
Controller
Release master

Oct 14, 2019

Contents

1 Controller 1

i

ii

CHAPTER 1

Controller

1.1 Overview

OpenDaylight Controller is Java-based, model-driven controller using YANG as its modeling language for various
aspects of the system and applications and with its components serves as a base platform for other OpenDaylight
applications.

The OpenDaylight Controller relies on the following technologies:

• OSGI - This framework is the back-end of OpenDaylight as it allows dynamically loading of bundles and
packages JAR files, and binding bundles together for exchanging information.

• Karaf - Application container built on top of OSGI, which simplifies operational aspects of packaging and
installing applications.

• YANG - a data modeling language used to model configuration and state data manipulated by the applications,
remote procedure calls, and notifications.

The OpenDaylight Controller provides following model-driven subsystems as a foundation for Java applications:

• Config Subsystem - an activation, dependency-injection and configuration framework, which allows two-phase
commits of configuration and dependency-injection, and allows for run-time rewiring.

• MD-SAL - messaging and data storage functionality for data, notifications and RPCs modeled by application
developers. MD-SAL uses YANG as the modeling for both interface and data definitions, and provides a mes-
saging and data-centric runtime for such services based on YANG modeling.

• MD-SAL Clustering - enables cluster support for core MD-SAL functionality and provides location-transparent
accesss to YANG-modeled data.

The OpenDaylight Controller supports external access to applications and data using following model-driven proto-
cols:

• NETCONF - XML-based RPC protocol, which provides abilities for client to invoke YANG-modeled RPCs,
receive notifications and to read, modify and manipulate YANG modeled data.

• RESTCONF - HTTP-based protocol, which provides REST-like APIs to manipulate YANG modeled data and
invoke YANG modeled RPCs, using XML or JSON as payload format.

1

Controller, Release master

1.2 MD-SAL Overview

The Model-Driven Service Adaptation Layer (MD-SAL) is message-bus inspired extensible middleware component
that provides messaging and data storage functionality based on data and interface models defined by application
developers (i.e. user-defined models).

The MD-SAL:

• Defines a common-layer, concepts, data model building blocks and messaging patterns and provides infras-
tructure / framework for applications and inter-application communication.

• Provide common support for user-defined transport and payload formats, including payload serialization and
adaptation (e.g. binary, XML or JSON).

The MD-SAL uses YANG as the modeling language for both interface and data definitions, and provides a messaging
and data-centric runtime for such services based on YANG modeling.

The MD-SAL provides two different API types (flavours):

• MD-SAL Binding: MD-SAL APIs which extensively uses APIs and classes generated from YANG models,
which provides compile-time safety.

• MD-SAL DOM: (Document Object Model) APIs which uses DOM-like representation of data, which makes
them more powerful, but provides less compile-time safety.

Note: Model-driven nature of the MD-SAL and DOM-based APIs allows for behind-the-scene API and payload
type mediation and transformation to facilitate seamless communication between applications - this enables for other
components and applications to provide connectors / expose different set of APIs and derive most of its functional-
ity purely from models, which all existing code can benefit from without modification. For example RESTCONF
Connector is an application built on top of MD-SAL and exposes YANG-modeled application APIs transparently via
HTTP and adds support for XML and JSON payload type.

1.2.1 Basic concepts

Basic concepts are building blocks which are used by applications, and from which MD-SAL uses to define messaging
patterns and to provide services and behavior based on developer-supplied YANG models.

Data Tree All state-related data are modeled and represented as data tree, with possibility to address any element /
subtree

• Operational Data Tree - Reported state of the system, published by the providers using MD-SAL. Rep-
resents a feedback loop for applications to observe state of the network / system.

• Configuration Data Tree - Intended state of the system or network, populated by consumers, which
expresses their intention.

Instance Identifier Unique identifier of node / subtree in data tree, which provides unambiguous information, how to
reference and retrieve node / subtree from conceptual data trees.

Notification Asynchronous transient event which may be consumed by subscribers and they may act upon it

RPC asynchronous request-reply message pair, when request is triggered by consumer, send to the provider, which
in future replies with reply message.

2 Chapter 1. Controller

Controller, Release master

Note: In MD-SAL terminology, the term RPC is used to define the input and output for a procedure (function)
that is to be provided by a provider, and mediated by the MD-SAL, that means it may not result in remote call.

1.2.2 Messaging Patterns

MD-SAL provides several messaging patterns using broker derived from basic concepts, which are intended to transfer
YANG modeled data between applications to provide data-centric integration between applications instead of API-
centric integration.

• Unicast communication

– Remote Procedure Calls - unicast between consumer and provider, where consumer sends request mes-
sage to provider, which asynchronously responds with reply message

• Publish / Subscribe

– Notifications - multicast transient message which is published by provider and is delivered to subscribers

– Data Change Events - multicast asynchronous event, which is sent by data broker if there is change in
conceptual data tree, and is delivered to subscribers

• Transactional access to Data Tree

– Transactional reads from conceptual data tree - read-only transactions with isolation from other running
transactions.

– Transactional modification to conceptual data tree - write transactions with isolation from other running
transactions.

– Transaction chaining

1.3 MD-SAL Data Transactions

MD-SAL Data Broker provides transactional access to conceptual data trees representing configuration and opera-
tional state.

Note: Data tree usually represents state of the modeled data, usually this is state of controller, applications and also
external systems (network devices).

Transactions provide stable and isolated view from other currently running transactions. The state of running trans-
action and underlying data tree is not affected by other concurrently running transactions.

Write-Only Transaction provides only modification capabilities, but does not provide read capabilities. Write-only
transaction is allocated using newWriteOnlyTransaction().

Note: This allows less state tracking for write-only transactions and allows MD-SAL Clustering to optimize
internal representation of transaction in cluster.

Read-Write Transaction provides both read and write capabilities. It is allocated using
newReadWriteTransaction().

1.3. MD-SAL Data Transactions 3

Controller, Release master

Read-Only Transaction provides stable read-only view based on current data tree. Read-only view is not affected by
any subsequent write transactions. Read-only transaction is allocated using newReadOnlyTransaction().

Note: If an application needs to observe changes itself in data tree, it should use data tree listeners instead of
read-only transactions and polling data tree.

Transactions may be allocated using the data broker itself or using transaction chain. In the case of transaction
chain, the new allocated transaction is not based on current state of data tree, but rather on state introduced by previous
transaction from the same chain, even if the commit for previous transaction has not yet occurred (but transaction was
submitted).

1.3.1 Write-Only & Read-Write Transaction

Write-Only and Read-Write transactions provide modification capabilities for the conceptual data trees.

1. application allocates new transactions using newWriteOnlyTransaction() or
newReadWriteTransaction().

2. application modifies data tree using put, merge and/or delete.

3. application finishes transaction using submit(), which seals transaction and submits it to be processed.

4. application observes the result of the transaction commit using either blocking or asynchronous calls.

The initial state of the write transaction is a stable snapshot of the current data tree state captured when transaction
was created and it’s state and underlying data tree are not affected by other concurrently running transactions.

Write transactions are isolated from other concurrent write transactions. All writes are local to the transaction and rep-
resents only a proposal of state change for data tree and are not visible to any other concurrently running transactions
(including read-only transactions).

The transaction commit may fail due to failing verification of data or concurrent transaction modifying and affected
data in an incompatible way.

Modification of Data Tree

Write-only and read-write transaction provides following methods to modify data tree:

put

<T> void put(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Stores a piece of data at a specified path. This acts as an add / replace operation, which is to say that whole
subtree will be replaced by the specified data.

merge

<T> void merge(LogicalDatastoreType store, InstanceIdentifier<T> path, T data);

Merges a piece of data with the existing data at a specified path. Any pre-existing data which are not explicitly
overwritten will be preserved. This means that if you store a container, its child subtrees will be merged.

delete

void delete(LogicalDatastoreType store, InstanceIdentifier<?> path);

Removes a whole subtree from a specified path.

4 Chapter 1. Controller

Controller, Release master

Submitting transaction

Transaction is submitted to be processed and committed using following method:

CheckedFuture<Void,TransactionCommitFailedException> submit();

Applications publish the changes proposed in the transaction by calling submit() on the transaction. This seals the
transaction (preventing any further writes using this transaction) and submits it to be processed and applied to global
conceptual data tree. The submit() method does not block, but rather returns ListenableFuture, which will
complete successfully once processing of transaction is finished and changes are applied to data tree. If commit of
data failed, the future will fail with TransactionFailedException.

Application may listen on commit state asynchronously using ListenableFuture.

Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
public void onSuccess(Void result) {

LOG.debug("Transaction committed successfully.");
}

public void onFailure(Throwable t) {
LOG.error("Commit failed.",e);

}
});

• Submits writeTx and registers application provided FutureCallback on returned future.

• Invoked when future completed successfully - transaction writeTx was successfully committed to data tree.

• Invoked when future failed - commit of transaction writeTx failed. Supplied exception provides additional
details and cause of failure.

If application need to block till commit is finished it may use checkedGet() to wait till commit is finished.

try {
writeTx.submit().checkedGet();

} catch (TransactionCommitFailedException e) {
LOG.error("Commit failed.",e);

}

• Submits writeTx and blocks till commit of writeTx is finished. If commit fails
TransactionCommitFailedException will be thrown.

• Catches TransactionCommitFailedException and logs it.

Transaction local state

Read-Write transactions maintain transaction-local state, which renders all modifications as if they happened, but this
is only local to transaction.

Reads from the transaction returns data as if the previous modifications in transaction already happened.

Let assume initial state of data tree for PATH is A.

ReadWriteTransaction rwTx = broker.newReadWriteTransaction();

rwRx.read(OPERATIONAL,PATH).get();
rwRx.put(OPERATIONAL,PATH,B);
rwRx.read(OPERATIONAL,PATH).get();

(continues on next page)

1.3. MD-SAL Data Transactions 5

Controller, Release master

(continued from previous page)

rwRx.put(OPERATIONAL,PATH,C);
rwRx.read(OPERATIONAL,PATH).get();

• Allocates new ReadWriteTransaction.

• Read from rwTx will return value A for PATH.

• Writes value B to PATH using rwTx.

• Read will return value B for PATH, since previous write occurred in same transaction.

• Writes value C to PATH using rwTx.

• Read will return value C for PATH, since previous write occurred in same transaction.

1.3.2 Transaction isolation

Running (not submitted) transactions are isolated from each other and changes done in one transaction are not observ-
able in other currently running transaction.

Lets assume initial state of data tree for PATH is A.

ReadOnlyTransaction txRead = broker.newReadOnlyTransaction();
ReadWriteTransaction txWrite = broker.newReadWriteTransaction();

txRead.read(OPERATIONAL,PATH).get();
txWrite.put(OPERATIONAL,PATH,B);
txWrite.read(OPERATIONAL,PATH).get();
txWrite.submit().get();
txRead.read(OPERATIONAL,PATH).get();
txAfterCommit = broker.newReadOnlyTransaction();
txAfterCommit.read(OPERATIONAL,PATH).get();

• Allocates read only transaction, which is based on data tree which contains value A for PATH.

• Allocates read write transaction, which is based on data tree which contains value A for PATH.

• Read from read-only transaction returns value A for PATH.

• Data tree is updated using read-write transaction, PATH contains B. Change is not public and only local to
transaction.

• Read from read-write transaction returns value B for PATH.

• Submits changes in read-write transaction to be committed to data tree. Once commit will finish, changes will
be published and PATH will be updated for value B. Previously allocated transactions are not affected by this
change.

• Read from previously allocated read-only transaction still returns value A for PATH, since it provides stable and
isolated view.

• Allocates new read-only transaction, which is based on data tree, which contains value B for PATH.

• Read from new read-only transaction return value B for PATH since read-write transaction was committed.

Note: Examples contain blocking calls on future only to illustrate that action happened after other asynchronous
action. The use of the blocking call ListenableFuture#get() is discouraged for most use-cases and you
should use Futures#addCallback(ListenableFuture, FutureCallback) to listen asynchronously
for result.

6 Chapter 1. Controller

Controller, Release master

1.3.3 Commit failure scenarios

A transaction commit may fail because of following reasons:

Optimistic Lock Failure Another transaction finished earlier and modified the same node in a non-compatible
way. The commit (and the returned future) will fail with an OptimisticLockFailedException.

It is the responsibility of the caller to create a new transaction and submit the same modification again in order
to update data tree.

Warning: OptimisticLockFailedException usually exposes multiple writers to the same data
subtree, which may conflict on same resources.

In most cases, retrying may result in a probability of success.

There are scenarios, albeit unusual, where any number of retries will not succeed. Therefore it is strongly
recommended to limit the number of retries (2 or 3) to avoid an endless loop.

Data Validation The data change introduced by this transaction did not pass validation by commit handlers or data
was incorrectly structured. The returned future will fail with a DataValidationFailedException. User
should not retry to create new transaction with same data, since it probably will fail again.

Example conflict of two transactions

This example illustrates two concurrent transactions, which derived from same initial state of data tree and proposes
conflicting modifications.

WriteTransaction txA = broker.newWriteTransaction();
WriteTransaction txB = broker.newWriteTransaction();

txA.put(CONFIGURATION, PATH, A);
txB.put(CONFIGURATION, PATH, B);

CheckedFuture<?,?> futureA = txA.submit();
CheckedFuture<?,?> futureB = txB.submit();

• Updates PATH to value A using txA

• Updates PATH to value B using txB

• Seals & submits txA. The commit will be processed asynchronously and data tree will be updated to contain
value A for PATH. The returned ‘ListenableFuture’ will complete successfully once state is applied to data tree.

• Seals & submits txB. Commit of txB will fail, because previous transaction also modified path in a concurrent
way. The state introduced by txB will not be applied. The returned ListenableFuture will fail with
OptimisticLockFailedException exception, which indicates that concurrent transaction prevented the
submitted transaction from being applied.

Example asynchronous retry-loop

private void doWrite(final int tries) {
WriteTransaction writeTx = dataBroker.newWriteOnlyTransaction();

MyDataObject data = ...;
InstanceIdentifier<MyDataObject> path = ...;

(continues on next page)

1.3. MD-SAL Data Transactions 7

Controller, Release master

(continued from previous page)

writeTx.put(LogicalDatastoreType.OPERATIONAL, path, data);

Futures.addCallback(writeTx.submit(), new FutureCallback<Void>() {
public void onSuccess(Void result) {

// succeeded
}

public void onFailure(Throwable t) {
if(t instanceof OptimisticLockFailedException && ((tries - 1) > 0)) {

doWrite(tries - 1);
}

}
});

}
...
doWrite(2);

1.3.4 Concurrent change compatibility

There are several sets of changes which could be considered incompatible between two transactions which are derived
from same initial state. Rules for conflict detection applies recursively for each subtree level.

Following table shows state changes and failures between two concurrent transactions, which are based on same initial
state, tx1 is submitted before tx2.

INFO: Following tables stores numeric values and shows data using toString() to simplify examples.

Initial state tx1 tx2 Observable Result
Empty put(A,1) put(A,2) tx2 will fail, value of A is 1
Empty put(A,1) merge(A,2) value of A is 2
Empty merge(A,1) put(A,2) tx2 will fail, value of A is 1
Empty merge(A,1) merge(A,2) A is 2
A=0 put(A,1) put(A,2) tx2 will fail, A is 1
A=0 put(A,1) merge(A,2) A is 2
A=0 merge(A,1) put(A,2) tx2 will fail, value of A is 1
A=0 merge(A,1) merge(A,2) A is 2
A=0 delete(A) put(A,2) tx2 will fail, A does not exists
A=0 delete(A) merge(A,2) A is 2

Table: Concurrent change resolution for leaves and leaf-list items

8 Chapter 1. Controller

Controller, Release master

Initial state tx1 tx2 Result
Empty put(TOP,[]) put(TOP,[]) tx2 will fail, state is TOP=[]
Empty put(TOP,[]) merge(TOP,[]) TOP=[]
Empty put(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
Empty put(TOP,[FOO=1]) merge(TOP,[BAR=1]) TOP=[FOO=1,BAR=1]
Empty merge(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
Empty merge(TOP,[FOO=1]) merge(TOP,[BAR=1]) TOP=[FOO=1,BAR=1]
TOP=[] put(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
TOP=[] put(TOP,[FOO=1]) merge(TOP,[BAR=1]) state is TOP=[FOO=1,BAR=1]
TOP=[] merge(TOP,[FOO=1]) put(TOP,[BAR=1]) tx2 will fail, state is TOP=[FOO=1]
TOP=[] merge(TOP,[FOO=1]) merge(TOP,[BAR=1]) state is TOP=[FOO=1,BAR=1]
TOP=[] delete(TOP) put(TOP,[BAR=1]) tx2 will fail, state is empty store
TOP=[] delete(TOP) merge(TOP,[BAR=1]) state is TOP=[BAR=1]
TOP=[] put(TOP/FOO,1) put(TOP/BAR,1]) state is TOP=[FOO=1,BAR=1]
TOP=[] put(TOP/FOO,1) merge(TOP/BAR,1) state is TOP=[FOO=1,BAR=1]
TOP=[] merge(TOP/FOO,1) put(TOP/BAR,1) state is TOP=[FOO=1,BAR=1]
TOP=[] merge(TOP/FOO,1) merge(TOP/BAR,1) state is TOP=[FOO=1,BAR=1]
TOP=[] delete(TOP) put(TOP/BAR,1) tx2 will fail, state is empty store
TOP=[] delete(TOP) merge(TOP/BAR,1] tx2 will fail, state is empty store
TOP=[FOO=1] put(TOP/FOO,2) put(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] put(TOP/FOO,2) merge(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] merge(TOP/FOO,2) put(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] merge(TOP/FOO,2) merge(TOP/BAR,1) state is TOP=[FOO=2,BAR=1]
TOP=[FOO=1] delete(TOP/FOO) put(TOP/BAR,1) state is TOP=[BAR=1]
TOP=[FOO=1] delete(TOP/FOO) merge(TOP/BAR,1] state is TOP=[BAR=1]

Table: Concurrent change resolution for containers, lists, list items

1.4 MD-SAL RPC routing

The MD-SAL provides a way to deliver Remote Procedure Calls (RPCs) to a particular implementation based on
content in the input as it is modeled in YANG. This part of the RPC input is referred to as a context reference.

The MD-SAL does not dictate the name of the leaf which is used for this RPC routing, but provides necessary func-
tionality for YANG model author to define their context reference in their model of RPCs.

MD-SAL routing behavior is modeled using following terminology and its application to YANG models:

Context Type Logical type of RPC routing. Context type is modeled as YANG identity and is referenced in
model to provide scoping information.

Context Instance Conceptual location in data tree, which represents context in which RPC could be executed. Con-
text instance usually represent logical point to which RPC execution is attached.

Context Reference Field of RPC input payload which contains Instance Identifier referencing context instance in
which the RPC should be executed.

1.4.1 Modeling a routed RPC

In order to define routed RPCs, the YANG model author needs to declare (or reuse) a context type, set of possible
context instances and finally RPCs which will contain context reference on which they will be routed.

1.4. MD-SAL RPC routing 9

Controller, Release master

Declaring a routing context type

identity node-context {
description "Identity used to mark node context";

}

This declares an identity named node-context, which is used as marker for node-based routing and is used in other
places to reference that routing type.

Declaring possible context instances

In order to define possible values of context instances for routed RPCs, we need to model that set accordingly using
context-instance extension from the yang-ext model.

import yang-ext { prefix ext; }

/** Base structure **/
container nodes {

list node {
key "id";
ext:context-instance "node-context";
// other node-related fields would go here

}
}

The statement ext:context-instance "node-context"; marks any element of the list node as a pos-
sible valid context instance in node-context based routing.

Note: The existence of a context instance node in operational or config data tree is not strongly tied to existence of
RPC implementation.

For most routed RPC models, there is relationship between the data present in operational data tree and RPC imple-
mentation availability, but this is not enforced by MD-SAL. This provides some flexibility for YANG model writers
to better specify their routing model and requirements for implementations. Details when RPC implementations are
available should be documented in YANG model.

If user invokes RPC with a context instance that has no registered implementation, the RPC invocation will fail with
the exception DOMRpcImplementationNotAvailableException.

Declaring a routed RPC

To declare RPC to be routed based on node-context we need to add leaf of instance-identifier type (or
type derived from instance-identifier) to the RPC and mark it as context reference.

This is achieved using YANG extension context-reference from yang-ext model on leaf, which will be used
for RPC routing.

rpc example-routed-rpc {
input {

leaf node {
ext:context-reference "node-context";
type "instance-identifier";

}

(continues on next page)

10 Chapter 1. Controller

Controller, Release master

(continued from previous page)

// other input to the RPC would go here
}

}

The statement ext:context-reference "node-context" marks leaf node as context reference of
type node-context. The value of this leaf, will be used by the MD-SAL to select the particular RPC imple-
mentation that registered itself as the implementation of the RPC for particular context instance.

1.4.2 Using routed RPCs

From a user perspective (e.g. invoking RPCs) there is no difference between routed and non-routed RPCs. Routing
information is just an additional leaf in RPC which must be populated.

1.4.3 Implementing a routed RPC

Implementation

Registering implementations

Implementations of a routed RPC (e.g., southbound plugins) will specify an instance-identifier for the context ref-
erence (in this case a node) for which they want to provide an implementation during registration. Consumers, e.g.,
those calling the RPC are required to specify that instance-identifier (in this case the identifier of a node) when invoking
RPC.

Simple code which showcases that for add-flow via Binding-Aware APIs (RoutedServiceTest.java):

61 @Override
62 public void onSessionInitiated(ProviderContext session) {
63 assertNotNull(session);
64 firstReg = session.addRoutedRpcImplementation(SalFlowService.class,
→˓salFlowService1);
65 }

Line 64: We are registering salFlowService1 as implementation of SalFlowService RPC

107 NodeRef nodeOne = createNodeRef("foo:node:1");
109 /**
110 * Provider 1 registers path of node 1
111 */
112 firstReg.registerPath(NodeContext.class, nodeOne);

Line 107: We are creating NodeRef (encapsulation of InstanceIdentifier) for “foo:node:1”.

Line 112: We register salFlowService1 as implementation for nodeOne.

The salFlowService1 will be executed only for RPCs which contains Instance Identifier for foo:node:1.

RPCs and cluster

In case there is is only a single provider of an RPC in the cluster the RPC registration is propagated to other nodes via
Gossip protocol and the RPC calls from other nodes are correctly routed to the provider. Since the registrations are not
expected to change rapidly there is a latency of about 1 second until the registration is reflected on the remote nodes.

1.4. MD-SAL RPC routing 11

https://git.opendaylight.org/gerrit/gitweb?p=controller.git;a=blob;f=opendaylight/md-sal/sal-binding-it/src/test/java/org/opendaylight/controller/test/sal/binding/it/RoutedServiceTest.java;h=d49d6f0e25e271e43c8550feb5eef63d96301184;hb=HEAD

Controller, Release master

1.5 OpenDaylight Controller MD-SAL: RESTCONF

1.5.1 RESTCONF operations overview

RESTCONF allows access to datastores in the controller.
There are two datastores:

• Config: Contains data inserted via controller

• Operational: Contains other data

Note:

Each request must start with the URI /restconf.
RESTCONF listens on port 8080 for HTTP requests.

RESTCONF supports OPTIONS, GET, PUT, POST, and DELETE operations. Request and response data can either
be in the XML or JSON format. XML structures according to yang are defined at: XML-YANG. JSON structures are
defined at: JSON-YANG. Data in the request must have a correctly set Content-Type field in the http header with
the allowed value of the media type. The media type of the requested data has to be set in the Accept field. Get the
media types for each resource by calling the OPTIONS operation. Most of the paths of the pathsRestconf endpoints
use Instance Identifier. <identifier> is used in the explanation of the operations.

<identifier>

• It must start with <moduleName>:<nodeName> where <moduleName> is a name of the module and <node-
Name> is the name of a node in the module. It is sufficient to just use <nodeName> after <module-
Name>:<nodeName>. Each <nodeName> has to be separated by /.

• <nodeName> can represent a data node which is a list or container yang built-in type. If the data
node is a list, there must be defined keys of the list behind the data node name for example, <node-
Name>/<valueOfKey1>/<valueOfKey2>.

• The format <moduleName>:<nodeName> has to be used in this case as well:
Module A has node A1. Module B augments node A1 by adding node X. Module C augments node A1 by
adding node X. For clarity, it has to be known which node is X (for example: C:X). For more details about
encoding, see: RESTCONF 02 - Encoding YANG Instance Identifiers in the Request URI.

1.5.2 Mount point

A Node can be behind a mount point. In this case, the URI has to be in format
<identifier>/yang-ext:mount/<identifier>. The first <identifier> is the path to a mount point and the second
<identifier> is the path to a node behind the mount point. A URI can end in a mount point itself by using
<identifier>/yang-ext:mount.
More information on how to actually use mountpoints is available at: OpenDaylight
Controller:Config:Examples:Netconf.

1.5.3 HTTP methods

12 Chapter 1. Controller

http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/draft-lhotka-netmod-yang-json-02
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Concepts#Instance_Identifier
http://tools.ietf.org/html/draft-bierman-netconf-restconf-02#section-5.3.1
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Config:Examples:Netconf

Controller, Release master

OPTIONS /restconf

• Returns the XML description of the resources with the required request and response media types in Web
Application Description Language (WADL)

GET /restconf/config/<identifier>

• Returns a data node from the Config datastore.

• <identifier> points to a data node which must be retrieved.

GET /restconf/operational/<identifier>

• Returns the value of the data node from the Operational datastore.

• <identifier> points to a data node which must be retrieved.

PUT /restconf/config/<identifier>

• Updates or creates data in the Config datastore and returns the state about success.

• <identifier> points to a data node which must be stored.

Example:

PUT http://<controllerIP>:8080/restconf/config/module1:foo/bar
Content-Type: applicaton/xml
<bar>

...
</bar>

Example with mount point:

PUT http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/
→˓module2:foo/bar
Content-Type: applicaton/xml
<bar>

...
</bar>

POST /restconf/config

• Creates the data if it does not exist

For example:

1.5. OpenDaylight Controller MD-SAL: RESTCONF 13

Controller, Release master

POST URL: http://localhost:8080/restconf/config/
content-type: application/yang.data+json
JSON payload:

{
"toaster:toaster" :
{

"toaster:toasterManufacturer" : "General Electric",
"toaster:toasterModelNumber" : "123",
"toaster:toasterStatus" : "up"

}
}

POST /restconf/config/<identifier>

• Creates the data if it does not exist in the Config datastore, and returns the state about success.

• <identifier> points to a data node where data must be stored.

• The root element of data must have the namespace (data are in XML) or module name (data are in JSON.)

Example:

POST http://<controllerIP>:8080/restconf/config/module1:foo
Content-Type: applicaton/xml/
<bar xmlns=“module1namespace”>

...
</bar>

Example with mount point:

http://<controllerIP>:8080/restconf/config/module1:foo1/foo2/yang-ext:mount/
→˓module2:foo
Content-Type: applicaton/xml
<bar xmlns=“module2namespace”>

...
</bar>

POST /restconf/operations/<moduleName>:<rpcName>

• Invokes RPC.

• <moduleName>:<rpcName> - <moduleName> is the name of the module and <rpcName> is the name of the
RPC in this module.

• The Root element of the data sent to RPC must have the name “input”.

• The result can be the status code or the retrieved data having the root element “output”.

Example:

14 Chapter 1. Controller

Controller, Release master

POST http://<controllerIP>:8080/restconf/operations/module1:fooRpc
Content-Type: applicaton/xml
Accept: applicaton/xml
<input>

...
</input>

The answer from the server could be:
<output>

...
</output>

An example using a JSON payload:

POST http://localhost:8080/restconf/operations/toaster:make-toast
Content-Type: application/yang.data+json
{

"input" :
{

"toaster:toasterDoneness" : "10",
"toaster:toasterToastType":"wheat-bread"

}
}

Note: Even though this is a default for the toasterToastType value in the yang, you still need to define it.

DELETE /restconf/config/<identifier>

• Removes the data node in the Config datastore and returns the state about success.

• <identifier> points to a data node which must be removed.

More information is available in the RESTCONF RFC.

1.5.4 How RESTCONF works

RESTCONF uses these base classes:

InstanceIdentifier Represents the path in the data tree

ConsumerSession Used for invoking RPCs

DataBrokerService Offers manipulation with transactions and reading data from the datastores

SchemaContext Holds information about yang modules

MountService Returns MountInstance based on the InstanceIdentifier pointing to a mount point

MountInstace Contains the SchemaContext behind the mount point

DataSchemaNode Provides information about the schema node

SimpleNode Possesses the same name as the schema node, and contains the value representing the data node value

1.5. OpenDaylight Controller MD-SAL: RESTCONF 15

http://tools.ietf.org/html/draft-bierman-netconf-restconf-02

Controller, Release master

CompositeNode Can contain CompositeNode-s and SimpleNode-s

1.5.5 GET in action

Figure 1 shows the GET operation with URI restconf/config/M:N where M is the module name, and N is the node
name.

./images/Get.png

Fig. 1: Get

1. The requested URI is translated into the InstanceIdentifier which points to the data node. During this translation,
the DataSchemaNode that conforms to the data node is obtained. If the data node is behind the mount point, the
MountInstance is obtained as well.

2. RESTCONF asks for the value of the data node from DataBrokerService based on InstanceIdentifier.

3. DataBrokerService returns CompositeNode as data.

4. StructuredDataToXmlProvider or StructuredDataToJsonProvider is called based on the Accept field from the
http request. These two providers can transform CompositeNode regarding DataSchemaNode to an XML or
JSON document.

5. XML or JSON is returned as the answer on the request from the client.

1.5.6 PUT in action

Figure 2 shows the PUT operation with the URI restconf/config/M:N where M is the module name, and N is the node
name. Data is sent in the request either in the XML or JSON format.

./images/Put.png

Fig. 2: Put

1. Input data is sent to JsonToCompositeNodeProvider or XmlToCompositeNodeProvider. The correct provider is
selected based on the Content-Type field from the http request. These two providers can transform input data to
CompositeNode. However, this CompositeNode does not contain enough information for transactions.

2. The requested URI is translated into InstanceIdentifier which points to the data node. DataSchemaNode con-
forming to the data node is obtained during this translation. If the data node is behind the mount point, the
MountInstance is obtained as well.

3. CompositeNode can be normalized by adding additional information from DataSchemaNode.

4. RESTCONF begins the transaction, and puts CompositeNode with InstanceIdentifier into it. The response on
the request from the client is the status code which depends on the result from the transaction.

16 Chapter 1. Controller

Controller, Release master

1.5.7 Something practical

1. Create a new flow on the switch openflow:1 in table 2.

HTTP request

Operation: POST
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<strict>false</strict>
<instructions>

<instruction>
<order>1</order>
<apply-actions>

<action>
<order>1</order>
<flood-all-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>111</id>
<cookie_mask>10</cookie_mask>
<out_port>10</out_port>
<installHw>false</installHw>
<out_group>2</out_group>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.0.1/24</ipv4-destination>

</match>
<hard-timeout>0</hard-timeout>
<cookie>10</cookie>
<idle-timeout>0</idle-timeout>
<flow-name>FooXf22</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

HTTP response

Status: 204 No Content

1.5. OpenDaylight Controller MD-SAL: RESTCONF 17

Controller, Release master

1. Change strict to true in the previous flow.

HTTP request

Operation: PUT
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/111
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<strict>true</strict>
<instructions>

<instruction>
<order>1</order>
<apply-actions>

<action>
<order>1</order>
<flood-all-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>111</id>
<cookie_mask>10</cookie_mask>
<out_port>10</out_port>
<installHw>false</installHw>
<out_group>2</out_group>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.0.1/24</ipv4-destination>

</match>
<hard-timeout>0</hard-timeout>
<cookie>10</cookie>
<idle-timeout>0</idle-timeout>
<flow-name>FooXf22</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

HTTP response

Status: 200 OK

1. Show flow: check that strict is true.

18 Chapter 1. Controller

Controller, Release master

HTTP request

Operation: GET
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/111
Accept: application/xml

HTTP response

Status: 200 OK

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow

xmlns="urn:opendaylight:flow:inventory">
<strict>true</strict>
<instructions>

<instruction>
<order>1</order>
<apply-actions>

<action>
<order>1</order>
<flood-all-action/>

</action>
</apply-actions>

</instruction>
</instructions>
<table_id>2</table_id>
<id>111</id>
<cookie_mask>10</cookie_mask>
<out_port>10</out_port>
<installHw>false</installHw>
<out_group>2</out_group>
<match>

<ethernet-match>
<ethernet-type>

<type>2048</type>
</ethernet-type>

</ethernet-match>
<ipv4-destination>10.0.0.1/24</ipv4-destination>

</match>
<hard-timeout>0</hard-timeout>
<cookie>10</cookie>
<idle-timeout>0</idle-timeout>
<flow-name>FooXf22</flow-name>
<priority>2</priority>
<barrier>false</barrier>

</flow>

1. Delete the flow created.

HTTP request

1.5. OpenDaylight Controller MD-SAL: RESTCONF 19

Controller, Release master

Operation: DELETE
URI: http://192.168.11.1:8080/restconf/config/opendaylight-inventory:nodes/node/
→˓openflow:1/table/2/flow/111

HTTP response

Status: 200 OK

1.6 Websocket change event notification subscription tutorial

Subscribing to data change notifications makes it possible to obtain notifications about data manipulation (insert,
change, delete) which are done on any specified path of any specified datastore with specific scope. In following
examples {odlAddress} is address of server where ODL is running and {odlPort} is port on which OpenDaylight is
running.

1.6.1 Websocket notifications subscription process

In this section we will learn what steps need to be taken in order to successfully subscribe to data change event
notifications.

Create stream

In order to use event notifications you first need to call RPC that creates notification stream that you can later listen to.
You need to provide three parameters to this RPC:

• path: data store path that you plan to listen to. You can register listener on containers, lists and leaves.

• datastore: data store type. OPERATIONAL or CONFIGURATION.

• scope: Represents scope of data change. Possible options are:

– BASE: only changes directly to the data tree node specified in the path will be reported

– ONE: changes to the node and to direct child nodes will be reported

– SUBTREE: changes anywhere in the subtree starting at the node will be reported

The RPC to create the stream can be invoked via RESTCONF like this:

• URI: http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-data-change-event-subscription

• HEADER: Content-Type=application/json

• OPERATION: POST

• DATA:

{
"input": {

"path": "/toaster:toaster/toaster:toasterStatus",
"sal-remote-augment:datastore": "OPERATIONAL",
"sal-remote-augment:scope": "ONE"

(continues on next page)

20 Chapter 1. Controller

http:/

Controller, Release master

(continued from previous page)

}
}

The response should look something like this:

{
"output": {

"stream-name": "data-change-event-subscription/toaster:toaster/
→˓toaster:toasterStatus/datastore=CONFIGURATION/scope=SUBTREE"

}
}

stream-name is important because you will need to use it when you subscribe to the stream in the next step.

Note: Internally, this will create a new listener for stream-name if it did not already exist.

Subscribe to stream

In order to subscribe to stream and obtain WebSocket location you need to call GET on your stream path. The URI
should generally be http://{odlAddress}:{odlPort}/restconf/streams/stream/{streamName}, where {streamName} is
the stream-name parameter contained in response from create-data-change-event-subscription RPC from the previous
step.

• URI: http://{odlAddress}:{odlPort}/restconf/streams/stream/data-change-event-
subscription/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

• OPERATION: GET

The subscription call may be modified with the following query parameters defined in the RESTCONF RFC:

• filter

• start-time

• end-time

In addition, the following ODL extension query parameter is supported:

odl-leaf-nodes-only If this parameter is set to “true”, create and update notifications will only contain
the leaf nodes modified instead of the entire subscription subtree. This can help in reducing the size
of the notifications.

The expected response status is 200 OK and response body should be empty. You will get your WebSocket location
from Location header of response. For example in our particular toaster example location header would have this
value: ws://{odlAddress}:8185/toaster:toaster/datastore=CONFIGURATION/scope=SUBTREE

Note: During this phase there is an internal check for to see if a listener for the stream-name from the URI exists. If
not, new a new listener is registered with the DOM data broker.

Receive notifications

You should now have a data change notification stream created and have location of a WebSocket. You can use this
WebSocket to listen to data change notifications. To listen to notifications you can use a JavaScript client or if you are
using chrome browser you can use the Simple WebSocket Client.

1.6. Websocket change event notification subscription tutorial 21

http:/
http:/
https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.6
https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.7
https://tools.ietf.org/html/draft-ietf-netconf-restconf-05#section-4.8.8
https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo

Controller, Release master

Also, for testing purposes, there is simple Java application named WebSocketClient. The application is placed in the
-sal-rest-connector-classes.class project. It accepts a WebSocket URI as and input parameter. After starting the utility
(WebSocketClient class directly in Eclipse/InteliJ Idea) received notifications should be displayed in console.

Notifications are always in XML format and look like this:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2014-09-11T09:58:23+02:00</eventTime>
<data-changed-notification xmlns=

→˓"urn:opendaylight:params:xml:ns:yang:controller:md:sal:remote">
<data-change-event>

<path xmlns:meae="http://netconfcentral.org/ns/toaster">/meae:toaster</
→˓path>

<operation>updated</operation>
<data>

<!-- updated data -->
</data>

</data-change-event>
</data-changed-notification>

</notification>

1.6.2 Example use case

The typical use case is listening to data change events to update web page data in real-time. In this tutorial we will be
using toaster as the base.

When you call make-toast RPC, it sets toasterStatus to “down” to reflect that the toaster is busy making toast. When
it finishes, toasterStatus is set to “up” again. We will listen to this toaster status changes in data store and will reflect
it on our web page in real-time thanks to WebSocket data change notification.

1.6.3 Simple javascript client implementation

We will create simple JavaScript web application that will listen updates on toasterStatus leaf and update some element
of our web page according to new toaster status state.

Create stream

First you need to create stream that you are planing to subscribe to. This can be achieved by invoking “create-data-
change-event-subscription” RPC on RESTCONF via AJAX request. You need to provide data store path that you
plan to listen on, data store type and scope. If the request is successful you can extract the stream-name from the
response and use that to subscribe to the newly created stream. The {username} and {password} fields represent your
credentials that you use to connect to OpenDaylight via RESTCONF:

Note: The default user name and password are “admin”.

function createStream() {
$.ajax(

{
url: 'http://{odlAddress}:{odlPort}/restconf/operations/sal-remote:create-

→˓data-change-event-subscription',
type: 'POST',
headers: {

(continues on next page)

22 Chapter 1. Controller

Controller, Release master

(continued from previous page)

'Authorization': 'Basic ' + btoa('{username}:{password}'),
'Content-Type': 'application/json'

},
data: JSON.stringify(

{
'input': {

'path': '/toaster:toaster/toaster:toasterStatus',
'sal-remote-augment:datastore': 'OPERATIONAL',
'sal-remote-augment:scope': 'ONE'

}
}

)
}).done(function (data) {

// this function will be called when ajax call is executed successfully
subscribeToStream(data.output['stream-name']);

}).fail(function (data) {
// this function will be called when ajax call fails
console.log("Create stream call unsuccessful");

})
}

Subscribe to stream

The Next step is to subscribe to the stream. To subscribe to the stream you need to call GET on
http://{odlAddress}:{odlPort}/restconf/streams/stream/{stream-name}. If the call is successful, you get WebSocket
address for this stream in Location parameter inside response header. You can get response header by calling getRe-
sponseHeader(*Location)* on HttpRequest object inside done() function call:

function subscribeToStream(streamName) {
$.ajax(

{
url: 'http://{odlAddress}:{odlPort}/restconf/streams/stream/' +

→˓streamName;
type: 'GET',
headers: {
'Authorization': 'Basic ' + btoa('{username}:{password}'),

}
}

).done(function (data, textStatus, httpReq) {
// we need function that has http request object parameter in order to access

→˓response headers.
listenToNotifications(httpReq.getResponseHeader('Location'));

}).fail(function (data) {
console.log("Subscribe to stream call unsuccessful");

});
}

Receive notifications

Once you got WebSocket server location you can now connect to it and start receiving data change events. You need
to define functions that will handle events on WebSocket. In order to process incoming events from OpenDaylight you
need to provide a function that will handle onmessage events. The function must have one parameter that represents
the received event object. The event data will be stored in event.data. The data will be in an XML format that you can
then easily parse using jQuery.

1.6. Websocket change event notification subscription tutorial 23

Controller, Release master

function listenToNotifications(socketLocation) {
try {

var notificatinSocket = new WebSocket(socketLocation);

notificatinSocket.onmessage = function (event) {
// we process our received event here
console.log('Received toaster data change event.');
$($.parseXML(event.data)).find('data-change-event').each(

function (index) {
var operation = $(this).find('operation').text();
if (operation == 'updated') {

// toaster status was updated so we call function that gets
→˓the value of toasterStatus leaf

updateToasterStatus();
return false;

}
}

);
}
notificatinSocket.onerror = function (error) {

console.log("Socket error: " + error);
}
notificatinSocket.onopen = function (event) {

console.log("Socket connection opened.");
}
notificatinSocket.onclose = function (event) {

console.log("Socket connection closed.");
}
// if there is a problem on socket creation we get exception (i.e. when

→˓socket address is incorrect)
} catch(e) {

alert("Error when creating WebSocket" + e);
}

}

The updateToasterStatus() function represents function that calls GET on the path that was modified and sets toaster
status in some web page element according to received data. After the WebSocket connection has been established
you can test events by calling make-toast RPC via RESTCONF.

Note: for more information about WebSockets in JavaScript visit Writing WebSocket client applications

1.7 Config Subsystem

1.7.1 Overview

The Controller configuration operation has three stages:

• First, a Proposed configuration is created. Its target is to replace the old configuration.

• Second, the Proposed configuration is validated, and then committed. If it passes validation successfully, the
Proposed configuration state will be changed to Validated.

• Finally, a Validated configuration can be Committed, and the affected modules can be reconfigured.

24 Chapter 1. Controller

https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications

Controller, Release master

In fact, each configuration operation is wrapped in a transaction. Once a transaction is created, it can be configured,
that is to say, a user can abort the transaction during this stage. After the transaction configuration is done, it is
committed to the validation stage. In this stage, the validation procedures are invoked. If one or more validations fail,
the transaction can be reconfigured. Upon success, the second phase commit is invoked. If this commit is successful,
the transaction enters the last stage, committed. After that, the desired modules are reconfigured. If the second phase
commit fails, it means that the transaction is unhealthy - basically, a new configuration instance creation failed, and
the application can be in an inconsistent state.

./images/configuration.jpg

Fig. 3: Configuration states

./images/Transaction.jpg

Fig. 4: Transaction states

1.7.2 Validation

To secure the consistency and safety of the new configuration and to avoid conflicts, the configuration validation
process is necessary. Usually, validation checks the input parameters of a new configuration, and mostly verifies
module-specific relationships. The validation procedure results in a decision on whether the proposed configuration is
healthy.

1.7.3 Dependency resolver

Since there can be dependencies between modules, a change in a module configuration can affect the state of other
modules. Therefore, we need to verify whether dependencies on other modules can be resolved. The Dependency
Resolver acts in a manner similar to dependency injectors. Basically, a dependency tree is built.

1.7.4 APIs and SPIs

This section describes configuration system APIs and SPIs.

SPIs

Module org.opendaylight.controller.config.spi. Module is the common interface for all modules: every module must
implement it. The module is designated to hold configuration attributes, validate them, and create instances of service
based on the attributes. This instance must implement the AutoCloseable interface, owing to resources clean up. If
the module was created from an already running instance, it contains an old instance of the module. A module can

1.7. Config Subsystem 25

Controller, Release master

implement multiple services. If the module depends on other modules, setters need to be annotated with @RequireIn-
terface.

Module creation

1. The module needs to be configured, set with all required attributes.

2. The module is then moved to the commit stage for validation. If the validation fails, the module attributes can be
reconfigured. Otherwise, a new instance is either created, or an old instance is reconfigured. A module instance
is identified by ModuleIdentifier, consisting of the factory name and instance name.

ModuleFactory org.opendaylight.controller.config.spi. The ModuleFactory interface must be implemented by each
module factory.
A module factory can create a new module instance in two ways:

• From an existing module instance

• An entirely new instance
ModuleFactory can also return default modules, useful for populating registry with already existing
configurations. A module factory implementation must have a globally unique name.

APIs

ConfigRegistry Represents functionality provided by a configuration transaction (create, destroy
module, validate, or abort transaction).

ConfigTransactionController Represents functionality for manipulating with configuration transactions (begin,
commit config).

RuntimeBeanRegistra-
torAwareConfiBean

The module implementing this interface will receive RuntimeBeanRegistrator be-
fore getInstance is invoked.

Runtime APIs

RuntimeBean Common interface for all runtime beans
RootRuntimeBeanRegistra-
tor

Represents functionality for root runtime bean registration, which subsequently al-
lows hierarchical registrations

HierarchicalRuntimeBean-
Registration

Represents functionality for runtime bean registration and unreregistration from
hierarchy

JMX APIs

JMX API is purposed as a transition between the Client API and the JMX platform.

26 Chapter 1. Controller

Controller, Release master

ConfigTransac-
tionController-
MXBean

Extends ConfigTransactionController, executed by Jolokia clients on configuration transaction.

ConfigReg-
istryMXBean

Represents entry point of configuration management for MXBeans.

Object names Object Name is the pattern used in JMX to locate JMX beans. It consists of domain and key
properties (at least one key-value pair). Domain is defined as “org.opendaylight.controller”.
The only mandatory property is “type”.

Use case scenarios

A few samples of successful and unsuccessful transaction scenarios follow:

Successful commit scenario

1. The user creates a transaction calling creteTransaction() method on ConfigRegistry.

2. ConfigRegisty creates a transaction controller, and registers the transaction as a new bean.

3. Runtime configurations are copied to the transaction. The user can create modules and set their attributes.

4. The configuration transaction is to be committed.

5. The validation process is performed.

6. After successful validation, the second phase commit begins.

7. Modules proposed to be destroyed are destroyed, and their service instances are closed.

8. Runtime beans are set to registrator.

9. The transaction controller invokes the method getInstance on each module.

10. The transaction is committed, and resources are either closed or released.

Validation failure scenario
The transaction is the same as the previous case until the validation process.

1. If validation fails, (that is to day, illegal input attributes values or dependency resolver failure), the validationEx-
ception is thrown and exposed to the user.

2. The user can decide to reconfigure the transaction and commit again, or abort the current transaction.

3. On aborted transactions, TransactionController and JMXRegistrator are properly closed.

4. Unregistration event is sent to ConfigRegistry.

Default module instances

The configuration subsystem provides a way for modules to create default instances. A default instance is an instance
of a module, that is created at the module bundle start-up (module becomes visible for configuration subsystem, for
example, its bundle is activated in the OSGi environment). By default, no default instances are produced.

The default instance does not differ from instances created later in the module life-cycle. The only difference is that the
configuration for the default instance cannot be provided by the configuration subsystem. The module has to acquire
the configuration for these instances on its own. It can be acquired from, for example, environment variables. After

1.7. Config Subsystem 27

Controller, Release master

the creation of a default instance, it acts as a regular instance and fully participates in the configuration subsystem (It
can be reconfigured or deleted in following transactions.).

28 Chapter 1. Controller

	Controller

