent

 odlparent

odlparent

	org.opendaylight.odlparent
	AetherUtil

	FeatureUtil

	KarafFeaturesDependencyFilter

	MvnToAetherMapper

	PopulateLocalRepoMojo

	org.opendaylight.odlparent.featuretest
	Constants

	CustomBundleUrlStreamHandlerFactory

	PerFeatureRunNotifier

	PerFeatureRunner

	PerRepoTestRunner

	SingleFeatureTest

	Util

 org.opendaylight.odlparent

org.opendaylight.odlparent

	AetherUtil

	FeatureUtil

	KarafFeaturesDependencyFilter

	MvnToAetherMapper

	PopulateLocalRepoMojo

 AetherUtil

AetherUtil

	
public class AetherUtil

	

Fields

localRepository

	
protected File [http://docs.oracle.com/javase/6/docs/api/java/io/File.html] localRepository

	

Constructors

AetherUtil

	
public AetherUtil(RepositorySystem repoSystem, RepositorySystemSession repoSession, List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<RemoteRepository> remoteRepos, File [http://docs.oracle.com/javase/6/docs/api/java/io/File.html] localRepository)

	Create an instance for the given repositories.

	Parameters:	
	repoSystem – The repository system.

	repoSession – The repository session.

	remoteRepos – The remote repositories.

	localRepository – The local repository.

Methods

installArtifacts

	
public void installArtifacts(Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Artifact> artifacts)

	Installs the given artifacts.

	Parameters:	
	artifacts – The artifacts to install.

	Throws:	
	InstallationException – if an error occurs.

resolveArtifact

	
public Artifact resolveArtifact(Artifact artifact)

	Resolves the given artifact.

	Parameters:	
	artifact – The artifact.

	Returns:	The resolved artifact, or null if it can’t be resolved.

resolveArtifact

	
public Artifact resolveArtifact(String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] coord)

	Resolves the given coordinates.

	Parameters:	
	coord – The coordinates to resolve.

	Returns:	The resolved artifact, or null if the coordinates can’t be resolved.

resolveArtifacts

	
public Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Artifact> resolveArtifacts(Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> coords)

	Resolves the given coordinates.

	Parameters:	
	coords – The set of coordinates to resolve.

	Returns:	The resolved artifacts. Unresolvable coordinates are skipped without error.

resolveDependencies

	
public Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Artifact> resolveDependencies(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<Dependency> dependencies, DependencyFilter filter)

	Resolves the given dependencies.

	Parameters:	
	dependencies – The dependencies.

	filter – The dependency filter.

	Throws:	
	DependencyResolutionException – if an error occurs.

	Returns:	The corresponding artifacts.

toDependencies

	
public List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<Dependency> toDependencies(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> coords)

	Converts the given list of artifact coordinates to dependencies.

	Parameters:	
	coords – The list of coordinates.

	Returns:	The corresponding dependencies.

toDependency

	
public Dependency toDependency(String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] coord)

	Converts the given artifact coordinates to a Dependency instance.

	Parameters:	
	coord – The coordinates.

	Returns:	The dependency.

 FeatureUtil

FeatureUtil

	
public final class FeatureUtil

	

Methods

bundlesToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> bundlesToCoords(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<Bundle> bundles)

	Lists the artifact coordinates of the given bundles.

	Parameters:	
	bundles – The bundles.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding coordinates.

configFilesToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> configFilesToCoords(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<ConfigFile> configfiles)

	Lists the artifact coordinates of the given configuration files.

	Parameters:	
	configfiles – The configuration files.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding coordinates.

featureToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> featureToCoords(Feature feature)

	Lists the artifact coordinates of the given feature’s bundles and configuration files.

	Parameters:	
	feature – The feature.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding coordinates.

featuresRepositoryToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> featuresRepositoryToCoords(Features features)

	Converts the given features’ repository to artifact coordinates.

	Parameters:	
	features – The features.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding artifact coordinates.

featuresRepositoryToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> featuresRepositoryToCoords(Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> features)

	Converts all the given features’ repositories to artifact coordinates.

	Parameters:	
	features – The features.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding artifact coordinates.

featuresToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> featuresToCoords(Features features)

	Extracts all the artifact coordinates for the given features (repositories, bundles, configuration files).

	Parameters:	
	features – The feature.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The artifact coordinates.

featuresToCoords

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> featuresToCoords(Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> features)

	Extracts all the artifact coordinates for the given set of features (repositories, bundles, configuration files).

	Parameters:	
	features – The features.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The artifact coordinates.

findAllFeaturesRecursively

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> findAllFeaturesRecursively(AetherUtil aetherUtil, Features features, Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> existingCoords)

	Unmarshals all the features starting from the given feature.

	Parameters:	
	aetherUtil – The Aether resolver.

	features – The starting features.

	existingCoords – The artifact coordinates which have already been unmarshalled.

	Throws:	
	ArtifactResolutionException – if artifact coordinates can’t be resolved.

	MalformedURLException – if a URL is malformed.

	FileNotFoundException – if a file is missing.

	Returns:	The features.

findAllFeaturesRecursively

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> findAllFeaturesRecursively(AetherUtil aetherUtil, Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> features, Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> existingCoords)

	Unmarshals all the features starting from the given features.

	Parameters:	
	aetherUtil – The Aether resolver.

	features – The starting features.

	existingCoords – The artifact coordinates which have already been unmarshalled.

	Throws:	
	ArtifactResolutionException – if artifact coordinates can’t be resolved.

	MalformedURLException – if a URL is malformed.

	FileNotFoundException – if a file is missing.

	Returns:	The features.

findAllFeaturesRecursively

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> findAllFeaturesRecursively(AetherUtil aetherUtil, Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> features)

	Unmarshals all the features (including known ones) starting from the given features.

	Parameters:	
	aetherUtil – The Aether resolver.

	features – The starting features.

	Throws:	
	ArtifactResolutionException – if artifact coordinates can’t be resolved.

	MalformedURLException – if a URL is malformed.

	FileNotFoundException – if a file is missing.

	Returns:	The features.

mvnUrlsToCoord

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> mvnUrlsToCoord(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> repository)

	Parses the given repository as URLs and converts them to artifact coordinates.

	Parameters:	
	repository – The repository (list of URLs).

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding artifact coordinates.

readFeature

	
public static Features readFeature(Artifact artifact)

	Unmarshal the features in the given artifact.

	Parameters:	
	artifact – The artifact.

	Throws:	
	FileNotFoundException – if a file is missing.

	Returns:	The features.

readFeature

	
public static Features readFeature(AetherUtil aetherUtil, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] coords)

	Unmarshal the features matching the given artifact coordinates.

	Parameters:	
	aetherUtil – The Aether resolver.

	coords – The artifact coordinates.

	Throws:	
	ArtifactResolutionException – if the coordinates can’t be resolved.

	FileNotFoundException – if a file is missing.

	Returns:	The features.

readFeatures

	
public static Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Features> readFeatures(Set [http://docs.oracle.com/javase/6/docs/api/java/util/Set.html]<Artifact> featureArtifacts)

	Unmarshal all the features in the given artifacts.

	Parameters:	
	featureArtifacts – The artifacts.

	Throws:	
	FileNotFoundException – if a file is missing.

	Returns:	The features.

toCoord

	
public static List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html]> toCoord(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html]> urls)

	Converts the given list of URLs to artifact coordinates.

	Parameters:	
	urls – The URLs.

	Throws:	
	MalformedURLException – if a URL is malformed.

	Returns:	The corresponding artifact coordinates.

toCoord

	
public static String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] toCoord(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] url)

	Converts the given URL to artifact coordinates.

	Parameters:	
	url – The URL.

	Throws:	
	MalformedURLException – if the URL is malformed.

	Returns:	The corresponding artifact coordinates.

 KarafFeaturesDependencyFilter

KarafFeaturesDependencyFilter

	
public class KarafFeaturesDependencyFilter implements DependencyFilter

	

Methods

accept

	
public boolean accept(DependencyNode node, List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<DependencyNode> parents)

	Accepts only Karaf features.

	Parameters:	
	node – The dependency node.

	parents – The parents (ignored).

	Returns:	true if the dependency is a Karaf feature, false otherwise.

 MvnToAetherMapper

MvnToAetherMapper

	
public final class MvnToAetherMapper

	

Methods

toAether

	
public static Dependency toAether(org.apache.maven.model.Dependency dependency)

	Converts a Maven model dependency to an Aether dependency.

	Parameters:	
	dependency – The Maven model dependency.

	Returns:	The Aether dependency.

toAether

	
public static List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<Dependency> toAether(List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<org.apache.maven.model.Dependency> dependencies)

	Converts a list of Maven model dependencies to a list of Aether dependencies.

	Parameters:	
	dependencies – The Maven model dependencies.

	Returns:	The Aether dependencies.

 PopulateLocalRepoMojo

PopulateLocalRepoMojo

	
public class PopulateLocalRepoMojo extends AbstractMojo

	Mojo populating the local repository by delegating to Aether.

Methods

execute

	
public void execute()

	

 org.opendaylight.odlparent.featuretest

org.opendaylight.odlparent.featuretest

	Constants

	CustomBundleUrlStreamHandlerFactory

	PerFeatureRunNotifier

	PerFeatureRunner

	PerRepoTestRunner

	SingleFeatureTest

	Util

 Constants

Constants

	
public final class Constants

	

Fields

ORG_OPENDAYLIGHT_FEATURETEST_FEATURENAME_PROP

	
public static final String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] ORG_OPENDAYLIGHT_FEATURETEST_FEATURENAME_PROP

	

ORG_OPENDAYLIGHT_FEATURETEST_FEATUREVERSION_PROP

	
public static final String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] ORG_OPENDAYLIGHT_FEATURETEST_FEATUREVERSION_PROP

	

ORG_OPENDAYLIGHT_FEATURETEST_URI_PROP

	
public static final String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] ORG_OPENDAYLIGHT_FEATURETEST_URI_PROP

	

 CustomBundleUrlStreamHandlerFactory

CustomBundleUrlStreamHandlerFactory

	
public class CustomBundleUrlStreamHandlerFactory implements URLStreamHandlerFactory [http://docs.oracle.com/javase/6/docs/api/java/net/URLStreamHandlerFactory.html]

	

Methods

createURLStreamHandler

	
public URLStreamHandler [http://docs.oracle.com/javase/6/docs/api/java/net/URLStreamHandler.html] createURLStreamHandler(String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] protocol)

	

 PerFeatureRunNotifier

PerFeatureRunNotifier

	
public class PerFeatureRunNotifier extends RunNotifier

	

Constructors

PerFeatureRunNotifier

	
public PerFeatureRunNotifier(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] featureName, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] featureVersion, RunNotifier delegate)

	Create a delegating notifier.

	Parameters:	
	repoUrl – The repository URL.

	featureName – The feature name.

	featureVersion – The feature version.

	delegate – The notification delegate.

Methods

addFirstListener

	
public void addFirstListener(RunListener listener)

	

addListener

	
public void addListener(RunListener listener)

	

equals

	
public boolean equals(Object [http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html] obj)

	

fireTestAssumptionFailed

	
public void fireTestAssumptionFailed(Failure failure)

	

fireTestFailure

	
public void fireTestFailure(Failure failure)

	

fireTestFinished

	
public void fireTestFinished(Description description)

	

fireTestIgnored

	
public void fireTestIgnored(Description description)

	

fireTestRunFinished

	
public void fireTestRunFinished(Result result)

	

fireTestRunStarted

	
public void fireTestRunStarted(Description description)

	

fireTestStarted

	
public void fireTestStarted(Description description)

	

hashCode

	
public int hashCode()

	Calculates the hash code (delegated).

See also: java.lang.Object.hashCode() [http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode()]

pleaseStop

	
public void pleaseStop()

	Please stop.

See also: org.junit.runner.notification.RunNotifier.pleaseStop()

removeListener

	
public void removeListener(RunListener listener)

	

toString

	
public String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] toString()

	Value of the delegate as a String.

See also: java.lang.Object.toString() [http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()]

 PerFeatureRunner

PerFeatureRunner

	
public class PerFeatureRunner extends Runner implements Filterable, Sortable

	

Constructors

PerFeatureRunner

	
public PerFeatureRunner(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] featureName, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] featureVersion, Class [http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html]<?> testClass)

	Create a runner.

	Parameters:	
	repoUrl – The repository URL.

	featureName – The feature name.

	featureVersion – The feature version.

	testClass – The test class.

	Throws:	
	InitializationError – if an error occurs.

Methods

filter

	
public void filter(Filter filter)

	

getDescription

	
public Description getDescription()

	

getFeatureName

	
public String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] getFeatureName()

	Returns the feature name.

	Returns:	The feature name.

getFeatureVersion

	
public String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] getFeatureVersion()

	Returns the feature version.

	Returns:	The feature version.

getRepoUrl

	
public URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] getRepoUrl()

	Returns the repository URL.

	Returns:	The repository URL.

run

	
public void run(RunNotifier notifier)

	

sort

	
public void sort(Sorter sorter)

	

testCount

	
public int testCount()

	

toString

	
public String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] toString()

	Delegated implementation of toString().

See also: java.lang.Object.toString() [http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()]

 PerRepoTestRunner

PerRepoTestRunner

	
public class PerRepoTestRunner extends ParentRunner<PerFeatureRunner>

	

Constructors

PerRepoTestRunner

	
public PerRepoTestRunner(Class [http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html]<?> testClass)

	Create a runner.

	Parameters:	
	testClass – The test class.

	Throws:	
	InitializationError – if an error occurs.

Methods

describeChild

	
protected Description describeChild(PerFeatureRunner child)

	

getChildren

	
protected List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<PerFeatureRunner> getChildren()

	

getFeatures

	
protected Features getFeatures(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl)

	

recursiveRunnersFromRepoUrl

	
protected List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<PerFeatureRunner> recursiveRunnersFromRepoUrl(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, Class [http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html]<?> testClass)

	

runChild

	
protected void runChild(PerFeatureRunner child, RunNotifier notifier)

	

runnersFromFeatures

	
protected List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<PerFeatureRunner> runnersFromFeatures(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, Features features, Class [http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html]<?> testClass)

	

runnersFromRepoUrl

	
protected List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<PerFeatureRunner> runnersFromRepoUrl(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, Class [http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html]<?> testClass, boolean recursive)

	

runnersFromRepoUrl

	
protected List [http://docs.oracle.com/javase/6/docs/api/java/util/List.html]<PerFeatureRunner> runnersFromRepoUrl(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, Class [http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html]<?> testClass)

	

testCount

	
public int testCount()

	

 SingleFeatureTest

SingleFeatureTest

	
public class SingleFeatureTest

	

Methods

config

	
public Option[] config()

	Returns the required configuration.

	Throws:	
	IOException – if an error occurs.

	Returns:	The Pax Exam configuration.

getFeatureVersion

	
public String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] getFeatureVersion()

	

getKarafDistroOption

	
protected Option getKarafDistroOption()

	

installFeature

	
public void installFeature()

	

installRepo

	
public void installRepo()

	Sets the repository up.

	Throws:	
	Exception [http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html] – if an error occurs.

mvnLocalRepoOption

	
protected Option mvnLocalRepoOption()

	

 Util

Util

	
public final class Util

	

Methods

convertDescription

	
public static Description convertDescription(URL [http://docs.oracle.com/javase/6/docs/api/java/net/URL.html] repoUrl, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] featureName, String [http://docs.oracle.com/javase/6/docs/api/java/lang/String.html] featureVersion, Description description)

	Convert a Description to a Description that includes information about repoUrl, featureName, and featureVersion

This is done so that when a test fails, we can get information about which repoUrl, featureName, and featureVersion can come back with the Failure.

	Parameters:	
	repoUrl – URL of the repository.

	featureName – the name of the feature.

	featureVersion – the version of the feature.

	description – original description of the feature.

	Returns:	the final description of the feature with the information of repoUrl, featureName, and featureVersion included.

 NetVirt Contributor Guide

NetVirt Contributor Guide

	NetVirt Design Specifications
	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

 NetVirt Design Specifications

NetVirt Design Specifications

Starting from Carbon, NetVirt uses an RST format Design Specification document
for all new features. These specifications are a perfect way to understand
various NetVirt features.

Contents:

	Design Specification Template

	Setup Source-MAC-Address for routed packets to virtual endpoints

 Title of the feature

Table of Contents

	Title of the feature
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Title of the feature

[link to gerrit patch]

Brief introduction of the feature.

Problem description

Detailed description of the problem being solved by this feature

Use Cases

Use cases addressed by this feature.

Proposed change

Details of the proposed change.

Pipeline changes

Any changes to pipeline must be captured explicitly in this section.

Yang changes

This should detail any changes to yang models.

Configuration impact

Any configuration parameters being added/deprecated for this feature?
What will be defaults for these? How will it impact existing deployments?

Note that outright deletion/modification of existing configuration
is not allowed due to backward compatibility. They can only be deprecated
and deleted in later release(s).

Clustering considerations

This should capture how clustering will be supported. This can include but
not limited to use of CDTCL, EOS, Cluster Singleton etc.

Other Infra considerations

This should capture impact from/to different infra components like
MDSAL Datastore, karaf, AAA etc.

Security considerations

Document any security related issues impacted by this feature.

Scale and Performance Impact

What are the potential scale and performance impacts of this change?
Does it help improve scale and performance or make it worse?

Targeted Release

What release is this feature targeted for?

Alternatives

Alternatives considered and why they were not selected.

Usage

How will end user use this feature? Primary focus here is how this feature
will be used in an actual deployment.

e.g. For most netvirt features this will include OpenStack APIs.

This section will be primary input for Test and Documentation teams.
Along with above this should also capture REST API and CLI.

Features to Install

odl-netvirt-openstack

Identify existing karaf feature to which this change applies and/or new karaf
features being introduced. These can be user facing features which are added
to integration/distribution or internal features to be used by other projects.

REST API

Sample JSONS/URIs. These will be an offshoot of yang changes. Capture
these for User Guide, CSIT, etc.

CLI

Any CLI if being added.

Implementation

Assignee(s)

Who is implementing this feature? In case of multiple authors, designate a
primary assigne and other contributors.

	Primary assignee:

	<developer-a>

	Other contributors:

	<developer-b>
<developer-c>

Work Items

Break up work into individual items. This should be a checklist on
Trello card for this feature. Give link to trello card or duplicate it.

Dependencies

Any dependencies being added/removed? Dependencies here refers to internal
[other ODL projects] as well as external [OVS, karaf, JDK etc.] This should
also capture specific versions if any of these dependencies.
e.g. OVS version, Linux kernel version, JDK etc.

This should also capture impacts on existing project that depend on Netvirt.

	Following projects currently depend on Netvirt:

	Unimgr

Testing

Capture details of testing that will need to be added.

Unit Tests

Integration Tests

CSIT

Documentation Impact

What is impact on documentation for this change? If documentation
change is needed call out one of the <contributors> who will work with
Project Documentation Lead to get the changes done.

Don’t repeat details already discussed but do reference and call them out.

References

Add any useful references. Some examples:

	Links to Summit presentation, discussion etc.

	Links to mail list discussions

	Links to patches in other projects

	Links to external documentation

[1] OpenDaylight Documentation Guide [http://docs.opendaylight.org/en/latest/documentation.html]

[2] https://specs.openstack.org/openstack/nova-specs/specs/kilo/template.html

Note

This template was derived from [2], and has been modified to support our project.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

 Setup Source-MAC-Address for routed packets destined to virtual endpoints

Table of Contents

	Setup Source-MAC-Address for routed packets destined to virtual endpoints
	Problem description
	Use Cases

	Proposed change
	Pipeline changes

	Yang changes

	Configuration impact

	Clustering considerations

	Other Infra considerations

	Security considerations

	Scale and Performance Impact

	Targeted Release

	Alternatives

	Usage
	Features to Install

	REST API

	CLI

	Implementation
	Assignee(s)

	Work Items

	Dependencies

	Testing
	Unit Tests

	Integration Tests

	CSIT

	Documentation Impact

	References

Setup Source-MAC-Address for routed packets destined to virtual endpoints

https://git.opendaylight.org/gerrit/#/q/topic:SMAC_virt_endpoints

All L3 Routed packets destined to virtual endpoints in the datacenter managed by ODL
do not carry a proper source-mac address in such frames put out to virtual endpoints.

This spec makes sure a proper source-mac is updated in the packet at the point where the
packet is delivered to the VM, regardless of the tenant network type. On the actual datapath,
there will be no change in the source mac-addresses and packets continue to use the same
mechanism that is used today.

Addressing the datapath requires unique MAC allocation per OVS Datapath, so that it can be
used as the source MAC for all distributively routed packets of an ODL enabled cloud. It
would be handled in some future spec.

Problem description

Today all L3 Routed packets destined to virtual endpoints in the datacenter either

	Incorrectly carry the source mac-address of the originator (regardless of which network the originator is in)

	Incorrectly carry sometimes the reserved source mac address of 00:00:00:00:00:00

This spec is intended to setup a source-mac-address in the frame of L3 Routed packets just before
such frames are directed into the virtual endpoints themselves. This enables use-cases where certain
virtual endpoints which are VNFs in the datacenter that are source-mac conscious (or mandate that src-mac
in frames be valid) can become functional on their instantiation in an OpenDaylight enabled cloud.

Use Cases

	Intra-Datacenter L3 forwarded packets within a hypervisor.

	Intra-Datacenter L3 forwarded packets over Internal VXLAN Tunnels between two hypervisors in the datacenter.

	Inter-Datacenter L3 forwarded packets :
	Destined to VMs associated floating IP over External VLAN Provider Networks.

	Destined to VMs associated floating IP over External MPLSOverGRE Tunnels.

	SNAT traffic from VMs over External MPLSOverGRE Tunnels.

	SNAT traffic from VMS over External VLAN Provider Networks.

Proposed change

All the L3 Forwarded traffic today reaches the VM via a LocalNextHopGroup managed by
the VPN Engine (including FIBManager).

Currently the LocalNextHopGroup sets-up the destination MAC Address of the VM and forwards the traffic
to EGRESS_LPORT_DISPATCHER_TABLE (Table 220). In that LocalNextHopGroup we will additionally setup
source-mac-address for the frame. There are two cases to decide what source-mac-address should go
into the frame:

	If the VM is on a subnet (on a network) for which a subnet gatewayip port exists, then the
source-mac address of that subnet gateway port will be setup as the frame’s source-mac
inside the LocalNextHop group.This is typical of the case when a subnet is added to a router,
as the router interface port created by neutron will be representing the subnet’s gateway-ip address.

	If the VM is on a subnet (on a network), for which there is no subnet gatewayip port but that network
is part of a BGPVPN , then the source-mac address would be that of the connected mac-address of the
VM itself. The connected mac-address is nothing but the mac-address on the ovs-datapath for the VMs
tapxxx/vhuxxx port on that hypervisor itself.

The implementation also applies to Extra-Routes (on a router) and Discovered Routes as they both use the
LocalNextHopGroup in their last mile to send packets into their Nexthop VM.

We need to note that when a network is already part of a BGPVPN, adding a subnet on such a network to
a router is disallowed currently by NeutronVPN. And so the need to swap the mac-addresses inside
the LocalNextHopGroup to reflect the subnet gatewayip port here does not arise.

For all the use-cases listed in the USE-CASES section above, proper source mac address will be filled-up
in the frame before it enters the virtual endpoint.

Pipeline changes

There are no pipeline changes.

The only change is in the NextHopGroup created by VPN Engine (i.e., VRFEntryListener). In the NextHopGroup we
will additionally fill up the ethernet source mac address field with proper mac-address as outlined in the
‘Proposed change’ section.

Currently the LocalNextHopGroup is used in the following tables of VPN Pipeline:

	L3_LFIB_TABLE (Table 20) - Lands all routed packets from MPLSOverGRE tunnel into the virtual endpoint.

	INTERNAL_TUNNEL_TABLE (Table 36) - Lands all routed packets on Internal VXLAN Tunnel within the DC into the
virtual end point.

	L3_FIB_TABLE (Table 21) - Lands all routed packets within a specific hypervisor into the virtual endpoint.

cookie=0x8000002, duration=50.676s, table=20, n_packets=0, n_bytes=0, priority=10,mpls,mpls_label=70006 actions=write_actions(pop_mpls:0x0800,group:150000)
cookie=0x8000003, duration=50.676s, table=21, n_packets=0, n_bytes=0, priority=42,ip,metadata=0x222f2/0xfffffffe,nw_dst=10.1.1.3 actions=write_actions(group:150000)
cookie=0x9011176, duration=50.676s, table=36, n_packets=0, n_bytes=0, priority=5,tun_id=0x11176 actions=write_actions(group:150000)

NEXTHOP GROUP:
group_id=150000,type=all,bucket=actions=set_field:fa:16:3e:01:1a:40->eth_src,set_field:fa:16:3e:8b:c5:51->eth_dst,load:0x300->NXM_NX_REG6[],resubmit(,220)

Yang changes

None.

Configuration impact

None.

Clustering considerations

None.

Other Infra considerations

None.

Security considerations

None.

Scale and Performance Impact

None

Targeted Release

Carbon/Boron

Alternatives

None.

Usage

N/A.

Features to Install

odl-netvirt-openstack

REST API

N/A.

CLI

N/A.

Implementation

Assignee(s)

Primary assignee:

	Achuth Maniyedath (achuth.m@altencalsoftlabs.com)

Other contributors:

	Karthik Prasad (karthik.p@altencalsoftlabs.com)

	Vivekanandan Narasimhan (n.vivekanandan@ericsson.com)

Work Items

https://trello.com/c/IfAmnFFr/110-add-source-macs-in-frames-for-l3-routed-packets-before-such-frames-get-to-the-virtual-endpoint

	Determine the smac address to be used for L3 packets forwarded to VMs.

	Update the LocalNextHopGroup table with proper ethernet source-mac parameter.

Dependencies

No new dependencies.

Testing

Verify the Source-MAC-Address setting on frames forwarded to Virtual endpoints in following cases.

Intra-Datacenter traffic to VMs (Intra/Inter subnet).

	VM to VM traffic within a hypervisor.

	VM to VM traffic across hypervisor over Internal VXLAN tunnel.

Inter-Datacenter traffic to/from VMs.

	External access to VMs using Floating IPs on MPLSOverGRE tunnels.

	External access to VMs using Floating IPs over VLAN provider networks.

	External access from VMs using SNAT over VLAN provider networks.

	External access from VMs using SNAT on MPLSOverGRE tunnels.

Unit Tests

N/A.

Integration Tests

N/A.

CSIT

	Validate that router-interface src-mac is available on received frames within the VM when that VM is on a router-arm.

	Validate that connected-mac as src-mac available on received frames within the VM when that VM is on a network-driven L3 BGPVPN.

Documentation Impact

N/A

References

N/A

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 spectrometer	

 	
 	
 spectrometer.api.gerrit	

 	
 	
 spectrometer.api.git	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	accept(DependencyNode, List) (Java method)

 	addFirstListener(RunListener) (Java method)

 	
 	addListener(RunListener) (Java method)

 	AetherUtil (Java class)

 	AetherUtil(RepositorySystem, RepositorySystemSession, List, File) (Java constructor)

B

 	
 	branches() (in module spectrometer.api.gerrit)

 	(in module spectrometer.api.git)

 	
 	bundlesToCoords(List) (Java method)

C

 	
 	commits() (in module spectrometer.api.git)

 	commits_since_ref() (in module spectrometer.api.git)

 	config() (Java method)

 	configFilesToCoords(List) (Java method)

 	
 	Constants (Java class)

 	convertDescription(URL, String, String, Description) (Java method)

 	createURLStreamHandler(String) (Java method)

 	CustomBundleUrlStreamHandlerFactory (Java class)

D

 	
 	describeChild(PerFeatureRunner) (Java method)

E

 	
 	equals(Object) (Java method)

 	
 	execute() (Java method)

F

 	
 	featuresRepositoryToCoords(Features) (Java method)

 	featuresRepositoryToCoords(Set) (Java method)

 	featuresToCoords(Features) (Java method)

 	featuresToCoords(Set) (Java method)

 	featureToCoords(Feature) (Java method)

 	FeatureUtil (Java class)

 	filter(Filter) (Java method)

 	findAllFeaturesRecursively(AetherUtil, Features, Set) (Java method)

 	
 	findAllFeaturesRecursively(AetherUtil, Set) (Java method)

 	findAllFeaturesRecursively(AetherUtil, Set, Set) (Java method)

 	fireTestAssumptionFailed(Failure) (Java method)

 	fireTestFailure(Failure) (Java method)

 	fireTestFinished(Description) (Java method)

 	fireTestIgnored(Description) (Java method)

 	fireTestRunFinished(Result) (Java method)

 	fireTestRunStarted(Description) (Java method)

 	fireTestStarted(Description) (Java method)

G

 	
 	getChildren() (Java method)

 	getDescription() (Java method)

 	getFeatureName() (Java method)

 	
 	getFeatures(URL) (Java method)

 	getFeatureVersion() (Java method), [1]

 	getKarafDistroOption() (Java method)

 	getRepoUrl() (Java method)

H

 	
 	hashCode() (Java method)

I

 	
 	installArtifacts(Set) (Java method)

 	
 	installFeature() (Java method)

 	installRepo() (Java method)

K

 	
 	KarafFeaturesDependencyFilter (Java class)

L

 	
 	localRepository (Java field)

M

 	
 	merged_changes() (in module spectrometer.api.gerrit)

 	mvnLocalRepoOption() (Java method)

 	
 	MvnToAetherMapper (Java class)

 	mvnUrlsToCoord(List) (Java method)

O

 	
 	org.opendaylight.odlparent (package)

 	org.opendaylight.odlparent.featuretest (package)

 	
 	ORG_OPENDAYLIGHT_FEATURETEST_FEATURENAME_PROP (Java field)

 	ORG_OPENDAYLIGHT_FEATURETEST_FEATUREVERSION_PROP (Java field)

 	ORG_OPENDAYLIGHT_FEATURETEST_URI_PROP (Java field)

P

 	
 	PerFeatureRunner (Java class)

 	PerFeatureRunner(URL, String, String, Class) (Java constructor)

 	PerFeatureRunNotifier (Java class)

 	PerFeatureRunNotifier(URL, String, String, RunNotifier) (Java constructor)

 	PerRepoTestRunner (Java class)

 	
 	PerRepoTestRunner(Class) (Java constructor)

 	pleaseStop() (Java method)

 	PopulateLocalRepoMojo (Java class)

 	project_info() (in module spectrometer.api.git)

 	projects() (in module spectrometer.api.gerrit)

R

 	
 	readFeature(AetherUtil, String) (Java method)

 	readFeature(Artifact) (Java method)

 	readFeatures(Set) (Java method)

 	recursiveRunnersFromRepoUrl(URL, Class) (Java method)

 	removeListener(RunListener) (Java method)

 	resolveArtifact(Artifact) (Java method)

 	resolveArtifact(String) (Java method)

 	
 	resolveArtifacts(Set) (Java method)

 	resolveDependencies(List, DependencyFilter) (Java method)

 	run(RunNotifier) (Java method)

 	runChild(PerFeatureRunner, RunNotifier) (Java method)

 	runnersFromFeatures(URL, Features, Class) (Java method)

 	runnersFromRepoUrl(URL, Class) (Java method)

 	runnersFromRepoUrl(URL, Class, boolean) (Java method)

S

 	
 	SingleFeatureTest (Java class)

 	sort(Sorter) (Java method)

 	
 	spectrometer.api.gerrit (module)

 	spectrometer.api.git (module)

T

 	
 	tags() (in module spectrometer.api.gerrit)

 	testCount() (Java method), [1]

 	toAether(List) (Java method)

 	toAether(org.apache.maven.model.Dependency) (Java method)

 	
 	toCoord(List) (Java method)

 	toCoord(URL) (Java method)

 	toDependencies(List) (Java method)

 	toDependency(String) (Java method)

 	toString() (Java method), [1]

U

 	
 	Util (Java class)

 Netvirt Documentation

Netvirt Documentation

This documentation provides critical information needed to help you write
code for the NetVirt project.

Contents:

	NetVirt Contributor Guide

	NetVirt Developer Guide

	NetVirt Installation Guide

	OpenStack with NetVirt

	NetVirt User Guide

	NetVirt Design Specifications

 System Test Guide

System Test Guide

Introduction

This step by step guide aims to help projects with the task of creating a
System Test job that runs in Continuous Integration.

A System Test job will normally install a controller distribution in one or
more VMs and will run a functionality test using some test tool (e.g. mininet).
This job will run periodically, tipically once or twice a day.

All projects defining top-level features (essential functionality) and that have
decided to use the OpenDaylight CI for system test must create system test jobs.

System test jobs rely on Robot Framework, this is because Robot FW provides:

	Structure for test creation and execution (e.g. test suites, test cases that
PASS/FAIL).

	Easy test debug (real time logs, etc...).

	Test reports in Jenkins.

For those projects creating system test, Integration group will provide:

	Robot Framework support and assistance.

	Review of system test code. The code will be pushed to integration/test git
(csit/suites/$project/).

	JJB templates to install controller and execute a robot test to verify a
project functionality (releng/builder git, jjb/integration/).

Create basic system test

Download Integration/Test Repository:

git clone ssh://${USERNAME}@git.opendaylight.org:29418/integration/test.git
cd test

Follow the instructions in pulling-and-pushing-the-code [http://docs.opendaylight.org/en/stable-boron/developer-guide/pulling-and-pushing-the-code-from-the-cli.html] to know more about
pulling and pushing code.

Create a folder for your project robot test:

mkdir test/csit/suites/$project
cd test/csit/suites/$project

Replace $project with your project name.

Move your robot suites (test folders) into the project folder:

If you do not have any robot test yet, copy integration basic folder suite into
your folder. You can later improve this suite or replace it by your own suites:

cp -R test/csit/suites/integration/basic basic

This suite will verify Restconf is operational.

Create a test plan

A test plan is a text file indicating which robot test suites (including
integration repo path) will be executed to test a project functionality:

vim test/csit/testplans/$project-$functionality.txt

Replace $project with your project name and $functionality with the
functionality you want to test.

If you took the basic test from integration, the test plan file should look
like this:

Place the suites in run order:
integration/test/csit/suites/$project/basic

Save the changes and exit editor.

Optional: Version specific test plan

Integration/Test is not part of the simultaneous release, so the same suites are
used for testing all supported ODL versions. There may be API changes between
different releases of ODL, which may require different logic in your Robot
tests. If the difference is small, it is recommended to act upon value of
ODL_STREAM variable (e.g. “beryllium”, “boron”, “carbon”, etc).

If the difference is big, you may want to use different list of suites in
testplan. One way is to define separate jobs with different functionality names.
But the more convenient way is to define stream-specific testplan. For example:

vim test/csit/testplans/$project-$functionality-boron.txt

would contain a list of suites for testing Boron, while
$project-$functionality.txt would still contain the default list (used for
streams without stream specific testplans).

Optional: Create a script or config plan

Sometimes the environment prepared by scripts in releng/builder is not suitable
as is, and there are changes to be done before controller is installed (script
plan) or before it is started (config plan). You may create as many bash scripts
as you need in test/csit/scripts/ and then list them in the scriplans or
configplans folder:

vim test/csit/scriptplans/$project-$functionality.txt

Save and push Test changes

Add the changes and push them in the integration/test repo:

git add -A
git commit -s
git push

Create system test job

Download RelEng Builder repository:

git clone ssh://${USERNAME}@git.opendaylight.org:29418/releng/builder
cd builder

Follow the instructions in pulling-and-pushing-the-code [http://docs.opendaylight.org/en/stable-boron/developer-guide/pulling-and-pushing-the-code-from-the-cli.html] to know more about
pulling and pushing code.

Create a new file and modify the values according to your project:

vim jjb/$project/$project-csit-$functionality.yaml

It should look like this:

- project:
 name: openflowplugin-csit-flow-services
 jobs:
 - '{project}-csit-1node-{functionality}-{install}-{stream}'

 # The project name
 project: 'openflowplugin'

 # The functionality under test
 functionality: 'flow-services'

 # Project branches
 stream:
 - carbon:
 branch: 'master'
 jre: 'openjdk8'

 install:
 - only:
 scope: 'only'
 - all:
 scope: 'all'

 # Features to install
 install-features: >
 odl-openflowplugin-flow-services-ui,
 odl-openflowplugin-app-bulk-o-matic

 # Robot custom options
 robot-options: '-v ODL_OF_PLUGIN:lithium'

Explanation:

	name: give some name like $project-csit-$functionality.

	jobs: replace 1node by 3node if your test is develop for 3node cluster.

	project: set your your project name here (e.g. openflowplugin).

	functionality: set the functionality you want to test (e.g. flow-services).
Note this has also to match the robot test plan name you defined in the earlier
section create a test plan (e.g. openflowplugin-flow-services.txt)

	stream: list the project branches you are going to generate system test. Only
last branch if the project is new.

	install: this specifies controller installation, ‘only’ means only features in
install-features will be installed, ‘all’ means all compatible features will
be installed on top (multi-project features test).

	install-features: list of features you want to install in controller separated
by comma.

	robot-options: robot option you want to pass to the test separated by space.

Save the changes and exit editor.

Optional: Change default tools image

By default a system test spins a tools VM that can be used to run some test tool
like mininet, netconf tool, BGP simulator, etc. The default values are listed
below and you only need to specify them if you are changing something, for
example “tools_system_count: 0” will skip the tools VM if you do not need it.
For a list of available images see images-list [http://docs.opendaylight.org/en/stable-boron/submodules/releng/builder/docs/jenkins.html#pool-odlpub-hot-heat-orchestration-templates]:

- project:
 name: openflowplugin-csit-flow-services
 jobs:
 - '{project}-csit-1node-{functionality}-{install}-{stream}'

 # The project name
 project: 'openflowplugin'

 # The functionality under test
 functionality: 'flow-services'

 # Project branches
 stream:
 - carbon:
 branch: 'master'
 jre: 'openjdk8'

 install:
 - only:
 scope: 'only'
 - all:
 scope: 'all'

 # Job images (optional)
 tools_system_count: 1
 tools_system_flavor: 2 GB General Purpose v1
 tools_system_image: Ubuntu 14.04 - mininet - 20170210-0439

 # Features to install
 install-features: >
 odl-openflowplugin-flow-services-ui,
 odl-openflowplugin-app-bulk-o-matic

 # Robot custom options
 robot-options: '-v ODL_OF_PLUGIN:lithium'

Optional: Plot a graph from your job

Scalability and peformance tests not only PASS/FAIL but most important they
provide a number or value we want to plot in a graph and track over different
builds.

For that you can add the plot configuration like in this example below:

- project:
 name: openflowplugin-csit-cbench-performance
 jobs:
 - '{project}-csit-1node-{functionality}-{install}-{stream}'

 # The project name
 project: 'openflowplugin'

 # The functionality under test
 functionality: 'cbench-performance'

 # Project branches
 stream:
 - carbon:
 branch: 'master'
 jre: 'openjdk8'
 - boron:
 branch: 'stable/boron'
 jre: 'openjdk8'

 install:
 - only:
 scope: 'only'

 # Features to install
 install-features: 'odl-openflowplugin-flow-services-ui,odl-openflowplugin-drop-test'

 # Robot custom options
 robot-options: '-v throughput_threshold:20000 -v latency_threshold:5000'

 # Plot Info
 01-plot-title: 'Throughput Mode'
 01-plot-yaxis: 'flow_mods/sec'
 01-plot-group: 'Cbench Performance'
 01-plot-data-file: 'throughput.csv'
 02-plot-title: 'Latency Mode'
 02-plot-yaxis: 'flow_mods/sec'
 02-plot-group: 'Cbench Performance'
 02-plot-data-file: 'latency.csv'

Explanation:

	There are up to 10 plots per job and every plot can track different values,
for example max, min, average recorded in a csv file. In the example above you
can skip the 02-* lines if you do not use second plot.

	plot-title: title for your plot.

	plot-yaxis: your measurement (xaxis is build # so no need to fill).

	plot-group: just a label, use the same in case you have 2 plots.

	plot-data-file: this is the csv file generated by robot framework and contains
the values to plot. Examples can be found in openflow-performance [https://git.opendaylight.org/gerrit/gitweb?p=integration/test.git;a=blob;f=csit/suites/openflowplugin/Performance/010_Cbench.robot].

Optional: Add Patch Test Job to verify project patches

With the steps above your new csit job will run daily on latest generated
distribution. There is one more extra and optional step if you also want to run
your system test to verify patches in your project.

The patch test is triggered in gerrit using the keyword:

test-$project-$feature

The job will:

	Build the gerrit patch.

	Create a distribution containing the patch.

	Trigger some system test (csit) that already exists and you specify with the
$feature definition below.

Create $project-patch-test.yaml file in your jjb folder:

vim jjb/$project/$project-patch-test-jobs.yaml

Fill the information as below:

- project:
 name: openflowplugin-patch-test
 jobs:
 - '{project}-patch-test-{feature}-{stream}'

 # The project name
 project: 'openflowplugin'

 # Project branches
 stream:
 - carbon:
 branch: 'master'
 jdk: 'openjdk8'
 - boron:
 branch: 'stable/boron'
 jdk: 'openjdk8'

 feature:
 - core:
 csit-list: >
 openflowplugin-csit-1node-flow-services-only-{stream},
 openflowplugin-csit-1node-flow-services-all-{stream},
 openflowplugin-csit-1node-scalability-only-{stream},
 openflowplugin-csit-1node-cbench-performance-only-{stream},
 openflowplugin-csit-1node-config-performance-only-{stream},
 openflowplugin-csit-3node-clustering-only-{stream}

 - netvirt:
 csit-list: >
 netvirt-csit-1node-openstack-mitaka-gate-transparent-{stream}

 - cluster-netvirt:
 csit-list: >
 netvirt-csit-3node-openstack-mitaka-gate-transparent-{stream}

Explanation:

	name: give some name like $project-patch-test.

	project: set your your project name here (e.g. openflowplugin).

	stream: list the project branches you are going to generate system test. Only
last branch if the project is new.

	feature: you can group system tests in features. Note there is a predefined
feature -all- that triggers all features together.

	Fill the csit-list with all the system test jobs you want to run to verify a
feature.

Debug System Test

Before pushing your system test job into jenkins-releng [https://jenkins.opendaylight.org/releng/], it is recommended to
debug the job as well as the you system test code in the sandbox. To do that:

	Set up sandbox access using jenkins-sandbox-install [http://docs.opendaylight.org/en/stable-boron/submodules/releng/builder/docs/jenkins.html#jenkins-sandbox] instruction.

	Push you new csit job to sandbox:

jenkins-jobs --conf jenkins.ini update jjb/ $project-csit-1node-$functionality-only-$branch

	Open your job in jenkins-sandbox [https://jenkins.opendaylight.org/sandbox/] and start a build replacing the PATCHREFSPEC
parameter by your int/test patch REFSPEC (e.g. refs/changes/85/23185/1). you
can find this info in gerrit top right corner ‘Download’ button.

	Update the PATCHREFSPEC parameter every time you push a new patchset in the
int/test repository.

Optional: Debug VM issues in sandbox

In case of problems with the test VMs, you can easily debug these issues in the
sandbox by adding the following lines in a Jenkins shell window:

cat > ${WORKSPACE}/debug-script.sh <<EOF

<<put your debug shell script here>>

EOF
scp ${WORKSPACE}/debug-script.sh ${TOOLS_SYSTEM_IP}:/tmp
ssh ${TOOLS_SYSTEM_IP} 'sudo bash /tmp/debug-script.sh'

Note this will run a self-made debug script with sudo access in a VM of your
choice. In the example above you debug on the tools VM (TOOLS_SYSTEM_IP),
use ODL_SYSTEM_IP to debug in controller VM.

Save and push JJB changes

Once you are happy with your system test, save the changes and push them in the
releng builder repo:

git add -A
git commit -s
git push

Important

If this is your first system test job, it is recommended to add the int/test
patch (gerrit link) in the commit message so that committers can merge both
the int/test and the releng/builder patches at the same time.

Check system test jobs in Jenkins

Once your patches are merged your system test can be browsed in jenkins-releng [https://jenkins.opendaylight.org/releng/]:

	$project-csit-1node-$functionality-only-$branch -> The single-feature test.

	$project-csit-1node-$functionality-all-$branch -> The multi-project test.

	$yourproject-patch-test-$feature-$branch -> Patch test job.

Note that jobs in jenkins-releng [https://jenkins.opendaylight.org/releng/] cannot be reconfigured, only jobs in
jenkins-sandbox [https://jenkins.opendaylight.org/sandbox/] can, that is why it is so important for testers to get access
to sandbox.

Support

Integration people are happy to support with questions and recommendations:

	Integration IRC: OpenDaylight channel ‘opendaylight-integration

	Integration Mail: OpenDaylight list 'integration-dev@lists.opendaylight.org‘

 OVSDB documentation

OVSDB documentation

This documentation provides critical information needed to help you to use OVSDB
as a southbound plugin.

Contents:

 <no title>

 Following are the list of published images available to be used with Jenkins jobs.

	CentOS 6.6

	CentOS 7 (cloudimg 1510)

	CentOS 7 - devstack - 20170117-0003

	CentOS 7 - devstack - 20170120-1710

	CentOS 7 - devstack - 20170210-1356

	CentOS 7 - devstack - 20170221-1719

	CentOS 7 - devstack - 20170606-0344

	CentOS 7 - devstack - 20170609-0220

	CentOS 7 - devstack - 20170808-0528

	CentOS 7 - devstack - newton - 20170117-0005

	CentOS 7 - devstack-mitaka - 20170130-0523

	CentOS 7 - devstack-mitaka - 20170314-2255

	CentOS 7 - devstack-newton - 20170130-0426

	CentOS 7 - devstack-newton - 20170314-2256

	CentOS 7 - devstack-newton - 20170606-0427

	CentOS 7 - devstack-newton - 20170707-0359

	CentOS 7 - devstack-newton - 20170808-0528

	CentOS 7 - devstack-ocata - 20170606-0821

	CentOS 7 - devstack-ocata - 20170609-0221

	CentOS 7 - devstack-ocata - 20170808-0528

	CentOS 7 - docker - 20170117-0003

	CentOS 7 - docker - 20170120-1434

	CentOS 7 - docker - 20170607-0203

	CentOS 7 - docker - 20170609-0220

	CentOS 7 - docker - 20170808-0528

	CentOS 7 - java-builder - 20170117-0004

	CentOS 7 - java-builder - 20170126-0058

	CentOS 7 - java-builder - 20170309-2355

	CentOS 7 - java-builder - 20170311-0517

	CentOS 7 - java-builder - 20170606-0427

	CentOS 7 - java-builder - 20170607-1706

	CentOS 7 - java-builder - 20170609-0259

	CentOS 7 - java-builder - 20170707-0359

	CentOS 7 - java-builder - 20170807-1102

	CentOS 7 - java-builder - 20170807-2145

	CentOS 7 - robot - 20170117-0004

	CentOS 7 - robot - 20170210-1803

	CentOS 7 - robot - 20170328-0206

	CentOS 7 - robot - 20170526-2050

	CentOS 7 - robot - 20170606-0345

	CentOS 7 - robot - 20170609-0220

	CentOS 7 - robot - 20170808-0529

	Fedora 23 (20151030 cloud)

	Ubuntu 14.04 - devstack - 20170117-0004

	Ubuntu 14.04 - docker - 20170117-0003

	Ubuntu 14.04 - gbp - 20170117-0042

	Ubuntu 14.04 - gbp - 20170210-0536

	Ubuntu 14.04 - gbp - 20170706-1254

	Ubuntu 14.04 - gbp - 20170808-0524

	Ubuntu 14.04 - mininet - 20170117-0003

	Ubuntu 14.04 - mininet - 20170130-0425

	Ubuntu 14.04 - mininet - 20170207-2055

	Ubuntu 14.04 - mininet - 20170210-0439

	Ubuntu 14.04 - mininet - 20170606-0534

	Ubuntu 14.04 - mininet - 20170609-0220

	Ubuntu 14.04 - mininet - 20170611-0950

	Ubuntu 14.04 - mininet - 20170808-0158

	Ubuntu 14.04 - mininet-ovs-2.3 - 20170117-0004

	Ubuntu 14.04 - mininet-ovs-2.5 - 20170117-0004

	Ubuntu 14.04 - mininet-ovs-23 - 20170130-0415

	Ubuntu 14.04 - mininet-ovs-23 - 20170130-0425

	Ubuntu 14.04 - mininet-ovs-23 - 20170210-0414

	Ubuntu 14.04 - mininet-ovs-25 - 20170130-0414

	Ubuntu 14.04 - mininet-ovs-25 - 20170130-0425

	Ubuntu 14.04 - mininet-ovs-25 - 20170210-0300

	Ubuntu 14.04 LTS Trusty Tahr (cloudimg)

	Ubuntu 16.04 - gbp - 20170308-0321

	Ubuntu 16.04 - mininet-ovs-25 - 20170308-0230

	Ubuntu 16.04 - mininet-ovs-25 - 20170516-0740

	Ubuntu 16.04 - mininet-ovs-25 - 20170606-0534

	Ubuntu 16.04 - mininet-ovs-25 - 20170609-0221

	Ubuntu 16.04 - mininet-ovs-25 - 20170703-2150

	Ubuntu 16.04 - mininet-ovs-25 - 20170808-0158

	Ubuntu 16.04 LTS (2016-05-03 cloudimg)

_images/500px-UdpChannelPipeline.png
Connection Adapter

Pipeline
components

InboundHandler

inbound & Outbound

OutboundHandler

UDP Handler
Switch Conn. Provider

_images/sfc-ovs-architecture-user.png
pure REST (e.g.

Al POSTMAN)
~a e
RESTcon!
Nortbound I
(ODL controller S

Datastore

_images/MPLS_VPN_Service_Diagram.png
‘Customer Site 72

Customer Site #1

Provider Domain

Customer Ste 73

_images/LinkComputation.png

_images/neutronmapper-gbp-mapping-port.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/pcep-sync-initial.png
PCC PCE

IPCE-triggered Inital State
Isynchronization

Do not sync
Isync triggered

Initial Sync starts

_images/MonitorResponse.png
0VsSDB
SB-Plugin

Configuration
Service

6. Notify Monitor Response
to listeners

Inventory 5. Monitor Response cached
Service

] 4. Monitor Response PoJO

3. Response mapping

ovsdb pojo mapper | response.id -> Monitor

Response POJO

I 2. demarshaled Json Object

json-rpc library

1. Monitor Response message from the
ovsdb-server for an earlier monitor request

host1 : ovsdb-server

_images/pcep-sync-incremental.png
PCC

Do sync
Delia

Delta Sync starts

PCRpt, DBV=46, SYNC=1:
PCRpt, DBV=46, SYNC=0:

PCRpt, DBV=47, SYNC=0:

PCRpt, DBV=48, SYNC=0:

PCE

[Expect Detta Sync
Do not Purge LSP State

_images/ui-6-wizard.png
Access model wizard

Tonants
m i
endponnt
s Aga contat

Contracts

subject st

Rule st

_images/TopologyRequestHandler_classesRelationship.png
[1]initialization

!
!
!
!

[1a]initialization

writeNode()
deleteNode(]

-

UnderlayTopologyListener

processCreatedData + [processCreatedchanges(
processUpdatedbata ! [processUpdatedchanges()
processhemovedData ! [processhemovedchanges() 3ddLogicalNods

UpdateLogicalNode

removeLogicalNode

processCreatedchanges()

processCreatedchanges()

processUpdatedchanges(]

processUpdatedchanges(]

processhemovedchanges()

processhemovedchanges()

_images/dlux-yang-ui-screen1.png

_images/one_ODL_architecture.png
6.0.22 6.0.3.100 6.0.44

6.0.3.1 6.0.3.2
vppl vpp2
6.0.21 6.0.41

6.0.3.3

_images/netidearch.jpg
Network Application

module| |module

module module

module| |module

Client Controller Framework 1

Client Controller Framework 2

Backend

Backend

NetIDE Intermediate Protocol

Tools

Core Layer

NetIDE Intermediate Protocol|

Shim layer

Server Controller Framework

Network
Element

Network
Element

Network
Element

auibug ylomaN

_images/Service_Chaining_With_One_Service_LLD.png
Grvcl_D Grvcl_b
— L—
1
FlowFilter: Flow-Filter:
\

B 1 Match: an
Match: cond_1 \ \ y
\

ction: redirect ', Action: redirect

e =)

Tenant2 \é/

£ h22

_images/GBP_ForwardingModel_simple.png
tenant

endpoint

network
container

——

subnetset ——>) network

context

—I#l

12 flood
context

12 bridge
context

sy 12bridge __

13
context

_images/dlux-topology.png
S Topology

Controls

% Topology
Reload

host:06:5:75:3

hosti7a:8b:40:25:¢5:30

opentio:1

host:42:6¢:62:64:08:56

Posti36:1c4a:3:cbiat

host:f2:b3:63:50:28:40

_images/odl-ofp-handshake.png
act handshake J

HELLO
message

received

i [false]

hag version D! P
[false]

lastReceived\Version
eceivedVersion

commaNyversion

lastPpefoseMersion
<ceivedVerghon

[falge]

Ifalfe] ttrde)
Ifaife]

BposecdVRgsion ==
remgreVgréion

get features |<

_images/gerrit_merged.jpg
P ———

_images/sfcofrenderer_architecture.png
SFC OF Renderer Architecture

SFC
Model
SfcOfRspDatalListener
OpenFlow Programming Business Logic
SFC OF
Renderer

SfcOfFlowProgrammerimpl "
implements SfcOpenFlowUtils
sfcOfFlowProgrammerinterface

SouthBound OpenFlow

_images/sf-selection-arch.png
Random Round-Robin Load-Balance Shortest-Path 3"’—Parly

Algorithm Algorithm Algorithm Algorithm Algorithm

_images/pcep-delegation-return.png
PCC

PCRpt, Delegate=1:

PCUpd, Délegate=

PCRpL, Delegate=0:

PCE

LSP delegated

Delegation retured

No delegation for LSP

_images/pcep.png
MPLS network

_images/Service_Chaining_With_One_Service_Verification.png
h12

el I l Service2

h22

h23

_images/bgp-pipeline.png
‘OpenDaylight BGP

@_WM preEn H;;:;;%E"ecmm%g;gg‘;h Loom Oy agreou upwg@

_images/Creare_Network_Step_1.png
OpenDaylight Diux.

192.168.64.2

Create Network

Swrete suone

Network Name:
enworic Name: From here you can create a

[wn In addition a sut
created inthe next panel,

Admin State:

_images/ui-4-governanceview-delivered-1-subject.png
- _Subject detail

Click to view rule info

_images/ui-4-governanceview-delivered-2-epg.png
Epg st

oneP_group

Endpoint group
detail

Click to view info

_images/snmp4sdn_in_odl_architecture1.jpg
BERTVEI R E RN RLIRE Proposed MD-SAL API

vendor-specific
interfaces

Ethernet switches

_images/ofoverlay-1-components.png
‘Group Based Policy Neutron AP!

> Dota Change Notification
— Dot store write
——> Arcy/Notfications

_images/BGP_HA.png
OpenDaylight 3-node cluster

OpenDaylight Node-1
Stand-by BGP Speaker
Instance

< replcation.

OpenDaylight Node-2
Active BGP Speaker Instance

active session

|——replication—

OpenDaylight Node-3
Stand-by BGP Speaker
Instance

_images/SDNiWrapper.png
SDN Domain

Esst.West
Interface

SO Wrapper

‘OpenDaylignt Controller

Restap!

sse Network Service
Functions

=

SDNiAggregator

1

Network Capabilies

_images/Network_topology_model_flow_diagram.png
(Network-topology.yang |

network-topology node

—_—-

UnderlayTopologyListener |

Underlayltem(item, leafNode, topologyld, nodeld, CorrelationltemEnum.Node)

TopologyOperator

_images/dlux-topology1.png
S Topology

Controls

% Topology
Reload

host:06:5:75:3

hosti7a:8b:40:25:¢5:30

opentio:1

host:42:6¢:62:64:08:56

Posti36:1c4a:3:cbiat

host:f2:b3:63:50:28:40

_images/ui-5-expresssion-1.png
Pollcy expression > Poly.

Tenants st
Choose tenant -
Policy
Choose section
for CRUD operation Tenans
Enapom grouss

- L

]

_images/GBP_Endpoint_EPG_Contract.png
ssh

[Faich:
tep destport 80
drection: in

laction:
allow

[Faich:
tep destport 22
drection: in

laction:
allow

direction: in
laction:
allow

nav.xhtml

 Table of Contents

 		Welcome to the OpenDaylight Handbook!

 		Getting Started Guide

 		Introduction

 		What’s different about OpenDaylight

 		What you’ll find in this guide

 		Overview

 		Who should use this guide?

 		OpenDaylight concepts and tools

 		OpenDaylight Karaf Features

 		AAA

 		ALTO

 		Border Gateway Protocol (including Link-state Distribution (BGP)

 		Border Gateway Monitoring Protocol (BMP)

 		Control and Provisioning of Wireless Access Points (CAPWAP)

 		Controller Shield

 		Device Identification and Driver Management (DIDM)

 		DLUX

 		Fabric as a Service (FaaS)

 		Group Based Policy (GBP)

 		Internet of Things Data Management (IoTDM)

 		Link Aggregation Control Protocol (LACP)

 		Location Identifier Separation Protocol (LISP) Flow Mapping Service (LISP)

 		NEMO

 		NETCONF

 		NetIDE

 		OVSDB-based Network Virtualization Services

 		OpenFlow Configuration Protocol (OF-CONFIG)

 		OpenFlow plugin

 		Path Computation Element Protocol (PCEP)

 		Secure Network Bootstrapping Interface (SNBi)

 		Service Function Chaining (SFC)

 		SNMP Plugin

 		SNMP4SDN

 		Source-Group Tag Exchange Protocol (SXP)

 		Topology Processing Framework

 		Time Series Data Repository (TSDR)

 		Unified Secure Channel (USC)

 		Virtual Tenant Network (VTN)

 		OpenDaylight Experimental Features

 		Network Intent Composition (NIC)

 		UNI Manager Plug-in (Unimgr)

 		YANG-PUBSUB

 		Other features

 		OpFlex

 		Network embedded Experience (NeXt)

 		API

 		Installing OpenDaylight

 		Install OpenDaylight

 		Install the Karaf features

 		Karaf OpenDaylight Features

 		Other OpenDaylight features

 		Experimental OpenDaylight Features

 		Install support for REST APIs

 		Release Notes

 		Target Environment

 		Known Issues and Limitations

 		Major Changes

 		Project Specific Release Notes

 		Boron-SR1 Release Notes

 		Boron-SR2 Release Notes

 		Boron-SR3 Release Notes

 		Boron-SR4 Release Notes

 		Project-Specific Installation Guides

 		Centinel Installation Guide

 		NetVirt Installation Guide

 		OpFlex agent-ovs Install Guide

 		TSDR Installation Guide

 		VTN Installation Guide

 		YANG IDE Installation Guide

 		Common OpenDaylight Features

 		OpenDaylight User Interface (DLUX)

 		Setting Up Clustering

 		Persistence and Backup

 		Running XSQL Console Commands and Queries

 		OpenDaylight Version

 		Security Considerations

 		Overview of OpenDaylight Security

 		OpenDaylight Security Resources

 		Deployment Recommendations

 		Securing OSGi bundles

 		Securing the Karaf container

 		Securing Southbound Plugins

 		Securing OpenDaylight using AAA

 		Security Considerations for Clustering

 		OpenDaylight User Guide

 		Overview

 		OpenDaylight Controller Overview

 		Using the OpenDaylight User Interface (DLUX)

 		Running XSQL Console Commands and Queries

 		Setting Up Clustering

 		Project-specific User Guides

 		ALTO User Guide

 		Authentication, Authorization and Accounting (AAA) Services

 		Atrium User Guide

 		BGP User Guide

 		BGP Monitoring Protocol User Guide

 		CAPWAP User Guide

 		Cardinal: OpenDaylight Monitoring as a Service

 		Centinel User Guide

 		DIDM User Guide

 		Fabric As A Service

 		Genius User Guide

 		Group Based Policy User Guide

 		L2 Switch User Guide

 		Link Aggregation Control Protocol User Guide

 		LISP Flow Mapping User Guide

 		NATApp User Guide

 		NEtwork MOdeling (NEMO)

 		NETCONF User Guide

 		NetIDE User Guide

 		NetVirt User Guide

 		Neutron Service User Guide

 		Network Intent Composition (NIC) User Guide

 		OCP Plugin User Guide

 		ODL-SDNi User Guide

 		OF-CONFIG User Guide

 		OpenFlow Plugin Project User Guide

 		OpFlex agent-ovs User Guide

 		OVSDB User Guide

 		PCEP User Guide

 		PacketCable User Guide

 		Service Function Chaining

 		SNBI User Guide

 		SNMP Plugin User Guide

 		SNMP4SDN User Guide

 		SXP User Guide

 		TSDR User Guide

 		TTP CLI Tools User Guide

 		User Network Interface Manager Plug-in (Unimgr)

 		Unified Secure Channel

 		Usecplugin-AAA User Guide

 		Usecplugin-OpenFlow User Guide

 		Virtual Tenant Network (VTN)

 		YANG IDE User Guide

 		YANG-PUSH

 		OpenDaylight with Openstack Guide

 		Overview

 		Installing OpenStack

 		Installing OpenDaylight

 		OpenStack with NetVirt

 		OpenStack with GroupBasedPolicy

 		Using Groupbasedpolicy's Neutron VPP Mapper

 		OpenStack with Virtual Tenant Network

 		Developer Guide

 		Overview

 		Getting started with Git and Gerrit

 		Pulling and Pushing the Code from the CLI

 		Developing Apps on the OpenDaylight controller

 		Project-specific Developer Guides

 		ALTO Developer Guide

 		Atrium Developer Guide

 		BGP Developer Guide

 		BGP Monitoring Protocol Developer Guide

 		CAPWAP Developer Guide

 		Cardinal: OpenDaylight Monitoring as a Service

 		Controller

 		DIDM Developer Guide

 		Distribution Version reporting

 		DLUX

 		Fabric As A Service

 		Infrautils

 		IoTDM Developer Guide

 		L2Switch Developer Guide

 		LACP Developer Guide

 		LISP Flow Mapping User Guide

 		NATApp Developer Guide

 		NEtwork MOdeling (NEMO)

 		NETCONF Developer Guide

 		Network Intent Composition (NIC) Developer Guide

 		NetIDE Developer Guide

 		NetVirt Developer Guide

 		Neutron Service Developer Guide

 		Neutron Northbound

 		NeXt Developer Guide

 		ODL Parent Developer Guide

 		OCP Plugin Developer Guide

 		ODL-SDNi Developer Guide

 		OF-CONFIG Developer Guide

 		OpenFlow Protocol Library Developer Guide

 		OpenFlow Plugin Project Developer Guide

 		OpFlex agent-ovs Developer Guide

 		OpFlex genie Developer Guide

 		OpFlex libopflex Developer Guide

 		OVSDB Developer Guide

 		PCEP Developer Guide

 		PacketCable Developer Guide

 		Service Function Chaining

 		SNBI Developer Guide

 		SNMP4SDN Developer Guide

 		SXP Developer Guide

 		Topology Processing Framework Developer Guide

 		TTP Model Developer Guide

 		TTP CLI Tools Developer Guide

 		User Network Interface Manager Plug-in (Unimgr) Developer Guide

 		Unified Secure Channel

 		Usecplugin-AAA Developer Guide

 		Usecplugin-OpenFlow Developer Guide

 		Virtual Tenant Network (VTN)

 		YANG Tools Developer Guide

 		YANG-PUSH Developer Guide

 		Gerrit Guide

 		How to push to Gerrit

 		Using ssh to push to Gerrit

 		Using https to push to Gerrit

 		Signing Gerrit Commits

 		Setting up gpg-agent on a Mac

 		Infrastructure Guide

 		Jenkins

 		New Project Quick Start

 		Jenkins Master

 		Build Minions

 		Creating Jenkins Jobs

 		Getting Jenkins Job Builder

 		Installing Jenkins Job Builder

 		Virtual Environments

 		Installing JJB using pip

 		Installing JJB Manually

 		Jenkins Job Templates

 		Maven Properties

 		Jenkins Sandbox

 		Release Workflow

 		Workflow

 		Release Job

 		Integration Testing Guide

 		Documentation Guide

 		Style Guide

 		Formatting Preferences

 		Key terms

 		Common writing style mistakes

 		reStructuredText-based Documentation

 		Directory Structure

 		Documentation Layout and Style

 		Troubleshooting

 		Project Documentation Requirements

 		Submitting Documentation Outlines (M3)

 		Expected Output From Documentation Project

 		Boron Project Documentation Requirements

 		OpenDaylight Release Process Guide

 		Overview

 		Processes

 		Autorelease

 		Project lifecycle

 		Namespaces

 		Branch Cutting

 		Simultaneous Release

 		Spectrometer Documentation

 		Quick Start Guide

 		Setup spectrometer-server

 		Setup spectrometer-web

 		Testing the setup

 		User Guide

 		Spectrometer API Server

 		Spectrometer Web Server

 		Spectrometer Report Tool

 		Project Info Specification

 		Documentation Guide

 		Developer Guide

 		Style Guide

 		Spectrometer Server

 		Spectrometer Web

 		Troubleshooting

 		Rest API

 		Gerrit API

 		Git API

 		Java API Documentation

 		odlparent

 		org.opendaylight.odlparent

 		org.opendaylight.odlparent.featuretest

 		NetVirt Contributor Guide

 		NetVirt Design Specifications

 		Design Specification Template

 		Setup Source-MAC-Address for routed packets to virtual endpoints

_images/ui-3-governanceview-expressed.png
Govamance > rstes potey

e Sxrsse oy
=

S [- =y G =

Oeteres oy

[Ep——

Endpoint groups

v\ e
(ko seect olement (oaa of slected sement f———

_images/Instance_Creation.png
] odi-scvmm:10 (wineuser) - TightVNC Viewer

HED I & ®

Instances - OpenStack x || OpenDaylight Diux.

€« x 192.168.64.20,

3 openstack e

Project Instances

Compute
Instances

Instance Image
Name Name

Displaying 0 tems

Network
Orchestration

Admin

192.168.64.20/project/instances/launch

P
Address

size

Key Availability
Pair Stats Zone

No items to display

Q| Fer

Power
Task State

+ Lggneh nstance

Uptime.

Actions

_images/plugin-design1.jpg
Controller Platform

_images/Get.png
GET restconf/config/M:N

Instanceldentifier
DataSchemaNode
Mountinstance

readConfigurationDatanstant

- StructuredDataToXmlProvider
- StructuredDataTolsonProvider

RESTCONF

Operational
datastore

_images/Load_All_Instances.png
D instances - Openstack x || ¢

c 192.168.64.20,

Instance
Name

Network
Orches

Admin

Image
Name

cirros-
032
X86_64-
uec

cirros-
032
X86_64-
uec

cirros-
032
X86_64-
uec

cirros-

032-

ciros-

1P Address

10111211

10111213

10111212

10111214

size

mLnano
| 64ME
RAM |1
VeRU |
OBytes
Disk

mLnano
| 64ME
RAM |1
veRU |
OBytes
Disk

mLnano
| 64ME
RAM |1
VeRU |
OBytes
Disk

mLnano
| 64MB

RAM |1
VeRU |

OBytes

Disk

mLnano
164ME.

Availability Power
Status Zone state

Spawning

Build Spawning

Spawning

Build

Uptime.

0 minutes,

0 minutes|

0 minutes,

0 minutes,

_images/GBPTerminology2.png
endpoint ... the things they
can talk about,
defined by...
ep-group
contract
subject
rule
..and what they do
classifier | [_action when they hear it.
context
subnet Lg bridge ... what they are
omain listening for....
12 flood
domain

_images/Transaction.jpg
Commit sjuccessful

Validation exception

Commit
configuration

Create

Validated

Configured commit started

Transactiq n aborted Commit unfsuccessful

_images/neutronmapper-gbp-mapping-securitygroup1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/ocpplugin-state-machine.jpg
| tisten/-

R connpced NOtOCP_IND[Hello} & Nygo
Disconnect
Moo Tuo Timeout/Disconney

Disconnection/-

\ oct oty geveyhine e Moo emetin
oo oyl

/

Dischnnection
I

o) —
T e s

_images/ui-2-governanceview.png
Expressed

policy

-
Sewet o

Renderer

configuration

Renderer

state

Soramsnce

[p—

[ET—

Govermance)
Exresedory
Deteres ey

porational consraints

_images/ovsdb-sb-passive-connection.jpg
OVSDB SB Config
Data Store

MD-SAL OVSDB SB

Operational Data
Store

/2) Add OVSDB Node

OVSDB SB Provider

1) OVSDB Node
activelt connects
to ODL Manager

A

3) Query Schemas and
Databases supported
by OVSDB Node

4) Register to Monitor
changes to the OVSDB
tables.

Y

OVSDB server

OVSDB Node

_images/LinkComputationFlowDiagram.png
OverlayTopologyListener Underlay TopologyListeners

TopologyRequestHandler

‘Overlay Nodes initLinkComputation Underlay Links

LinkCalculator

processChanges.

Node Node or Link Link

update storedOverlayNodes. update waitingLinks

(caleulatePossibleLink for each link in waitingLinks |

src found? Ves — set srcFound

srcFound && dstFound?

Yes

waitingLinks -> matchedLinks
write matched link

_images/message_flow.jpg
= Device Management

= Health Check

"health-check-nb" {
"input {
"nodeld": "ocp:MTI-101-666",
“tepLinkMonTimeout': "50"

<megTypeaREQ</msgType>
<msgUiD>80</msgUib>
<fhesder>
- Zbody>
“healthCheckiea>
tcpinkMonTimeout>50</tepLinkMonTimeout>
</heahCheckReas
<foodys
</msg>

OCP Service
OCP Plugin/Library

<2l version:

Sl o tsi.ora/ri/002-2/vA 11>

" eheaders
migType>RESP</msqType>
<msgUID>80</msgUID>

<fheader>
- Zhody>
<heatthcheckesp>
<resuli> SUCCESS < resit>
</healthCheckResp>
</oody>
</msg>

_images/VTN_Flow_Filter.jpg

_images/High-levelBerylliumArchitectureEvolution2.png
NFV

Application

reteont (2

0 feeon

— reteont
reteont

WPLS

_images/l2switch-address-observations.png
|€ = € [10.194.126.91:8080/restconf/ operational /opendaylight-inventory:nodes/node/openflow: 1/node-connector/openflow:1: 1
i Apps @ CEC [Floorplans s CiscoMac itk Rally (G Jenkins g LabMan [oAuthsigCheck (i Quad (IINOSTG [Leaning [Chr o

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<node-connector xmlns="urn:opendaylight:inventory”>
v<portstat: flow-capable-node-connector-statistics xmlns:portstat="urn:opendaylight:port:statistics">
<transmit-errors xmlns="urn:opendaylight:port:statistics">0</transmit-errors>
v<portstat:bytes>
<received xmlns="urn:opendaylight:port:statistics">784</received>
<transmitted xmlns="urn:opendaylight:port:statistics'>2475</transmitted>
</portstatbytes>
‘urn:opendaylight :port:statistics">0</transmit-drops>
‘urn:opendaylight :port:statistics">0</receive-crc-error>
pendaylight :port:statistics">0</collision-count>
‘urn:opendaylight :port:statistics">0</receive-frame-error>
ve<portstat:packets>
<received xmlns="urn:opendaylight:port:statistics">12</received>
<transmitted xmlns="urn:opendaylight:port:statistics'>20</transmitted>
</portstat:packets>
v<portstat:duration>
“<nanosecond xmlns="urn:opendaylight:port:statistics">229000000</nanosecond>

<second xmlns="urn:opendaylight:port:statistics">49</second>
</portstat:duration>
<receive-drops xmlns="urn:opendaylight:port:statistics">0</receive-drops>
<receive-over-run-error xmlns="urn:opendaylight:port:statistics">0</receive-over-run.
<receive-errors xmlns="urn:opendaylight:port:statistics">0</receive-errors>
</portstat: flow-capable-node-connector-statistics>
<id>openflow:1:1</id>

“urn:opendaylight :£low: inventory”>0</maxinum-speed>
“urn:opendaylight :flow:inventory”>10000000</current -
+£1ownode="urn:opendaylight: flow: inventory”>

_images/Service_Chaining_With_One_Service.png
h12

el I l Service2

h22

h23

_images/gerrit_code_review.jpg
PR ——

ez

[m—
[Tt o]

_images/Pathmap.png

_images/l2switch-hosts.png
€ - C [} 10.194.126.91:8080/restconf/operational /network-topology:network-topology/topology/flow:1/
i Apps [CEC [Floorplans ik CiscoMac

Raly G Jenkins g Labvan [} oMuthsigCheck (3] Quad (I NOSTG

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<topology xmlng="urn:TBD:params:xmlins:yang:network-topology”>
<topology-id>£flow:1</topology-id>
v<node>
v<host-track:attachnent-points xmlns:host-track="urn:opendaylight :host-tracker">
<tp-id xmlns="urn:opendaylight:host-tracker">openflow:2:1</tp-id>

host-tracks"urn:opendaylight :host-tracker">
pendaylight :host-tracker">e6:42:3£:4b:80:5d</mac>
cen xmlns="urn:opendaylight :host-tracker">1408583775527</ first-seen>
<ip xmlns="urn:opendaylight:host-tracker">10.0.0.2</ip>

<id xmlns="urn:opendaylight:host-tracker">1</id>

<last-seen xmlns="urn:opendaylight:host-tracker">1408583780536</last-seen>
</host-track:addresses>
<id xmlns="urn:opendaylight:host-tracker">e6:42:3£:4b:80:5d</id>
<node-id>host:e6:42:3£:4b:80:5d</node-id>

</node>
> <node>. . .</node>
» <node>. . .</node>
v<node>

<inventory-node-ref xmlns:wxtj="urn:opendaylight:inventory’ xmlns="urn:opendaylight:model:top
<node-id>opentlow: 1</node-id>
</node>
v<link>
v<destination>
<dest-tp>openflow:1:2</dest-tp>
<dest-node>opentlow: 1</dest-node>
</destination>
<source-node>openflow:2</source-node>
<source-tp>openflow:2:2</source-tp>
</source>
<link-id>openflow:2:2</link-id>
</link>
»<link>...</link>
</topology>

_images/dlux-yang-api-specification1.png

_images/ttp-screen1-basic-auth.png
806
POSTMAN

History Collections

& o .gemh OAuth1.0 | OAWth2.0 | @ Noenvionment~

Nothing in your history yet. You can automatically

Clserame_aomin > te
save and access your sent requests here. -

- The authorization header willbe generated

and added as 2 custom header.

@ URL params (| @ Headers (1)

Sntent-Type application/ison Add preset~ Manage presets
Header

Value &
9

form-data x'www'lcrmrurlenccdmary J50N (application/json) +
{

[
“This TTP is not published for use by ONF. It is an example and for"
“illustrative purposes only.”,
“If this TTP were published for use it would include”,
“guidance as to any security considerations in this doc member."

authority”: “org.opennetworking. fawg",

B oo oo T

Add to collection

Type to filter

_images/dlux-yang-topology.png
=} Yangul

SR

opentiows

_images/Create_Network_Step_2.png
OpenDaylight Diux.

192.168.64.2

Create Network

a subnet a
@ cified. If

Subnet Name:

tnl-subnet

Network Addr,

1P Version: *

P

Gateway IP:

sable Gateway:

_images/pcep-sync-skipped.png
PCC

skip sync

PCRpt, DBV=43, SYNC=0:

PCRpt, DBV=44, SYNC=0:

PCRpt, DBV=45, SYNC=0:

PCE

_images/yang-model-api.png
<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Enumeration>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Interface>>

<<Java Class>>

©Modulelmport ©Deviation © ConstraintDefinition O status ©UsesNode © SchemaContextListener ©RevisionAwareXPath © SchemaContextProvider | ©NamespaceRevisionAware © SchemaContextHolder ©DocumentedNode © ConstraintMetaDefinition @SchemaPath
org.opendaylight yangtools yang model 3| org opendaylightyangtools yang model.api org opendaylightyangools yang model.api | org opendaylightyangtools yang modslaj_org opendaylightyangtools yang model.api org opendaylightyangtools yang model.api | org.opendaylightyangtools yang model ap] org opendaylight yangtools yang. model ap{ org opendaylight yangtools yang model.ap| org opendaylight yangtools yang model api brg opendaylightyangtools yang model af org opendaylightyangtools yang model api org opendaylightyangtools yang model.api
o getModuleName()-String o getTargetPath(): SchemaPath ‘getWhenCondition() RevisionAwareXPath | * CURRENT: Status © getGroupingPath():SchemaPath © onGlobalContextUpdated(SchemaContext)voi{ isAbsolute():boolean © getSchemaContext():SchemaContext| © getNamespace():URI © getSchemaContext() SchemaContgss. [o getDescription() String o getDescription() String “fLEGACYPATH_UPDATER: AtomicReferenceFieldUpdater<SchemaPath ImmutableList>
© getRevision(:Date © getDeviate() Deviate getMustConstraints () Set<MustDefintions| */ DEPRECATED: Status © getAugmentations () Set<AugmentationSchema> © toSting() String © getRevision() Date ‘© getReference():String © getErorAppTag():String gname: QName
© getPrefix():String o getReference():String isMandatory()-boolean % OBSOLETE: Status © isAugmenting()-boolean © getStatus():Status © getErmorMessage():Sting hash: int
o getUnknownSchemalodes() List<UnknownSchemaNlode> [o getMinElements() Integer &Status() o isAddedByUses() boolean © getReference():String © legacyPath: ImmutableList<QName>
© getMaxElements() Integer © getRefines(): Map<SchemaPath, SchemaNode> ' getLegacyPath() ImmutableList<QName>
© getPath) List<QName>
<SchemaPath(SchemaPath QName)
e L e
create(boolean,QName[]):SchemaPath
oreatelnstance(SchemaPath, QName):SchemaPath
B © createChild(terable<QName>):SchemaPath
© SchemaNode © createChild(SchemaPath):SchemaPath
TS T T R T o createChild(QName) SchemaPath
© getPathFromRoot() ferable<QName>
© getQName()QName © getPathTowardsRoot{:Hterable<QName>
© getPath(): SchemaPath © getParent():SchemaPath
© getUnknownSchemaNlodes)-List<UnknownSchemaNode> e T
isAbsolute():boolean
hashCode()int +SAME
© equals(Object) boolean ent
toString():String T
© addToStringAttributes(ToStringHelper) ToStringHelper ‘jn |
<<Java Enumeration>> <<Java Interface>> <<Java Class>> <<Java Class>>
©Deviate ©MustDefinition ©AbsoluteSchemaPath ©RelativeSchemaPath
org.opendaylight yangtools yang model.api org opendaylightyanglools yang model.api | org opendaylightyangtools yang model api org opendaylightyangtools yang model.api
S/NOT_SUPPORTED: Deviate © getXpath() RevisionAwareXPath ‘AbsoluteSchemaPath(SchemaPath,QName) | &¥RelativeSchemaPath(SchemaPath, QName)
S/ADD: Deviate 3 isAbsolute()boolean o isAbsolute()boolean
SREPLACE: Deviate © createlnstance(SchemaPath, QName):SchemaPa o createlnstance(SchemaPath,QName)-SchemaPath
SDELETE: Deviate
& Deviate()
<<Java Interface>>
<<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> ©DataNodeContainer <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>>
©RpeDefinition ©UnknownSchemaNode ©ExtensionDefinition ©ldentitySchemaNode ©FeatureDefinition © TypeDefinition<T> e ©AugmentationTarget ©DataSchemaNode ©Moduleldentifier © SourceStreamAware
org.opendaylight yangtools yang model.api org opendaylightyangtools yang model.api | org opendaylightyangtools yang model.aj _org opendaylightyanglools yang model.api | org opendaylightyangtools yang model af org opendaylightyangtools yang model org opendaylightyangtools yang model.api org opendayligntyangtools yang mode.api org opendayligntyangtools yang model.a{ org opendaylight yangtools yang model.api
© getTypeDefintions()-Set<TypeDefinition<?>> \getNodeType()-QName © getArgument()String © getBaseldentity() IdentitySchemaNlode © getBaseType() . mﬁm’;’:gﬂé&ﬁj‘gﬁ;ﬁzﬂﬁ;e © getAvailableAugmentations():Set<AugmentationSchema> © isAugmenting()-boolean © getQNameModule()QNameModule | © getModuleSourcePath()String
© getGroupings():Set<GroupingDefiition> © YetNodeParameter()String o isYinElement()boolean © getDerivedldentities():Set<ldentitySchemaNiode> © getUnits():String © getGroupings()-Set<GroupingDefntion> © isAddedByUses()boolean © getName():String
© getinput()-ContainerSchemaNode © i3AddedByUses()-boolean © getDefaultVal o getDataChidByName(QName) DataScl o isConfiguration()-boolean © getNamespace()URI
© getOutput() ContainerSchemaiode © gé{ExtensionDefinition() ExtensionDefinition o getDataChidByName(String © getConstraints () ConstraintDefinition © getRevision()-Date
© getUses() Set<Uses|
<<Java Interface>> Z<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> <<Java Interface>> B e>> <<Java Interface>> <<Java Interface> <<Java Interface>> <<Java Interface>>
© GroupingDefinition ©NotificationDefinition © ContainerSchemaNode ©ListSchemaNode © ChoiceCaseNode ©ChoiceNode ©LeafSchemaNode ©DerivableSchemaNode ©LeafListSchemaNode ©Module

org opendaylight yangtools yang.model.api

© isAddedByUses()boolean

<<Java Interface>>
©AugmentationSchema
org.opendaylight yangtools.yang.model.api

© getDescription() String
© getReference() String
© getStatus) Status

© getWhenCondition() RevisionAwareXPath

© getTargetPath() SchemaPath
© getUnknownSchemaNodes() List<UnknownSchemaNlode>
© getOriginalDefinition()-Optional<AugmentationSchema>

org opendaylight yangtools yang model.api [g opendaylight yangtools yang model.api [g opendaylight yangtools yang model.

org opendaylight yangtools yang.model.api

org.opendaylight yangtools yang.model.api

9.0pendaylight yangtools yang.model.a

AnyXmISchemaNode
org.openday g model af

org.opendaylight yangtools yang.model.api

org.opendaylight yangtools yang.model.api

org.opendaylight yangtools yang.model.api

<<Java Interface>>
@ SchemaContext

org.opendaylight yangtools yang.model.api

SFNAME: QName

© getDataDefinitions() Set<DataSchemaNode>

© gethodules():Set<Module>

© getatifications() Set<NotificationDefinition>

© getOperations():Set<RpcDefinition>
© getExtensions():Set<ExtensionDefinition>
© findModuleByName(String Date)- Module

© findModuleByNamespace(URI) Set<Module>

© findModuleByNamespaceAndRevision(UR| Date) Module
© gethoduleSource(Moduleldentifier)-Optional<String>

© getAllModuleldentifiers() Set<Moduleldentier>

© isPresenceContainer()-boolean ‘getKeyDefinition() List<QName> "© getCases() Set<ChoiceCaseNode> ‘getType() TypeDefinition<?> {[© eetorigine#:Qptional<? extends SchemaNode] o getType() TypeDefinition<? extends TypeDefinition<?>> | getPrefix() String
® isUserOrdered() boolean © getCaseNodeByName(QName) ChoiceCaseNode p getDefault()-String @ isUserOrdered() boolean ‘getYangVersion() String

© getCaseNodeByName(String) ChoiceCaseNode p getUnits()-String ® getDescription()-String

@ getDefaultCase() String @ getReference() String
@ getOrganization() String
@ getContact() String
© getimports() Set<Modulelmport>
@ getSubmodules() Set<Module>

© getFeatures() Set<FeatureDefinition>

© getatifications() Set<NotificationDefinition>

© getAugmentations() Set<AugmentationSchema>

© getRpcs() Set<RpcDefnition>

© getDeviations() Set<Deviation>

© getidentities() Set<IdentitySchemaNode>

© getExtensionSchemaNodes() List<ExtensionDefinition>

© getUnknownSchemaNodes() List<UnknownSchemaNlode>
© getSource() String

_images/pcep-revoke-delegation.png
PCC

1. Orphan LSP Status
Report sent

4.LSP delegation
configrmed

PCE

2. PCE decides to take
control of the LSP

3. PCinitate message sent
toPCC

_images/neutronmapper-gbp-mapping-router.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/pcep-plugin.png
"
: 4
LSP operations

H ReadLsPs

v H

OpenDaylight

_images/snmp4sdn_in_odl_architecture.jpg
BERTVEI R E RN RLIRE Proposed MD-SAL API

vendor-specific
interfaces

Ethernet switches

_images/ofoverlay-3-flowpipeline.png

_images/neutronmapper-gbp-mapping-port1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/GBP_Endpoint_EPG_Forwarding.png
L3 Context:
Finance

_static/comment-close.png

_images/RESTClient-snapshot.png
Fie - Authentication - Headers ~ View Favorie Requests - Settng RESTClient

[-] Request

Method | pUT v | URL | ocalhost 8181/restconflconfig/senice-function-scheduler-typesenvice-function-schedulertypes/| % v SEN

Headers i Remove A1

Content-Type: appicationison

Body

{ <
"senicefunction-schedulertypes™
“senicefunction-schedulertype™ [

“name" "random”,
‘senice-function-schedulertype:random”,

“roundrobin’”, a
"senice-function-schedulertype:round-robin”,

_images/gerrit-update-create-reference.png
Reference: refsiheads/stable/carbon
Create Reference
Release Engineering Team

Exclusive

_static/odl.png

_images/Instance_ping.png
ifconfig
e tho Link encap:Ethernet HWaddr FA:16:3E:OE:8A:89
inet addr:10.11.12.11 Bcast:10.11.12.255 Mask:255.
Network inet6 addr: feBO::f816:3eff :fede:BaBI/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:l
RX packets:112 errors:© dropped:20 overruns:® frame:
TX packets:20 errors:0 dropped:0 overruns:@ carrier:
collisions:0 txqueuelen:1000
RX bytes:13768 (13.3 KiB) TX bytes:2112 (2.0 KiB)

Orchestration

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1,128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:© errors:0 dropped:® overruns:@ frame:0
TX packets:O errors:@ dropped:® overruns:® carrier:0
collisions:0 txqueuelen:0

RX bytes:® (6.0 B) TX bytes:0 (0.0 B)

s ping 10.11.12.10
JFING 10.11.12.16 (16.11.12.10): 56 data bytes
b4 bytes from 10.11.12.11
b4 bytes fromg10.11.12. 11
b4 bytes from’$0.11.12. 11

_images/sfc-1-topology.png
| ovsaspnose

() docker container | GBPEGP "clent”

BP £GP v
O servicofuncton

_images/ovsdb-sb-config-crud.jpg
1) Make changes. E.g.

- Add a bridge to an OVSDB Node

- Add a port to bridge

- Set attributes of OVSDB Node, Bridge, etc.

Y
MD-SAL OVSDB SB
OVSDBSB Contle Operational Data
Data Store S
2) Data Changes 5) Map changes in OVSPB to
Operational MD-SAL nofles

OVSDB SB Provider

3) OVSDB transaction
to update the OVSDB
tables as appropriate
to the changes made
in the Config MD-SAL

%
4) OVSDB update
message indicates
changes that have
occurred in the OVSDB
tables
V.
OVSDB server

OVSDB Node

_images/dlux-login2.png
€« C fi | localhost:8181/dlux/index.html#/node/index

™ Gmail - Decent Pro: Create UML diagrarr L.l Imported From Fire Other Bookmarks
. SEN
¥ DAY LIGHT =i Nodes
& Nodkg;

openflow:6
openflow:7
openflow:4
openflow:5
openflow:2

openflow:3

openflow:1

localhost:8181 /dlux/index.htmi#/node/index

_static/comment-bright.png

_images/configuration.jpg
Validation

Create Commit

Proposed Validated

Unsucpessful
validhtion

_images/neutronmapper-gbp-mapping-subnet-example.png
has parent

has parent

has parent

Neutron entities Group Based Policy entities

_images/flow_filter_example.png

_images/RIB.png
cmpbgp J

DCN: DataChangeNotification

Import Policy

EffectiveRibInWriter

BI: Binding-Independent 7 -
i 1
DCN | BI |
. :
! Datastore] g]
g Vi
InboundBGPPeer |- _--___-. AdRibln : Datastore EffectiveRibln : Datastore |- -
Notification
LocRib : Datastore |<7
OutboundBGPPeer k- - - g AdRIbOUE ; Datastore -
DCN

LocRibWriter

Export
Policy

_images/VTN_Construction.jpg
VTN1
VRT

BR1 BR2
Q vBridge vBridge interface
. VRouter interface

vLink

a VRouter

_images/ui-5-expresssion-2.png
ndpoint groups

CRUD Buttons

0a875417.1833 4086 8221 1808535405

Descryon

Inra group oty

_images/Library_lifecycle.png
SwitchConnectionProvider

[configure(Collection <ConnectionConfiguration>) |

setSwitchConnectionHandler()

i
E

—
Tcp Handlerw

—

] accept() - false
7] accept() - true

TLS Detector

3 e TLS Handler
"{8] onSwitchConnected(ConnectionFacade)
R e OF Frame Decoder

OF Version Detector
OF Decoder
OF Encoder
Delegating Inbound Handler

[9] set system, message
and connectionReady listener

N

Connection Adapter

_images/Mininet_Configuration.png
—

srvcl

mininet

L]

__206msdelay 300msdefay—

srvc2

_—

—

_images/form_details.jpg
Home > |dentity > Sign-up > User name/Password

Sign-up with User Name/Password

User Registration

Re-type Password*

Full Name *

First Name *

Last Name *

Organization

Address

Country

Email *

_images/dlux-yang-sub-api-screen1.png
of st element key

—

O ficid which mokes key of st element

_images/Inventory_Rendering_Use_case.png
module opendaylight-topology-inventory

{(Network Topology
>

— Topology

topology-id
[— node

— supporting-node

| — node-connector

id

name

hardware-address
current-speed
maximum-speed

manufacturer

hardware

software

serial-number

description

ip-address

—~
X,

S O e S

module inventory-rendering

L

twork Topology |

—Topology

topology 14 1]

= node H

=M node-id J

— supporting-node |

| termination-point |H

tp-id

tp-ref

tp-augmentation

name H

S hardware-a

ddress H

current-speed

—~

maximum-speed |

node-augmentation |H

manufacturer

hardware

software

serial-number

description

ip-address

_images/dlux-yang-sub-api-screen.png
of st element key

—

O ficid which mokes key of st element

_images/dlux-yang-list-warning1.png

_images/plugin-design.jpg
Controller Platform

_images/pcep-update.png
PcC PCE

1.LSP State PCRpt, Delegate=1
Synchronization R
: 2. PCE decides to
: update the LSP
PCUpd message 3. PCUpd message sent
topCC
4.LSP Status Report PCRpt messag

sent (Going-up)

5. LSP Status Report PCRp! messag:
sent (Up | Down)

_images/Gerrit_settings.jpg
1 LINUX FOUNDATION COLLABORATIVE PROJECTS

OPEN
DAY LIGHT

Al My Projects People Documentation [cnange # sHa-1. trid or owneremai e

Changes Drafts Draft Comments Watched Changes Starred Changes Moitrayee Borah -
R

DA

Account signup / management | Bugzilla | Jenkins | Sonar | Nexus | Wiki | Mailing lists | Forums (Askbot) | Etherpad | Sign-off Rules

Moitrayee Borah
My Reviews mborah@Brocade.com

Settings Sign Out
Subject Status Owner Project Branch

Outgoing reviews
(None)

_images/odl-ofp-session-establishment.jpg
OpenFlowjava

Connection Manager

RPC Manager RPC Broker

| 1: onSwitchConnected()() gy
M L1 new() >| Connection Context
1.1.1: OFPT HELLOQ
'k f 7777777777 i
,,,,,,,,,,,,, |
2: OFPT_HELLOQ)
i L
2.1: OFPT_FEATURES REQUEST()
e e T
3: OFPT_FATURES REPLY() N
o TTETET e
4: deviceConnected() I
» i 4.1: newTransactionChain() ;
3 > <<create>>
<<create>> . |fTansactionChain |k ———____________________ AW
4.3: OFPMP_DESC()() el
Het bescoo 1L e I U
,,,,,,,,,,,,,,,,,,,,,,,, e st s s s s |
4.2.1: createDeviceFegt{iresForOF <sufix>()
4.2.1.1: OFPMP| TABLE() f z
7 e e [
M b/ currently suffix is
At this point we x 5 -
continue processing We fopen éh‘s a3 -13
notifications coming neeaed Lo giscover
it Sta?cho(kzjebc‘ts onthe
swicigepe oo Sk £ || e (o
puting them nto the meter features, port <
i description). Sending
Imultiple requests in
e do ot ot paralelisanopton. | |]
| |
5. OFPT_MULTIPART REPLY() |
5.1: callback() ‘ |
T » 1 5.1.1: onDeviceCtxLevelUp(deviceContex) P
as needed to <<create>>
clscoven oy L __5LLlinew _ _ _ 5] stats Context
objects on the switch
(groups, meters,
flows etc.) | S
Y . i o 5.1.1.2: sendMessage(requestContext, msg)
\ sehiiMessage!
5.1.1.2.1.1: ofp_aggredjaté stats request() T 7777777777 1
|
a0 0 Hh—_— >
emsmsmsmsne pem s ns s s s s e s s s e e e e B R R R e
6: ofp_aggregate stits reply()
P 6.1: onMeEsage() > |
e e e e e e e] 1 6.1.1: onMessage() | Nl
! 6.1.1.1: put()
6.1.1.2: stateSynchronized() !
|
|
|
|
6.1.1.2.1: onDeviceContextLelelUp(deviceContext) <<create>>
; RPC Context
} 6.1.1.2.1)1.1: register()
| | A A | R | o S—— gl
D‘ 6.1.1.2.12 or\Dev\ceConte><tLeve\Up(de‘v\ceContext) | Eemmm—————
. T
|
| PSR T | e ———— T .
6.1.1.2(2: inftiaiSubmitTransaction()
| bi
e
6.1.1.2.3: commit) T
.
6.1.1.2.3.1: submit(J]
T
j
h
i i S S S S S T '
U | !
|
| T)
e e T | | !
e e e e S e S S T I I I
Ll | | | [At this point the
‘ | | | switch s fully
| | controlled, stats
| | | | | manager polls
| | | | | statistics and users
| | | | can request things
| | i | | via RPCs
|
| | | | |

_images/sb-rest-architecture.png
reate/Update/Delete MD-SAL SBREST
DataObject > Datastore listeners
new SbRest Task(
RestOperation, DataObject, ExecutorService)

‘

SBREST
json exporters

lsupporting REST API

SBREST
e]
tasks JSON representation
‘ of DataObject
POSTRUTDELETE
JSON
5B Devices

_images/Redirect_flow.png

_images/Launch_Instance.png
OpenDaylight Diux.

192.168.64.2

Launch Instance

Availability Zone:
Y hing an i

nova by this pr

in relation to the project's quot;
Instance Name: *
Flavor Details
t
Name mLnan

Flavor: * vepUs 1
mnar Root Disk 0
Instance Count: * Ephemeral Disk

10 Total Disk

RAM
Instance Boot Source: *

ot from imag Project Limits
Number of Instances.
Image Name: L]
Number of VCPUs

Total RAM

_images/ui-5-expresssion-4.png
Config
Topology.

Topapsy typ

_images/VTN_Overview.jpg
Virtual Tenant
Network (VTN)

111

_images/odl-neutron-service-developer-architecture.png
admin/user requests on neutron resource

l OpenStack Neutron REST API

New
extension

OpenStack Neutron

/ Neutron REST API OpenDayLight

OpenDaylight YANG-modeled RESTCONF

U -

MD-SAL: Neutron Service model
new extenslon

New provider
provider for
new extension

A

_images/karaf-webui-select-a-type.png
Enter unique path name:

Select a schedule type:

_images/neutronmapper-gbp-mapping-subnet1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

port

é#é}.éﬂ

_images/pinentry-mac.png
Pinentry Mac

You need a passphrase to unlock the secret key for user:
"Colin Dixon <colin@colindixon.com>"
4096-bit RSA key, ID F566C9B1, created 2015-04-06

() Show typing () Save in Keychain Cancel [oK]

_images/Instance_Console.png
“cirros’ user. default password: ’cubswini)’. use 'sudo’ for root.
est-d3adf d40-£286-422f -b124-94397cfcd179 login: cirros

Network

ifconfig
e tho Link encap:Ethernet HWaddr FA:16:3E:OE:8A:89
inet addr:10.11.12.11 Beast:10.11.12.255 Mask:255.255.255.0
inet6 addr: feBO::f816:3eff :fede:BaBI/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:l
RX packets:112 errors:© dropped:20 overruns:® frame:

Orchestration

TX packets:20 errors:0 dropped:0 overruns:@ carrier:
collisions:0 txqueuelen:1000
RX bytes:13768 (13.3 KiB) TX bytes:2112 (2.0 KiB)

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1,128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:l

RX packets:0 errors:0 dropped:® overruns:0 frame:0
TX packets:0 errors:0 dropped:® overruns:0 carrier:@
collisions:0 txqueuelen:@

RX bytes:® (0.0 B) TX bytes:® (0.0 B)

_images/dlux-yang-api-specification.png

_images/GBP_High-levelBerylliumArchitecture.png
OpenStack
Neutron V2.0 API

(=] S

o @

HIERERE

_images/OpenStack_Demo_Picture.png
OpenStack Control Node

OpenDaylight Controller

OpenStack Compute Node

_images/dlux-with-switches.png
OpenDaylight Dlux x || Login - OpenStack Dashbc x /[OpenDaylight Diux
() OpenDayiigt gin - Op () OpenDayiigt

& *® @G [10.3.8.209:8181/dlux/index.htmi/topology|

OPEN

S Topology

Controls

R

-

openflow 41913073631822

openflow 9923240777543

(|

Host

=

openflow:38315752453967

b

Dl

ol

]

_images/BGP_HA_failure.png
OpenDaylight 3-node cluster

OpenDaylight Node-1 OpenDaylight Node-3
Stand-by BGP Speaker Stand-by BGP Speaker
Instance Instance

BGP router

_images/Inventory_model_listener_diagram.png
Network-topology.yang

network-topology node

Opendaylight-inventory.yang

UnderlayTopologyListener inventory node

InventoryListener

Underlayltem(item, null, topologyld, nodeld, CorrelationItemEnura:Node)
Underlayltem (nuli; leafNode, topologyld, null, CorrelationltemEnum.Node)

NotificationInterConnector

Underlayitem(item, leafNode, topologyld, nodeld, CorrelationltemEnum.Node)

—y
| TopologyOperator \

_images/gerrit-update-committer-rights.png
Reference: [refsheads/stable/<release-name>

elease Engineering Team

A o
Label Code-Review
[ERa elease Engineering Team

Add Growp

Submit
Registered Users

Release Engineering Team
Ada Gro

O excusive

O excusive

O excusive

XXX XX XX X

_images/Create_Network_Step_3.png
OpenDaylight Diux.

Create Network

B

Enable DHCP:
y additional attribut
v

Allocation Pool
1P address alocation pools. Each enty &

aitstartip_addressag; Gitend_ip_addres;
(¢, 1521681100192 168.1.120) and.
one entry per ine.
DNS Name S

_images/Tenant2.png
@ o,
Tenant2 Pﬁﬁt

_images/OpenStackDeveloperGuide.png
Open Stack Control Node

ML2 DRIVER

Interface Creation Notificatio

Neutron Interface

OVSDBPLUGIN

Open Stack Compute

VTN Manager

OF Interface (OF
Messages)

Port Mapping]
OFPLUGIN

OpenDaylight Controller

Open Stack Compute

_images/gerrit-https-password-setup.png
©0 8 /i cutnge gtopmaongric... x \

e &l-9- ¥

(€) ® @ | nttpsy/git.opendaylight org/gerri/#/settings/to-password
71 LINUX FOUNDATION COLLABORATIVE PROJECTS
OPEN
DAY Ll G HT Account signup / management | Bugzilla | Jenkins | Sonar | Nexus | Wiki | Mailing lists | Forums (Askbot) | E1Wﬂ | Sign-off Rules
Al My Projects People Documentation Searon temn

Changes Drafts Draft Comments Edits Walched Changes Starred Changes Groups.

Settings 2

Profile
Preferences

Diff Preferences
Edit Preferences
Watched Projects
Contact Information

Identiies 3

Groups

.
2013 Opondaygh, AL Fundaton ColaoravePrec AL Fights Fsorved
‘OpenDaylight is a registered trademark of The OpenDaylight Project, Inc. Powered by Gerrit Code Review (2.12.2).
e eiaion o OprDepi s gt P o i e
NI

Linuxis a registered trademark of Linus Torvalds.

_images/OpenStackGui.png
BED I &R aaaa i
B oo - Openstack Da- x

€ > ‘D 192.168.64.20/auth/login/

openstack

e

_images/packetcable-postman.png
POSTMAN i00

s wa

Miine Damo 0VS08 + OF
e e——.
seccane

[E———

R oo v ot
@ overtonmivnstonrosd
[—

D ot st ots

[m—

(R okt cris et e
[T——

R pocknaso s il

G peckioatlooms ow estfor .

[
D ekt s et

(G ecketcaiocms fonovspec kren
"

(I ekttt cisfowspec e
[ocr mm——

Normal ® Noendranment+

[—
et o packacato amis g

e 181 stcoticontopencfignineony sl psietestle st el

e | oo | At 1o ctictin

™ R o EE e

Proty | now pwiow | w | [&F|[J50N

mdsante s cssnoe's (

e

@ UnLpaars

Gresten)

_images/plugin-config.jpg
<modules xmins="urn:opendaylight:params:xml:ns:yang:controller:config">
<1 default OCP-radiohead-connection-provider (port 1033) —->
- <module>
<type xmins:prefix="urn:opendaylight:params:xml:ns:yang:ocp:radiohead:connection:provic

samezocp-radiohead-connection-provider-default-impl</name>
33 </port>

Possible transport-protocol options: TCP, TLS, UDP -->
/transport-protocol>
5000</radioHead-idle-timeout>

</
- <module>
<type xmins:prefix="urn:opendaylight:params:xml:ns:yang:config:
<name>ocp-plugin-provider-impl</name>
- <ocp-radiohead-connection-provider>
<type xmins:ocpRadiohead="urn:opendaylight:params:xml:ns:yang:ocp:radiohead:connec
<name>ocp-radiohead-connection-provider-default</name>
</ocp-radiohead-connection-provider>
- <data-broker>
<type xmins:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
<name>pingpong-binding-data-broker</name>
</data-broker>
- <rpc-registry>
<type xmlins:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
<name>binding-rpc-broker</name>
</rpc-registry>
- <notification-adapter>
<type xmins:bindin
<name>binding-not
</notification-adapter>
- <notification-publish-adapter>
<type xmins:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding:in
<name>binding-notification-publish-adapter</name>
hoadapter>

mpl"> prefix:c

"urn:opendaylight:params:xml:nstyang:controller:md:sal:binding:ir
ation-adapter</name>

<rpc-requests-quota>2000
<global-notification-quotg

</rpc-requests-quota>
64000</global-notification-quota>

- <module>

_images/Dlux_login.png
cH

«2. Nodes

_images/dlux-login1.png

_images/neutronmapper-gbp-mapping-network-example1.png
has parent
has parent

Group Based Policy entities

_images/first_fe_bs.png
2. Registrar binds to
SNBI-RA

1. Provision SNBI-RA
interface

4. First FE attempts to
boots itself

3. Start daemon with
registrar IP

REST App (Domain
Specification)

%uﬂm
Routatie PVB acres:

fd6a:fbea3610:0:4141 3a82:42301

Host Package

5. Creates SNBI-FE
interface and with a
Domain Specific ULA

address.

6. Hello Packets
for Neighbor
discovery

7. IPSEC/GRE tunnels to
validated neighbors

8. Both the SNBI-FE ULA
address and SNBI-RA
address routes are.
advertised over the
tunnels

_images/Single_Controller_Mapping.png

_images/setup_diagram_SCVMM.png
vin
Coordinator

Host 1
192.168.1301

_images/GBP_AccessModel_simple.png
tenant

epgroup [contract
s
characteristic dause |—O>] subject
identifier J: dlassifier
rule
property

action set

_images/vtn_stations.png

_images/ttp-screen3-sent-put.png
6 00 e
POSTMAN

History Collections o Normal | BasicAuth | Digest Auth | OAuth1.0 | OAuth2.0 =~ @ Noenvionment~
[htp//localhost:8181 restconf/config/on http://localhost:818 1/restcont/config/onf-ttp:opendaylight-ttps/ont-ttpitable-type-patterns/ PUT 4| @URLparams | @ Headers(2)
fetpopendaylight ttps/onf-ttp:table-ty...

Content-Type application/json Addpreset~ Manage presets

Authorization Basic YWRtaW46YWRtaW4=

Header Value &

formdata x-www-form-urlencoded raw binary JSON(application/json) v

“table-type-patterns
“table-type-patter
{

"security”: {
“doc’

his TTP is not published for use by ONF. It is an example and for”,
illustrative purposes only.”,

“If this TTP were published for use it would include”,

“guidance as to any security considerations in this doc member."

org.opennetworking. fawg", 2

review Prerequestscript Tests Add to collection m

Sody | Cooies | tenders(s) | Tess | (AT ook [

Pretty Raw Preview

Q g HTMLY Copy

Type to filter «

_images/dlux-yang-list-button1.png
Open vswitch
200

.

button for forwarding and bockwarding
of list elements aome butcons (n row fist

_images/pcep-deletion.png
PCC PCE

1. PCE decides to
Gelete the LSP.

PClnitiate, R=1- 2. PClnitiate message sent
toPCC

3.LSP Status Report PCRp! messag
sent

_images/ui-5-expresssion-3.png

_images/ui-4-governanceview-renderer.png
[Je=—=ren)
O (ctorsvintion) _enan stow

anscrpuon
“

ascription
temquieg
e

anscrpion

e

@ (comsmerarmmon) 1+ omer woe

Click to
select node

Sen the st through a Service Function Chain
688GBT058-4cH Hber-0356004083)

stonunaum

The named chain to mateh against
raureg
stechainname

—
=

Renderer stte

Operational constraints

_images/vtn_devstack_setup.png
Note:
etho/eth1 -> the interface names as
listed in the output of ifconfig

Management N/W: the Network to
[eth1] exchange OF Messages and other
REST interface interations from
OpensStack to ODL.

[etho) Network for VM's: If OpenFlow
switches are used, please add ODL
1P Address as the OpenFlow
Controller IP Address for the Switch.

_images/ODL_lfm_Be_component.jpg
ODL LISPFlowMapping Service

oy B ST

£
7 s
£ | Mapserver 8
< 253
£ gasg
Dl = Map Resolver zZg
[| £ :
| Eroto 4

_images/ttp-screen5-get-xml.png
POSTMAN
History Collections f Normal | BasicAuth | DigestAuth | OAuth1.0 | OAuth2.0 | @ Noenvironment~
(=3 hitpi/localhost:8181 restconf/config/on http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/ GET 4| @URLparams | @ Headers(2)

Fttpiopendaylight-ttps/onf-ttp:table-ty...

[httpiocalhost 181 restconf/configlon Authorization Basic YWRtaW46YWRtaWd= | e

Fttpropendaylight-ttps/onf-ttp:table-ty...

Accept
https//localhost:8181 /restconf/config/on
fetpopendaylight ttps/onf-ttpitable-ty... Header Value [:4

eview Prerequestscript Tests Addto collection m

Sody | Cooies | teaders(3) | Tess | (G o0 e

Pretty Raw Preview Q gk oxML~ Copy
<table-type-patterns xnlns="urn:onf:ttp">
<table-type-pattern>

<security>
<doc> If this TTP were published for use it would include </doc> v table-type-patterns xmins: urn:onf:ttp
<doc> guidance as to any security considerations in this doc member. </doc> v table-type-pattern
<doc> illustrative purposes only. </doc> > security
<doc> This TTP is ot published for use by ONF. It is an example and for </doc> » < NDM_metadata

</security> O

<NM_netadata> O
<type> TTPVL </type> o
<doc> and an ACL table. </doc> 9 ——
<doc> Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast
only), </doc> > meter_table
<authority> org.opennetuorking. faug </authority> > Jable map
<name> 12-13-ACLs </nane> > Qablemap,
<version> 1.8.@ </version> »> table map
<OF _protocol_version> 1.3.3 </0F _protocol_version> > table_map

</NOM_metadata> > table_map

Type tofilter i <identifiers> > table_map

_images/snmp4sdn_modules.jpg
/ SNMP4SDN Plugin \

User—expusmg modules:

Flow configuration

Switch-talking modules:

SNMPListener /

_images/odl-ofp-add-flow.png
sdl User RPC request (sucess))

OpenFlowjava

Statistics Context

Device Context

Callback

T
|
2 comm\tEnt‘ry()

2.1: onMessage(OFPT BARRIER REPLY)

4: createCallback()

r<

<<OFPMP_FLOW>>
7: onMessage()

<<success>>
5: setResult()

6: notification()

Request context SalFlowService RPC Broker User

T T T T
| | | |
| | | 3: invokeRPC() : future |
Il 1 1.1: addFlow() : future

reateRequestContext() | | . _ 5

————————— >

N

_images/plugin_design.jpg
Model Driven SAL fe——r>| Hard SAL

;

Topology

Service

S
g
£
12
a
w
o

Connection and State
Session Manager Manager

Netty.io 4.x

Controller

Switches

OpenFlow 1 OpenFlow 1.3.1

_images/ui-4-governanceview-delivered-0.png
Double-click to
dispay EPG detal

Delivered policy

Rules

_images/Service_Chaining.png
h1

h2

h3

_images/docker_snbi.png
eth0

_images/packetcable-developer-wireshark.png
e EGit View Go Capture Anahze Satatcs Teephony Toots nternal Help

coaANd 2RX2 A¢rs=F2[EF QA FOBL B

B - —

sl e Lo [l (|

T
hmes e iz G mmmmiesy e

T T T —
e — ey e ————r |

Gbject Length 200

Ehim Dciean hpct xcsatond (1 I

i Mo 10 s caion

Tosd e GOTONE (P DeTaaT

_images/ConfigurationService-example1.png
Controller

Network Confi

SAL Service
1. createBridgeDomain(node, brt”,nul)
I 2.node >
OVSDB Configuration| "8l | connection
SB-Plugin | service Service
3, Create

e
| BridgeCort)

ovsdb pojo mapper

4. marshal Bridge
| poio ntojson

json-rpc library

5. json equivalent of
| ovs-vset add-bridge br1

host1 : ovsdb-server

_images/Service_Chaining_With_Two_Services_LLD.png
/srvcl 1 \srvcl D srch D Crvcz D
N/

% t ! vTermina)

FlowFilter: ey

-
M ch cond 1 =—-

_images/odl-ofp-feature-tree.png
odaperdlom plugin-alli

od-operfiom plugin-

edbopenfon uginflom series i

[——

. S
- edboperfionpluginfom-seriesdi

[——

-
adboperfionpusin-apporfgpusherds

odboperfionplugn-app bl-mis-enforr

[——

-

adbopenflonplugin-tmodebi

v
adlaiaal s ———y

[r—

_images/snbi_arch.png
(Openbaight AP J

Base Network Service Functions

o | [t oo | (i
o v |
v | L | (o] | s o] |-
\)
| (x| femn fooe o | (=

Securechamnel, R
automaticsetup
ond addressing

etwrk i T8 | el clpc

Portable Foundation Portable Foundation
Linux Linux
ASIC,X86, ARM, X86,ARM,
Forwarding Element Forwarding Element

(switch/Router) (server)

_images/dlux-yang-list-warning.png

_images/ui-1-basicview.png
GBP

Policy expressi

V]

Governance e e erational constraints

derer configuration

_images/vtn-single-controller-topology-example.png

_images/neutronmapper-gbp-mapping-port-example.png
Subnet

Neutron entities

has parent

has parent

has L3-context

has L2-context

has network containment

Group Based Policy entities

_images/BGP_HA_recovery.png
OpenDaylight 3-node cluster

repication.

5 OpenDaylight Node-3
OpenDaylight Node-1 Stand-by BGP Speaker
Active BGP Speaker Instance Instance

active session

BGP router

_images/pcep-sync.png
PCC

PCRpL.

PCRpL.

PCRpL.

PCRpL.

PCE

sync start

Sync done

_images/signup_image.jpg
Sign-up with User Name / Password

_images/bmp-plugin.png
Monitored Router

_images/host-only-vbox.png
Oracle VM VirtualBox Manager

Snapshots

Mininet-VM - Network

=9 P »

Display Storage Audio Ports Shared Folders

{Adapter 1 |RGEPIEHEN] Adapter 3 | Adapter 4 |

V| Enable Network Adapter

Attached to: [Host-only Adapter _ +

Name:

: [vboxnet0

9 Advanced

Adapter Type: | Intel PRO/1000 MT Server (82545EM)

Promiscuous Mode: [Deny

MAC Address: 080027065EC6

[Cable connected

Port Forwarding

[Cancel |

| Device Filters: 0 (0 active)

_images/dlux-yang-list-button11.png
Open vswitch
200

.

button for forwarding and bockwarding
of list elements aome butcons (n row fist

_images/yang-data-api.png
<<Java Interface>>
©DataContainerChild<K,V>
org opendaylight yangtools yang data api.schema

© getidentifer()

<<Java Interface>>
©NormalizedNode<K,V>
org opendaylight yangtools yang data api.schema

<<Java Interface
©LeafSetEntryN
org.opendaylight yangtools.yang.

© getNodeType()-QName
© getidentifer()
© getValue()

<<Java Interface>>

©NormalizedNodeContainer<l,K,V>
;chema org.opendaylight yangtools.yang.data.api.schema
o getldentifier()-NodeWithValue o getldentifier()
© getValue() S ystalue() terable<V>
© getCRITHK). Optional<V/>

<<Java Interface>> <<Java Interface>> ° Da;z’a“:}e"a‘;‘e: o <<Java Interface>>

@ AnyXmiNode ©LeafNode<T> et °"l 'I"e' le< " O LeafSetNode<T>
org.opendaylightyangtools.yang.data.api.schemal| org.opendaylight yangtools.yang.data.api.schema org-opendaylightyangtools yang A org.opent gtools yang.data.api.schema
= getdentiter) Nodeldentiier o getvauel) © getValue() terable<DataContainerChild<? extends PathArgument }>>
© getValue() Node<?>

org opendaylight yangtools ang data api.schema

<<Java Interface>>

@ ContainerNode

<<Java Interface>>
©MapEntryNode

org opendaylight yangtools yang data api.schema

opendaylight yangtools yang data api schen|

<<Java Interface>>
©UnkeyedListEntryNode

org opendaylight yangtools yang data aphschema

© getldentifier()NodeldentifierWithPredicates

org opendaylight yangtools yang

ema

<<Java Interface>>
©OrderedNodeContainer<V>
org opendaylight yangtools yang data api.schema

© getChild(int)
[S-gatSize()int

<<Java Interface>>

<<Java Interface>>
©AugmentationNode
org.opendaylight yangtools.yang.data.api.schema

© getidentifer()Augmentationidentifier

©OrderedLeafSetNode<T>

org opendaylight yangtools yang data api.schema

<<Java Interface>>
©OrderedMapNode
opendaylight yangtools.yang.data.api.schema

<<Java Interface>>

@UnkeyedListNode
org opendaylight yangtools yang data api.schema

_images/bgp-dependency-tree.png
odI-bgpcep-bgp-all

! odl-mdsal-broker r

,'(odI-bgpcep-bgp-inet \\ odl-protocol-framework | |
\ . < \ v
' , ~ \ -
N SN T
odI-bgpcep-dependencies r

od|-config-api

v

odl-yangtools-models

_images/vtn-coordinator-api-architecture.png
VTN Application (Web Client)
|
Web Server (Apache Tomcat)
Web API Serviet

VTN Service Java API Library

Proprietary IPC Framework

_images/Service_Chaining_With_Two_Services.png
200ms delay 300ms delay

Sgmicel I l Sgyvice2

h22

h12

N

h23

_images/Gerrit_setup.jpg
1 LINUX FOUNDATION COLLABORATIVE PROJECTS

OPEN
DAYLIGHT

Al Projects Documentation

Open Merged Abandoned

Account signup / management

Bugzilla | Jenkins | Sonar | Nexus | Wiki | Mailing lists |

| status-open

_images/dlux-yang-list-elements1.png

_images/neutronmapper-gbp-mapping-network1.png
OPEN

DAYLIGHT

endpoint

ep-group

contract

13
context

]

o
P
<in

_images/neutronmapper-gbp-mapping-subnet.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

port

é#é}.éﬂ

_images/Dlux_topology.png

_images/VTN_Mapping.jpg
Virtual network

VRT

BRI

Rz

OFs2,GBE0R
VLAN 1D=200

Servert e

Servers) seves
oFs3 OFs4

OpenFlow network (physical network)

Legend: €—> Portmapping €—> VLAN mapping () interface

_images/800p_OpenDaylight_Login.jpg
*OPEN
DAYLIGHT

_images/neutronmapper-gbp-mapping-router1.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/ttp-screen2-applied-basic-auth.png
POSTMAN

History Collections f | Normal | BasicAuth | DigestAuth | OAuth1.0 | OAuth2.0 | @ Noenvironment~
Nothing in your history yet. You can automatically

http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/ PUT 4| @URLparams | @ Headers(2)
save and access your sent requests here.

Content-Type application/json

Add preset~ Manage presets

Header

Value &

formdata x-www-form-urlencoded raw binary JSON(application/json) v

“table-type-patterns”: {
“table-type-pattern”: [
{

"security’
“doc”
“This TTP is not published for use by ONF. It is an example and for",
“illustrative purposes only.”,
“If this TTP were published for use it would include”,
“guidance as to any security considerations in this doc member."
]

NoM_netadat:
authority”: "org.opennetuorking. faug",

4
m Preview Prerequestscript Tests Addto collection

Type to filter

_images/Hypervisors.png
] odi-scvmm:10 (wineuser) - TightVNC Viewer

HED I & ®

D Hypervisors - Openstac x L) OpenDaylight Dlux

€« c 192.168.64.20,

£ openstack [mn
= All Hypervisors

Admin Hypervisor Summary

System Panel

VCPU Usage Memory Usage
Used 0 0f 8 Used 1GB of 10GB Used OBytes of 98.0GB

Hypervisors

vepUs

Hostname Type (total)

QEMU

QEMU

Displaying 2 tems

X

Storage
(used) Instances

OBytes

OBytes

_images/neutronmapper-gbp-mapping-securitygroup.png
OPEN
DAYLIGHT

endpoint

ep-group

contract

_images/ocp-sb-plugin.jpg
OPEN

Tase Newo R Seniee Funenans
2oty £ opensack service
Shorest
Topclouy Host 5 Networic
Tracker | coraring | - Comie

Service Abstraction Layer (SAL)
(plug-in mgr., capability absiractions, flow programming,

Southbound Interfaces
ovsos s ecer Wl & Protocol Plugins

DataPlane Elements
‘AdditionalVirtual & Vatuet St

Physi

Controller Piatform

OpenFiow

OpenFlow Enabled

[
2 | Head
1
- - ((3

Physical Device
Interfaces)

_images/ocp-sb-plugin1.jpg
OPEN

Tase Newo R Seniee Funenans
2oty £ opensack service
Shorest
Topclouy Host 5 Networic
Tracker | coraring | - Comie

Service Abstraction Layer (SAL)
(plug-in mgr., capability absiractions, flow programming,

Southbound Interfaces
ovsos s ecer Wl & Protocol Plugins

DataPlane Elements
‘AdditionalVirtual & Vatuet St

Physi

Controller Piatform

OpenFiow

OpenFlow Enabled

[
2 | Head
1
- - ((3

Physical Device
Interfaces)

_images/pcep-initiate.png
PcC PCE

1.LSP State PCRpt, Delegate=1
Synchronization R
: 2.PCE decides to
: niiate the LSP
PCIniate Mmessag 3. PClnitiate message sent
topcc
4.LSP Status Report PCRpt messag

sent (Going-up)

5. LSP Status Report PCRp! messag:
sent (Up | Down)

_images/bgp-app-pipeline.png
‘OpenDaylight BGP

e otepProgammate i sy oo 5o Outrare, (==}
e B AdpRIBIn [— o Seecion LocREB il g

_images/pcep-re-sync.png
PCC PCE

IPCE-tiiggered
[Re-synchronization

Do sync
Isync done

LsP Re-sync triggered

_images/neutronmapper-gbp-mapping-network-example.png
has parent
has parent

Group Based Policy entities

_images/sfc-sf-selection-arch.png
Round
Rand.
.

YANG Model

_images/neutronmapper-gbp-mapping-network.png
OPEN

DAYLIGHT

endpoint

ep-group

contract

13
context

]

o
P
<in

_images/sign-up.jpg
Identity Server

Home

Identity. (~)

L-’ Sign-up
‘s OpenlD Sign-in

_images/validation.png
<<interface>>
MessageParser

<<interface>>
MessageSerializer

+ parseMessage() : Message

+ serlalizeMessage() : void

AbstractMessageParser

+ validate() : Message
+ serializeMessage() : void

i

PCEPErrorMessageParser

+ valdate() : void
+ serializeMessage() : void

T

Stateful07ErrorMessageParser

+ valdate() : void
+ serializeMessage() : void

_images/wrapper.png
wrapperl

PN PN2 PN2 PN3

LN1 N2

_images/vlanmap_using_mininet.png

_images/vtn-overview.png
OPEN R

L5 Locwo e e Pt

DAYLIGHT B

Management Vi DDos Lralournd
suijeLl Coordinator Protection dons & Services

‘OpenDaylight APls (REST)

Base Network Service Functions
p—)
R o [0

Service Abstraction Layer (SAL)
Manager, Capability Abstractions, Flow Programming, Inventory, etc.)

Controller

Platform

OpenFlow Enabled
Devices

l_ l_ Device Inerfaces)

S| S >l >

_images/snbi_arch1.png
(Openbaight AP J

Base Network Service Functions

o | [t oo | (i
o v |
v | L | (o] | s o] |-
\)
| (x| femn fooe o | (=

Securechamnel, R
automaticsetup
ond addressing

etwrk i T8 | el clpc

Portable Foundation Portable Foundation
Linux Linux
ASIC,X86, ARM, X86,ARM,
Forwarding Element Forwarding Element

(switch/Router) (server)

_images/snmp4sdn_getvlantable_postman.jpg
Normal @ Noenvironment v * A

@//Iocalhost 8181/restconf/operations/vian:get-vian-t tabD ‘ POST ’ @ URL pamms@

Accept application/jsoiz Manage presets
& Tontent-type application/json—> Q
Header Value

form-data x-www—form-unencode JSON +

1 {input:{node-id:158969157063648}}

Preview Add to collection m

Body 2000k (3 3095 ms

Pretty = Raw | Preview - = JSON XML

1 {

2 "output”: {

3 “vlan-table-entry": [

4 {

5 “port-list": [

6 24,

7 23

8 >

o “vlan-id": 1
DT I8

_images/IntentSystemPolicySurfaces.png
expressed intent

s
>

capabilities and state

governance

Sjulesisuod sdo

_images/ModelAdapter.png
modelAdapter

createTopologyRequestListener(...)

registerUnderlayTopologyListener(...)

createOverlayItemTranslatorf

_images/800px-Extensibility.png
s e
¢ e MiegiterCusomDeserlizrtey, imph |

(OrDeserazer & ===
eends [lvolue]
Headereserilizer| "
s can
msgVersion
value

_images/ocpagent-state-machine.jpg
RRHstartup /-

conotercomectatteipt

faled/-

cLosen. -

Moo Trag Timeout/
Disconnect

TraTimecut/
s Ty Timegut/ Disconnect
AT R e b

/

Establishing

Niao* TyoTimeout/
Discomnect
Discomection/

oce_ACK(FAIL/
restart Ty

oc?_ack(oK)/
Testart T

Established Maintenance

I Oy S A

SendResponse, restar Ty, Senderror Response, SendResponse, estat Ty,
restart Ty

_images/dlux-yang-list-elements.png

_images/GBP_High-levelExtraRenderer.png

_images/pcep-dependency-tree.png
od|-bgpcep-pcep-segment-routing

'

od|-bgpcep-pcep-all

. o
. [AERN
\ N

'
1 N

o
'
|

m S

odI-bgpcep-pcep-tunnel-provider \

N .

BN ¥ |

od|I-bgpcep-pcep-topology-provider 1

'
'
'
I
'
P

7

T N
' ~ /

' B2

v I
odI-bgpcep-pcep-statefuloﬁ odl-bgpcep-pcep-stateful02 | | :
I

odI-bgpcep-programming-impl

' - AR

\2Vas , N

odl-mdsal-broker ’ \

N K

4 od|-bgpcep-programming

N
N

N

odl-conﬁg-nets‘

od|-protocol-framework

= 4
odl-tcpmd5-netty Todl-bgpcep-dependencies

od|-config-api

Y

odl-yangtools-models

_images/dlux-login.png
€« C fi | localhost:8181/dlux/index.html#/node/index

™ Gmail - Decent Pro: Create UML diagrarr L.l Imported From Fire Other Bookmarks
. SEN
¥ DAY LIGHT =i Nodes
& Nodkg;

openflow:6
openflow:7
openflow:4
openflow:5
openflow:2

openflow:3

openflow:1

localhost:8181 /dlux/index.htmi#/node/index

_images/bmp.png
Monitoring Station

pGp ” Monitored Router ~ |
- BGP

=

Monitored Peer
Monitored Peer

_images/VTN_API.jpg
Orchestration Software

Web App

Web App

I Web API (REST) I

]

Virtual Tenant Network (VTN)

_images/sb-rest-architecture-user.png
1 pure REST (e.g.
sfeul POSTMAN)

I

RESTconf

Northbound

_images/ofoverlay-2-components.png
OfOverlayRenderer

Swich Update Task Polyanager
(iows) nes
Swicn Engpoit s
Manager Manager Polley "
invertory
Inventory Inventory Endpoints CDNFlGlIRATK)N 'OPERATIONAL
CONFIGURATION OPERRTIONAL OPERATIONAL plsiay datasiore
Gatastore " catastors ‘Gatastors

_images/GBPTerminology1.png
endpoint

ep-group

contract
subject
rule
classifier action
13

context

subnet L2 bridge
domain
12 flood
domain

_images/neutronmapper-gbp-mapping-port-example1.png
Subnet

Neutron entities

has parent

has parent

has L3-context

has L2-context

has network containment

Group Based Policy entities

_images/sf-rendered-service-path.png
arders Service Functions Service Function Chains Access Lists/Classifiers

Service Function Paths | Rendered Service Paths ‘

Rendered Service Path

SFC2-123-Path-1 (Parent Path: SFC2-123) (Path-ID: 1, starting index: 255) X

S~ .

_images/sfc-2-symmetric.png
classifier: HTTP (dst 80) IN
action: chain: web

chain: web
symmetric = True
{firewall, dpi}

classifier: HTTP (src 80) OUT
action: chain: web

_images/GBPTerminology3.png
endpoint

ep-group

contract

subject

rule]

classifier | | _action

13
context

subnet L2 bridge
domain

12 flood

domain

Layer3 based
namespace... like a

VRF, or other
L3VPN.
.. Layer2
namespace... a
L2VPN...
... where
broadcasts

are limited to.

_images/odl-ofp-ofplugin-debug-stats.png
Java Monitoring & Management Console

Connection Window _Help

eo0eo pid: 96118 org.apache karaf.main.Main
Overview | Memory | Threads | Classes | VM Summary b=
» [ZMimplementation ‘Operation invocation
» {1 com.sun.management RS etege
» (2 connector
> @java.lang MBeanOperationinfo
> @javanio Name Value
> @java.uiiogging Operation:
» [org.apache aries.blueprint Name makeMsgStatistics
» & org.apache.karaf Description makeMsgstatistics
» [org.eclipse.equinox.region.domain impact UNKNOWN
v org.opendaylight controller RewmType Java.lang.String
» @ ConfigRegistry
» [DOMDataBroker
» [inMemonyConfigbatastore
» [InMemoryOperationalDatastore
» [Module
» @ NetconfNotificationProvider
v (8 RuntimeBean
¥ 8 msg-spy-service-impl L
¥ @ msg-spy-service-impl
> Atributes
Descriptor
Name Value
Operation:
openType javax management openmbean SimpleType(nam
> [shutdown originalType Java.langString

» [serviceReference
» [osgi.compendium
» [osgi.core

_images/odl-neutron-service-architecture.png
OpenStack Neutron

Neutron REST API

OpenDaylight YANG-modeled RESTCONF

3

¥

Neutron Service

) [

OpenDayLight

_images/dlux-yang-topology1.png
=} Yangul

SR

opentiows

_images/l2switch-stp-status.png
odes/node/openflow:1/node-connector/openflow:1:2

€ - C |[10.194.126.91:8080/ restconf/operational/opendaylight-inventor

#h CiscoMac s Rally € Jenkins g LabMan | oAuthsigCheck [Quad (I NOSTG (] Learning (] Chr 0

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<node-connector xmlns="urn:opendaylight:inventory”>
v<portstat: flow-capable-node-connector-statistics xmlns:portstat="urn:opendaylight:port:statistics">
<transmit-errors xmlns="urn:opendaylight:port:statistics">0</transmit-errors>
v<portstat:bytes>
<received xmlns
<transmitted xmln
</portstatbytes>
<transmit-drops xmlns:

‘urn:opendaylight :port:statistics">28054</received>
‘urn:opendaylight :port:statistics">2856</transmitted>

>0</transnit-drops>

‘urn:opendaylight :port:statistic
‘urn:opendaylight :port:statistics">0</receive-crc-error>
pendaylight :port:statistics">0</collision-count>
<receive-frame-error xmlns="urn:opendaylight:port:statistics'>0</receive-frame-error>
ve<portstat:packets>
<received xmlns
<transmitted xmln
</portstat:packets>
v<portstat:duration>
“<nanosecond xmlns="urn:opendaylight:port:statistics">415000000</nanosecond>
<second xmlns="urn:opendaylight:port:
</portstat:duration>
<receive-drops xmlns="urn:opendaylight:port:statistics">0</receive-drops>
<receive-over-run-error xmlns="urn:opendaylight:port:statistics">0</receive-over-run-error>
<receive-errors xmlns="urn:opendaylight:port:statistics">0</receive-errors>
</portstat: flow-capable-node-connector-statistics>

‘urn:opendaylight :port:statistics">153</received>
‘urn:opendaylight :port:statistics">46</transmitted>

‘urn:opendaylight: £low: inventory”>0</maximun-speed>
"urn:opendaylight:flow: inventory”>10000000</current-speed>

_images/sfcofrenderer_nwtopo.png
SFC OF Renderer Typical Network topology

Bidirectional/Symmetric
Rendered Service Path

HTTP HTTP
Client Server
SF1 SF2
Classifier Classifier

T
(OVS-OF) (0VS-0F)

Simple mininet command to create topology
sudo mn ~topo finear,4 —switch ovsk protocols=OpenFlow13 —controller remote,ip=192.168.1.103

_images/How_to_provision_virtual_L2_network.png
Virtual L2 network for hostl and host3

Virtual tenant

Virtual bridge

_images/arch-engine.jpg
Network Application

module| |module

module module

module| |module

Client Controller Framework 1

Client Controller Framework 2

Backend

Backend

NetIDE Intermediate Protocol

Tools

Core Layer

NetIDE Intermediate Protocol|

Shim layer

Server Controller Framework

Network
Element

Network
Element

Network
Element

auibug ylomaN

_images/MutiController_Example_diagram.png

_images/dlux-ocp-apis.jpg
[©OpenDaylight Dlux - Mozilla Firefox
OpenDaylight Dlux

€ £ @localhost:

EN

Module

1 Yang Ul »Expand all | Collapse others

+ ocp-resourcemodel rev.2015-08-11
— ocp-service rev.2015-08-11
[moperons

& create-obj-nb

B delete-obj-nb

B get-fault-nb

& get-param-nb

B get-state-nb

& health-check-nb

& modify-param-nb

& modify-state-nb

B re-reset-nb

B set-time-nb

+ opendayiight-action-types rev.2013-11-12

_images/netide-flow.jpg
Module Backend : Network
Core Shim Layer|
(ID=X) (ID=Y) I | ¥ Element
re t:lest ms:
_q—g_b(xld —N) NetIDE msg
NetIDE msg
(module_id=X)
request msg b
(xid = N)
compute new unique xid
e.g.: M = hash(N,X)
request msg B
(xid = M)
reply msg
(xid = M)
restore the old xid
xid=N module_id=X
NetIDE msg
4 (module_id=X)
NetIDE msg reply msg
(module_id=X) (KId=i
< A
reply msg reply msg
4 (xid = N) (xid = N)

_images/neutronmapper-gbp-mapping-subnet-example1.png
has parent

has parent

has parent

Neutron entities Group Based Policy entities

_images/sfc-ovs-architecture.png
a. mapping from OVSDB to SFC (SFF)

Createtupdateidelete |, VS Node o [createnupdateidelets
SFF (cfg) Listener (oper) [<"| OVS Node (open) |1,
] (" ovsnoce
: OVSDBMDSAL | I omnecieato 0DL
o
SFF (Createiupdateidelete
iy o &>
yes!
noop
b. mapping from SFC (SFF) to OVSDB
RESTcon!
createlupdate/delete
SFF (cfg)
VS Node (Createiupdateidelete
Listener (oper) ~ [<"| " OVS Node (oper) [X,
[
ovs Node
©OVSDBMDSAL nnected 1o ODL
[s|

SFF
Listener (clg)

[createnpateidelete
OVS Node (cig)

lno!/v
>

es)

noop

_images/Launch_Instance_network.png
OpenDaylight Diux.

192.168.64.2

Launch Instance

Networking *

lected Networl 1 Available network
 push button or drag and drop, you may

by drag and
$vtnl 9

Available networ

_images/800px-Extensibility2.png
SwitchComnectionProvider

registerCustomSerialzerty.

Headerserialzer

)

msgVersion

msgType

msgType2

_images/Create_Network.png
] odi-scvmm:10 (wineuser) - TightVNC Viewer

HED I & ®

B Networks - Openstack . x L), OpenDaylisht Dlux

€« c 192.168.64.20,

B8 openstack Lz
Project Networks

Compute

Networks + CresteNewgork

Network
Name Subnets Associated Shared Status Admin State Actions

private-subnet 10.0.0.0/24 No ACTIVE UP Edit Network | More

Displaying L tem

Router

Orchestration

Admin

192.168.64.20/project/networks/create

_images/dlux-ocp-nodes.jpg
OpenDaylight Dlux

_images/SSH_keys.jpg
Settings

oy le O IGRXVG TQFY Qo3RS TrE RSS2 1] G SEMICOTUOBMUOWE? X Loy 7 SkPe.
Y307 04AA R AAAAFQDTvE30028Cal XM KM TWVSWAARIBKAZTUUt G0N Gl R Gyae ol
o aoPoALLATP + ZpWBUSI2 WAIGMWHO s bevroSITBYCK Py IHOSEQWHOZ2 2434 EIDSrOTy M
i mhGE 82 XRCBI7ATIOT] L HDUOGUSHF VUL GAARIAGYT - HNDOR L pBEDEO34UL7.00
IBbZLAALURNNIENG o1yVszXatwfjanXKimmSoNx 3 4mOojnsHK2sDUDBNLESn pOSmI3cXaiSNo
OCisqERASABURCS74BALT4BLEBAASKCTYEK G- 1 CFPAMMGInA = Pagbard@debion

Add

erver Host Key

Enry o .

rosts:
[git.openday 11ght .0rg) :29418 ssh-rsa AAAABINZAClyC2EAAMABTWARAQEAYRXYH. . .W/8yTsw==]

_images/tutorial_architecture_diagram.png
@ 1111132

192.168.16.30

oDL

192.168.16.11

192.168.16.33

192.168.16.31 ﬁ 22232

192.168.16.32

=
0

2222132

0

0

_images/sfc-ui-architecture.png

_images/ttp-screen4-get-json.png
806
POSTMAN

History Collections

[E=3 httpi//localhost:8181 /restconf/config/on
fttpopendaylight ttps/onf-ttp:table-ty...

https//localhost:8181 restconf/config/on
fetpopendaylight ttps/onf-ttp:table-ty...

Type to filter

o

Normal | Basic Auth | Digest Auth | OAuth1.0 | OAuth2.0 | @ Noenvironment~
http://localhost:8181/restconf/config/onf-ttp:opendaylight-ttps/onf-ttp:table-type-patterns/

Authorization Basic YWRtaW46YWRtaWd= Add preset ~

‘Accept application/json
Value &

Prerequestscript | Tests Addto collection

sody | Cooies | teaders(3) | Tess | (G oo e

Pretty Raw Preview Q gk JSONT

{
- table-type-pattems: {

"If this TTP were published for use it would include",

"guidance as to any security considerations in this doc member.",
ustrative purposes only.",

"This TTP is not published for use by ONF. It is an example and for"

}
- NDM_metadata:
type: "TTPVI",
- doc:[

"and an ACL table.",
"Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),"

1

authority: "org.opennetworking fawg",

name: "1 9.1 LACT <"

@ URL params

Manage presets.

@ Headers (2)

_images/Sign_in.jpg
1 LINUX FOUNDATION COLLABORATIVE PROJECTS

OPEN
DAY LIGHT

Al Projects Documentation

Open Merged Abandoned

Search for status:open

Subject
» Fixed FIXME on MAC address serialization

BUG-650: fromYanglnstanceldentifier() can return null

Account signup / management | Bugzilla | Jenkins | Sonar | Nexus | Wiki | Mailing lists | Forums (Askbot) | Etherpad | Sign-off Rules

Status

TR o DN L T I S S S T T T e T T R o

Owner
Michal Polkorab

Robert Varga
Rl

Project
openflowjava

controller

2

RN \\\\\\\\\\\\\\§

status open Search

Sign In

Updated CR V

Branch
master 2:25 PM v
master 2:25 PM

Al Eika

P

_images/ovsdb-sb-oper-crud.jpg
MD-SAL OVSDB SB
Operational Data
Store
/ 3) Map changes in OVSDB to

OVSDB SB Config
Data Store

Operational MD-SAL nofles

OVSDB SB Provider

[}

2) OVSDB update
message indicates
changes that have
occurred in the OVSDB
tables

1) Changes are
madetoOVSDB ___1 | oyspB server
Node independent
of ODL (e.g. locally
with ovs-vsctl)

OVSDB Node

_images/Put.png
onf/config/MN

T] nstanceident
DataSchemaNode

Mountinstance

nfigurationData Tri

CompositeNode

-isonToCompositeNodeProvider
XmiToCompositeNodeProvider

RESTCONF

Operational
datastore

_images/pcep-parsing.png
ByteToMessageDecoder

SimpleMessageRegistry

|
| Li parseMessage(ByteBur, List<Message>) : Message |

AbstractMessageParser

1.1: parseMessage(ByteBLf, List<Message>) : Message

RequestMessageParser

_images/sfc-3-asymmetric.png
classifier: HTTP (dst 80) IN
action: chain: web

chain: web
symmetric = True
{firewall, dpi}

classifier: HTTP (src 80) OUT
action: chain: web

_images/dlux-yang-ui-screen.png

_images/sf-schedule-type.png
Creating Service Function Path based on chain 'SFC2'

Enter unique path name:

Selecta schedule type: Selecta type.

Shortest Path

_images/ovsdb-sb-active-connection.jpg
1) Add an OVSDB node

Y
OVSDB SB Config | MDA OENIEs
Operational Data
Data Store
Store
2) Data Change \ /4) Add OVSDB Node

OVSDB SB Provider

3) Connect to OVSDB

Node as a Manager 5) Query Schemas and

Databases supported
6) Register to Monitor by OVSDB Node
changes to the OVSDB
tables.

Y

OVSDB server

OVSDB Node

_images/PathAttributesSerialization.png
PathAttributesParser

| 1: serializeAttribute(PathAttributes, ByteBuf)

Type: 1

Type: 2

OriginAttribLteParser

AsPathAttributeParser

,,,,,,,,,,,,, il

2: serializeAttribute(PathAttrlbutes, ByteBurf